Spectral Energy Distributions & Masses

Flux at λ for N particles of size a:

\[F_\lambda = N \left(\frac{\pi a^2}{D^2} \right) Q_\lambda B_\lambda (T) \]

\[B_\lambda (T) = \frac{2hc^2}{\lambda^5} \exp\left(\frac{hc}{\lambda kT} \right) - 1 \]

\[Q_{\text{FIR}} \propto \lambda^{-\beta} \]

\(\beta = 0 \) blackbodies
\(\beta = 1 \) amorphous, lattice-layer materials
\(\beta = 2 \) metals & crystalline dielectrics

Flux at λ for a distribution with \(N_a \) particles of each size a:

\[F_\lambda (\text{obs}) = \sum_{\text{grain distribution}} N_a \left(\frac{\pi a^2}{D^2} \right) Q_{\lambda,a} B_\lambda (T) \]

(Note: same flux can be achieved using different combinations of size distribution and emissivity law!)

Mass determination:

\[M_{\text{dust}} = \frac{4sF_\lambda D^2}{3B_\lambda(T_{\text{dust}})} \left\{ \frac{a}{Q_\lambda} \right\} \]

Using "appropriate average" of \(a/Q_\lambda \).

\[M_{\text{dust (true)}} = \sum_{\text{grain & temperature distribution}} \frac{4sF_\lambda D^2}{3B_\lambda(T_{\text{dust}})} \left\{ \frac{a}{Q_{\lambda,a}} \right\} \]

"Wien's Law":

\[\lambda_{\text{peak}} \approx 3000 \left[\frac{5}{\beta + 5} \right] T^{-1} \]

Peak flux moves to longer λ for smaller \(\beta \).

\(N = \) number of grains
\(a = \) "typical" grain size
\(D = \) distance from observer
\(T_{\text{dust}} = \) dust temperature
\(Q = \) emissivity
\(s = \) density of grain material