SPECTRAL SENSITIVITY AND TEMPORAL RESOLUTION OF NbN SUPERCconducting Single-Photon Detectors

A. Verevkin, J. Zhang, W. Slysz, (a) and Roman Sobolewski
Department of Electrical and Computer Engineering and Laboratory of Laser Energetics University of Rochester, NY 14627-0231

Department of Physics, Moscow State Pedagogical University, Moscow 119435, Russia

A. Semenov
DLR Institute of Space Sensor technology, 12489 Berlin, Germany

Future radioastronomy missions will require detectors that simultaneously provide the ultimate, background limited, sensitivity and the fast response in the submillimeter wavelength range. Single-photon detectors are the most promising devices, providing that they can achieve large enough quantum efficiencies (QE) for counting far-infrared photons. Very recently we have demonstrated an optical, superconducting single-photon detector (SSPD) consisting of a 10-nm-thick, 0.2-μm-wide, and approximately 1-μm-long NbN stripe1, kept at temperature well below the material’s superconducting transition Tc, and current-biased just below the stripe’s critical current. The detection mechanism of the device was based on photon-induced, supercurrent-assisted formation of a resistive, hotspot barrier across the superconducting stripe.

The aim of this report is to present the performance of 4x4 μm² and 10x10 μm² active-area, meander-type NbN SSPD’s, excited by photons within the 0.4-μm to 3.0-μm-wavelength range, coming from both pulsed and CW optical sources. We observed that the SSPD spectral sensitivity followed activation-type dependence. The exponential character of the QE dependence on both the photon wavelength and the current bias was qualitatively explained in terms of superconducting fluctuations in our ultrathin, submicron-width NbN stripes. The device temporal resolution in the single-photon counting mode was found to be below 150 ps, directly limited by the phonon escape time for our 10-nm-thick NbN film deposited on the sapphire substrate.

Since the QE drops with the increase of the wavelength, there is a cutoff wavelength for our SSPD, and for above discussed detectors, it occurs at approximately 2.5-μm wavelength. However, in general, the ability of the SSPD to register a single photon is the trade-off between the material parameters, operating temperature, and the detector geometry. The use of a superconductor with the low value of the energy gap will shift the cutoff towards far-infrared wavelengths. Provided a sufficiently high optical coupling, such a low-Tc quantum detector should successfully compete with traditional background-limited thermal detectors in the submillimeter wavelength range.

This work was funded by the US Air Force Office for Scientific Research Grant F49620-01-1-0463 and by the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union Award No. RE-2227. Additional support was provided by the Schlumberger Semiconductor Solutions, San Jose, CA.

(a) Permanent address: Institute of Electron Technology, PL-02668 Warszawa, Poland.