GENERATION OF MILLIMETRE AND SUB-MILLIMETRE WAVES BY PHOTOMIXING IN A 1.55 µm WAVELENGTH PHOTODIODE.

P. G. Huggard & B. N. Ellison,
Rutherford Appleton Laboratory, Chilton,
Didcot, OX11 0QX, UK

P. Shen, N. J. Gomes & P. A. Davies,
Department of Electronics, University of Kent,
Canterbury, CT2 7NT, UK

W. P. Shillue, A. Vaccari & J. M Payne,
NRAO, Tucson, AZ 85721-0655, USA

We report on the generation of radiation at frequencies from 70 GHz to above 600 GHz by photomixing in a commercially available 70 GHz bandwidth photodiode\(^1\). This work is motivated by the potential of using such sources as phase references and local oscillators in the ALMA telescope\(^2\). The InGaAsP photodiodes were fixed in W-band waveguide mounts which had adjustable backshort tuning. The photodiodes were driven by two 1.55 µm diode lasers at total input powers of up to +10 dBm. Fixed tuning allowed the generation of power across the full waveguide band from 75 GHz to 110 GHz, with a variation below 5 dB across the majority of the band. A maximum, non-saturated, mm-wave power of −7.5 dBm (180 µW) was obtained at 110 GHz with a corresponding power conversion efficiency above 1 %. Detected power decreased approximately as (frequency)\(^{-4}\) above 150 GHz, as shown by the line in the above figure. The frequency dependence is consistent with the characteristics of the photodiode and waveguide mount.

1. u²t Innovative Optoelectronic Components GmbH, Tangermünder Weg 18, D13583 Berlin, Germany