BROADBAND DIRECT DETECTION SUBMILLIMETER SPECTROMETER WITH MULTIPLEXED SUPERCONDUCTING TRANSITION EDGE THERMOMETER BOLOMETERS

D. J. Benford, T.A. Ames, J. A. Chervenak, S. H. Moseley, R. A. Shafer, J. G. Staguhn†, G.M. Voellmer
NASA – Goddard Space Flight Center, Code 685, Greenbelt, MD 20771 † SSAI

F. Pajot, C. Rioux
IAS-CNRS, 91405 Orsay, France

T.G. Phillips
Caltech, MC 320-47, Pasadena, CA 91125

B. Maffei
University of Wales, Cardiff, CF24 3YB, Wales

K. D. Irwin
NIST – Boulder, MS 814. 03, Boulder, CO 80305

We present performance results based on the first astronomical use of multiplexed superconducting bolometers as direct detectors (i.e., with cold electrons) for spectoscopy. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer for the Caltech Submillimeter Observatory (CSO). FIBRE's detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering $\Delta \lambda / \lambda = 1/7$ at a resolution of $\delta \lambda / \lambda \sim 1/1200$ can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE has been operated in the 350 $\mu$m (850 GHz) band. These bands cover line emission from the important star formation tracers neutral carbon [CII] and carbon monoxide (CO).