Herbig-Haro objects are commonly visible in star forming regions and are shocks associated with outflow and jet activities powered by young stars. HH 1-2, HH 34, and HH 92 are three of the best examples of finely collimated Herbig-Haro flows. While they have been studied extensively from optical to near infrared wavelengths, little work has been done to study their sub-millimeter properties and molecular environments. Here we present new SMA observations of these three regions. High resolution interferometric observations resolve the driving sources of the Herbig-Haro complex, and reveal the small-scale circumstellar structures, including wide-angle bipolar outflow and new candidates of rotating disks around embedded protostars.

- **HH 1-2**: Driven by a young multiple system, consisting of two Class 0 protostars (VLA 1 & VLA2) and a Class I binary (VLA 4).
- **HH 34**: Driven by HH 34 IRS, a Class I protostar.
- **HH 92**: VLA observations at 3.5 cm resolve the core into 3 sources (Rodríguez et al. 2014).
 - VLA 1 is a protostar in transition from Class 0 - I.
 - VLA 2 and VLA 3 are thermal emission from shocks and do not contain protostars.
- **HH 24**: Above is a HST WFC3 image taken in [Fe II] 1.6 micron filter.
 - SMA observations are under reduction.

Observations

850 micron dust continuum
- HH 1-2: Located at Orion ~420 pc.
- HH 34: Highly collimated optical jets.
- HH 92: At HH 1-2, molecular emission is only detected around VLA 1.
 - At HH 34, a disk-like structure is detected in 13CO, C18O, and C17O lines inside the large-scale envelope seen by single-dish telescope.
 - At HH 92, a filamentary inner envelope is seen in 13CO line.
- CO (3-2): Inner envelopes flattened perpendicular to the optical jet.
 - At HH 34 and HH 92, CO molecular outflows show cone morphology despite the highly collimated optical jets.
- In 13CO line, a velocity gradient perpendicular to the jet axis is seen around HH 34 IRS.