ON-CHIP DETECTION OF RADIATION POWER FROM FLUX-FLOW OSCILLATORS WITH EPITAXIAL AND HIGH-J_C NbN/AlN/NbN JUNCTIONS

Satoshi KOHJIRO*, Zhen WANG**, Sergey V. SHITOV***, Shigehito MIKI****, Akira KAWAKAMI**, and Akira SHOJI*

* National Institute of Advanced Industrial Science and Technology, 1-1-4 Umezono, Tsukuba, Ibaraki 305-8568, Japan
** Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan
*** Institute of Radio Engineering and Electronics, Mokhovaya 11, 101999 Moscow, Russia
**** Graduate School of Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

For submillimeter-wave astronomy and global monitoring of atmosphere pollution, flux-flow-type Josephson oscillators (FFOs) are suitable for a tunable, compact, and low-power consuming local oscillator (LO) on a same chip with a SIS mixer. Recently, Nb-based FFOs were successfully tested as an integrated receiver’s LO below 0.6THz. With the aim of the development of an efficient FFOs-based LO operating above 0.6THz, we have investigated the radiation power P of NbN-based FFOs. The designed and fabricated chip incorporates FFOs, SIS power detectors (DETs), and their coupling circuits. Both FFOs and DETs consist of epitaxial NbN/AlN/NbN junctions with high critical current density J_C ($J_C > 10$ kA/cm2). The most part of the coupling circuit consists of NbN/SiO$_2$/Al microstrip lines whose rf loss is taken into account in its design. It has been found $P > 200$ nW, enough for the optimum pumping of a SIS mixer with rf resistance of 50Ω, is coupled to DETs in the frequency range of 0.5-0.8THz. The coupling bandwidth is larger than 20% of its central frequency. In the band, the radiation frequency is continuously tuned by the control current through the FFO in the range of 20-60mA. The peak power of 1.2 µW is detected at 0.78THz, i.e. above the gap frequency of Nb. In addition, the dissipated power in a FFO is smaller than hundreds of µW that prevents the external heating on an integrated SIS mixer. These experimental results indicate that FFOs with high-J_C NbN/AlN/NbN junctions are applicable for an on-chip local oscillator above 0.6THz.