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On the third, at the seventh hour, the stars were arranged in thi
mence. The castern one was 1 minute, 30 seconds from Jupiter

s closest western one 2 minutes; and the other western one wi
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| minutes removed from this one. They were absolutely on tl
me straight hine and of equal magnitude

On the fourth, at the second hour, there were four stars arow
apiter, two to the east and two to the west, and arranged precise
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m a straight line, as in the adjoining figure. The casternmost wi
istant 3 minutes from the next one, while this one was 40 second
om Jupiter; Jupiter was 4 minutes from the nearest western ong

d this one 6 minutes from the westernmost one. Their magnitude

sre nearly equal; the one closest to Jupiter appeared a little smalle
an the rest. But at the seventh hour the castern stars were onl)

) seconds apart _lll“l((‘r was 2 munutes from the nearer casten
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fie, while he was 4 minutes from the next western one, and thi
jne was 3 minutes from the westernmost one. They were all equal
ind extended on the same straight line along the ecliptic

On the fifth, the sky was cloudy

On the sixth, only two stars appeared flanking Jupiter, as is seen
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a the adjoining figure. The castern one was 2 minutes and the

yestern one 3 minutes from Jupiter. They were on the same straight
ine with Jupiter and equal in magnitude

On the seventh, two stars stood near Jupiter * v to the eass




GALILEO'S "NEW ORDER"

Created by Alyssa Goodman, Curtis Wong and Pat Udomprasert,

with advice from Owen Gingcrich and David Malin

Galileo’s New Order, A WorldWide Telescope Tour by Goodman, Wong & Udomprasert 2010
WWT Software Wong (inventor, MS Research), Fay (architect, MS Reseearch), et al., now open source, hosted by AAS, Phil Rosenfield, Director

see wwtambassadors.org for more on WWT Outreach
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Galileo’s New Order, A WorldWide Telescope Tour by Goodman, Wong & Udomprasert 2010
WWT Software Wong (inventor, MS Research), Fay (architect, MS Reseearch), et al., now open source, hosted by AAS, Phil Rosenfield, Director

see wwtambassadors.org for more on WWT Outreach
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multidimensional data exploration

glue

d3po is a project designed to allow an astronomer (or anyone), with no special data visualization skills, to make an
interactive, publication-quality figure that has staged builds and linked brushing through scatter plots. Our current version
can be previewed at d3po.org, and represents a figure from upcoming work by graduate student Elisabeth Newton. The
figure describes how metalicity affects color in cool stars, and represents a nice use case for d3po. Try clicking and
dragging in the scatter plots to understand the power of linked brushing in published figures.

Right now we are in search of alpha testers, who have figures that could be made interactive and who are willing to get
their hands a little dirty (No javascript skills needed). In future versions, we plan to link to glue to allow the creation of d3po
figures interactively. We are also exploring i ion of d3po within ions and within authorea. Full 1.0
version expected in January 2014.

Installing your own d3po server

git clone git@github.con:adrn/d3po.git
d3po

virtualenv --no-site-packages venv
source venv/bin/activate

pip install -r pip-requirements.txt
python run.py

plotly

— » |Aujthorea
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Discovery year

[ Four Centuries of Discovery | A Chasm in Mass | Little Siblings | Close Cousins | The Strangers

After Galileo discovered the first four moons of Jupiter, it took nearly three hundred years to discover the next one.
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AS-minute video demonstration of this paper is available at this YouTube link.

1Preamble

Avariety of research on human cognition demonstrates that humans learn and communicate best when more than
one processing system (e.g. visual, auditory, touch) is used. And, related research also shows that, no matter how
technical the material, most humans also retain and process information best when they can put a narrative "story" to
it. So, when considering the future of scholarly communication, we should be careful not to do blithely away with the
linear narrative format that articles and books have followed for centuries: instead, we should enrichit.

Much more than text is used to commuicate in Science. Figures, which include images, diagrams, graphs, charts, and
more, have enriched scholarly articles since the time of Galileo, and ever-growing volumes of data underpin most
scientific papers. When scientists communicate face-to-face, as i talks or small discussions, these figures are often
the focus of the conversation. In the best discussions, scientists have the ability to manipulate the figures, and to
access underlying data, in real-time, so as to test out various whatf scenarios, and to explain findings more clearly.
This short article explains—and shows with demonstrations—how scholarly "papers" can morph into long-
tasting rich records of scientific discourse, enriched with deep data and code linkages, interactive figures, audio,
video, and commenting.

Cognition
Paper of
the Future . . .
Language™
Pictures

Communication

Fig.1
The Paper of the Future should include seamless linkages amongst data, pictures, and language, where "language” Q

includes both words and math. When an individual attempts to each of these kinds of ion, different
cognitive functions are utilized: communication is inefficient if the channel is restricted primatily to language, without

easy interconnection to data and pictures.

demo

Many thanks to Alberto Pepe, Josh Peek, Chris Beaumont,
Tom Robitaille, Adrian Price-Whelan, Elizabeth Newton,
Michelle Borkin & Matteo Cantiello for making this posible.
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Data, Dimensions, Display

1D: Columns = “Spectra”, “SEDs” or “Time Series”

2D: Faces or Slices = “Images”
3D: Volumes = “3D Renderings”, “2D Movies”

4D: Time Series of Volumes = “3D Movies”
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Data, Dlﬂ]@ﬂSlOﬂS) Dlsplay ) mm peak (Enoch et al. 2006)

sub-mm peak (Hatchell
L. 63 Ww: 127 et al. 2005, Kirk et al. 2006)

13CO (Ridge et al. 2006)

mid-IR IRAC composite
from c2d data (Foster,
Laakso, Ridge, et al.)

: ._ = Optical image (Barnard 1927)
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND' feature-
identification algorithms as applied to *CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of Ty, (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x—y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position—position—velocity (p—p—v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (aand b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (—0.5kms ') to back (8kms ™).

data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set® can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees™
were proposed as a way to characterize clouds’ hierarchical structure
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using 2D maps of column density. With tb~ ~+Iv2D work as inspira-
tion, we have developed a structure-id vy, | © ~ithm that

abstracts the hierarchical structure of a '-‘».._‘m

an easily visualized representation callec ey

well developed in other data-intensive
application of tree methodologies so fa
and almost exclusively within the ar
‘merger trees’ are being used with in

Figure 3 and its legend explain tt 'Ole 0
schematically. The dendrogram que proc r Se,
ima of emission merge with each ess of
explained in Supplementary Meth
determined almost entirely by t}
sensitivity to algorithm paramet
possible on paper and 2D screen
data (see Fig. 3 and its legend
cross, which eliminates dimen:
preserving all information
Numbered ‘billiard ball’ labe ..
features between a 2D map |
online) and a sorted dendrc

A dendrogram of a spectr
of key physical properties
surfaces, such as radius (Kjy e,
(L). The volumes can have any shape;
the significance of the especially elongated fea
(Fig. 2a). The luminosity is an approximate proxy for mass, Ste..
that Myym = Xi3c0Lisco, where X300 = 8.0 X 10% cm?K ™ 'km ™ 's
(ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be
used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, otgps = 56,*R/ GMiym.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where 1,5 < 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p—p—v space where self-
gravity is significant. As o, only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields', its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.

Local max =
Test level | |
T 1
Local max E
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@ Merge 3
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Merge T ~
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2¢ is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.

©2009 Macmillan Publishers Limited. All rights reserved
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Goodman et al. 2009, Nature,
cf: Fluke et al. 2009
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A role for self-gravity at multiple length scales in the

process of star formation

Alyssa A. Goodman'?, Erik W. Rosolowsky*?, Michelle A. Borkin't, Jonathan B. Foster?, Michael Halle'?*,

Jens Kauffmann"? & Jaime E. Pineda’®

Self-gravity plays a decisive role in the final stages of star forma-
tion, where dense cores (size ~0.1 parsecs) inside molecular clouds
collapse to form star-plus-disk systems'. But self-gravity’s role at
earlier times (and on larger length scales, such as ~I1 parsec) is
unclear; some molecular cloud simulations that do not include
self-gravity suggest that ‘turbulent fragmentation’ alone is suf-
ficient to create a mass distribution of dense cores that resembles,
and sets, the stellar initial mass function®. Here we report a ‘den-
drogram’ (hierarchical tree-diagram) analysis that reveals that
self-gravity plays a significant role over the full range of possible
scales traced by 13CO observations in the L1448 molecular cloud,
but not everywhere in the observed region. In particular, more
than 90 per cent of the compact ‘pre-stellar cores’ traced by peaks
of dust emission’ are projected on the sky within one of the den-
drogram’s self-gravitating ‘leaves’. As these peaks mark the loca-
tions of already-forming stars, or of those probably about to form,

overlapping features as an option, significant emission found between
prominent clumps is typically either appended to the nearest clump or
turned into a small, usually ‘pathological’, feature needed to encom-
pass all the emission being modelled. When applied to molecular-line
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Astronomy & Medicine both rely on
high-dimensional, big, wide, data for insight.
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mm peak (Enoch et al. 2006)

sub-mm peak (Hatchell
et al. 2005, Kirk et al. 2006)

13CO (Ridge et al. 2006)

mid-IR IRAC composite
from c2d data (Foster,
Laakso, Ridge, et al.)

Optical image (Barnard 1927)
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example here from: Beaumont, Goodman, Kendrew, Williams & Simpson 2014; based on Milky Way Project catalog (Simpson et al. 2013), which came from
Spitzer/GLIMPSE (Churchwell et al. 2009, Benjamin et al. 2003), cf. Shenoy & Tan 2008 for discussion of HAC; astroml.org for machine learning advice/tools
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Split and merge error

‘ learning *

algorithm

:

Number of regions

:

example here from: Kaynig...Lichtman...Pfister et al. 201 3, “Large-Scale Automatic Reconstruction of Neuronal Processes from Electron Microscopy
Images”; cf. Shenoy & Tan 2008 for discussion of HAC; astroml.org for machine learning advice/tools (Note: RF=Random Forest; CRF=Conditional Random Fields.)
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Figure 2 | Comparison of the ‘dendrogram’ and ‘CLUMPFIND’ feature-
identification algorithms as applied to *CO emission from the L1448
region of Perseus. a, 3D visualization of the surfaces indicated by colours in
the dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the
dendrogram; pink shows the smallest surfaces that contain distinct self-
gravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches
corresponding to self-gravitating objects have been highlighted in yellow
over the range of T,,;, (main-beam temperature) test-level values for which
the virial parameter is less than 2. The x—y locations of the four ‘self-
gravitating’ leaves labelled with billiard balls are the same as those shown in
Fig. 1. The 3D visualizations show position—position—velocity (p—p—v) space.
RA, right ascension; dec., declination. For comparison with the ability of
dendrograms (c) to track hierarchical structure, d shows a pseudo-
dendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As ‘clumps’ are not allowed to belong to larger
structures, each pseudo-branch in d is simply a series of lines connecting the
maximum emission value in each clump to the threshold value. A very large
number of clumps appears in b because of the sensitivity of CLUMPFIND to
noise and small-scale structure in the data. In the online PDF version, the 3D
cubes (aand b) can be rotated to any orientation, and surfaces can be turned
on and off (interaction requires Adobe Acrobat version 7.0.8 or higher). In
the printed version, the front face of each 3D cube (the ‘home’ view in the
interactive online version) corresponds exactly to the patch of sky shown in
Fig. 1, and velocity with respect to the Local Standard of Rest increases from
front (—0.5kms™ ') to back (8 kms ).

data, CLUMPFIND typically finds features on a limited range of scales,
above but close to the physical resolution of the data, and its results can
be overly dependent on input parameters. By tuning CLUMPFIND’s
two free parameters, the same molecular-line data set® can be used to
show either that the frequency distribution of clump mass is the same
as the initial mass function of stars or that it follows the much shal-
lower mass function associated with large-scale molecular clouds
(Supplementary Fig. 1).

Four years before the advent of CLUMPFIND, ‘structure trees”
were proposed as a way to characterize clouds’ hierarchical structure
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using 2D maps of column density. With tb™  ~+Iv2D work as inspira-
tion, we have developed a structure-id =~ vy, © ~ithm that
abstracts the hierarchical structure of a 0w o,
an easily visualized representation callec

well developed in other data-intensive *
application of tree methodologies so fa
and almost exclusively within the ar
‘merger trees’ are being used with in
Figure 3 and its legend explain t}

used to estimate the role of self-gravity at each point in the hierarchy,
via calculation of an ‘observed’ virial parameter, ttops = 56,2 R/ GMiym.
In principle, extended portions of the tree (Fig. 2, yellow highlighting)
where 1,5 < 2 (where gravitational energy is comparable to or larger
than kinetic energy) correspond to regions of p—p—v space where self-
gravity is significant. As o, only represents the ratio of kinetic energy
to gravitational energy at one point in time, and does not explicitly
capture external over-pressure and/or magnetic fields'®, its measured
value should only be used as a guide to the longevity (boundedness) of
any particular feature.
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Figure 3 | Schematic illustration of the dendrogram process. Shown is the
construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by
‘dropping’ a test constant emission level (purple) from above in tiny steps
(exaggerated in size here, light lines) until all the local maxima and mergers
are found, and connected as shown. The intersection of a test level with the
emission is a set of points (for example the light purple dots) in one
dimension, a planar curve in two dimensions, and an isosurface in three
dimensions. The dendrogram of 3D data shown in Fig. 2¢ is the direct
analogue of the tree shown here, only constructed from ‘isosurface’ rather
than ‘point’ intersections. It has been sorted and flattened for representation
on a flat page, as fully representing dendrograms for 3D data cubes would
require four dimensions.

©2009 Macmillan Publishers Limited. All rights reserved
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Goodman et al. 2009, Nature,
cf: Fluke et al. 2009



Linked Views of High-dimensional Data
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figure, by M. Borkin, reproduced from Goodman 2012, “Principles of High-Dimensional Data Visualization in Astronomy”
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bLUE

(3]

Data Collection

Data

Subsets

(] . @ Link Data

Plot Layers - Image Widget

v paws_correct

Plot Options - Image Widget

Data paws_correct
* Monochrome
Attribute PRIMARY
Right Ascension
Declination

Veloc

54

Slice Extraction

video by Chris Beaumont, glue developer
glue created by: C. Beaumont, M. Borkin, P. Qian,T. Robitaille, and A. Goodman, PI
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define new variables,
import/export insights,

interactive plots for the web,
save state, all from GUI

standard data
loaders

built-in

link data files’

attributes
custom data

loaders

plug-in

T
8,

IPTy

user config.py file

+options

(loaders, colors, plot types, +)

custom buttons, features

access to all matplotlib functions '@
through built-in IPython terminal

| "o,
glue %,
(A

(:Q;Q“

standard

1D, 2D & 3D

plots
highlight live or —\

algorithmic selections LE:IJ_l

with Boolean logic

custom

plots

run & interact with glue from
Jupyter notehook & other tools

glueviz.org



What is visualization (and all this software) for?

INSIGHT

CONTEXT  PATTERN RECOGNITION  EVALUATION
Spatial Ideas Algorithms

Non-Spatial Outliers Errors




“Is Nessie Parallel to the Galactic Plane?”
-A. Burkert 2012
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Where are we, really?

“IAU Milky Way”, est. 1959

True Milky Way, modern

The equatorial plane of the new co-ordinate system must of necessity pass through
the sun. It is a fortunate circumstance that, within the observational uncertainty, both
the sun and Sagittarius A lie in the mean plane of the Galaxy as determined from the
hydrogen observations. If the sun had not been so placed, points in the mean plane would

not lie on the galactic equator. , [Blaauw et al. 1959]
Sun is Galactic
~25 pc Center is The Galactic Plane is not quite
“above” the + 7 pc offset fromthe = where you’d think it is
IAU Milky Way LA Ly ey when you look at the sky

Plane Center



In the plane! And at distance of spiral arm!

J\ -43.3 -40.0 -36.7
\- | distance :
| R
Veloc@y
et l

[Z,=25.0 pc, Ry=8.5 kpc, ©p=220 km/s]

Galactic Latitude (b)
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340 338 336 334
Galactic Longitude (l)

Goodman et al. 2014



..eerily precisely...

Goodman et al. 2014



2014 Simulation

Smith et al. 2014, using AREPO
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2014 Simulation '
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NESSIE IN GLUEFWW T

Data Collection

Data
. HOPS_ammonia_catalog_ICRS
Nessie_13CO_ThrUMMS_slab
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(Nessie_13CO_ThrUMMS_sl...
(Nessie_GLIMPSE_8micron_...

(Nessie_HIGAL_Column_De...

= i X @) Link data

Plot Layers - WorldWideTelescope (WWT)
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Size: 3 S
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Center view on layer
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NESSIE IN GLUEFWW T

Data Collection e . ‘ @ Q t}

Data
. Nessie_HIGAL_Column_Density[PRIMARY] Tab1
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Join youUr excellent narrador & 3/&(3 /ead devel/ oper T orm Kobitalle
o learn MUCY more aboed 3/&(& 777¢(r§a’ay at 1°301
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T
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The challenge of 3D Selection

A state-of-the-art 3D model of the stars & gas near the Orion nebula, created at Orion (un)plugged, Vienna, 2015.
Expert builders (~20 total) include: Joao Alves, Jobn Bally, Alyssa Goodman & Eddie Schlafly. (cf “Image & Meaning” workshops by Felice Frankel)
YouTube video explanation; WWT Tour
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Literature as (a filter for) Data

NDS
NLU SKY
SURVEY

Many thanks to Alberto Pepe, August Muench, Thomas Boch, Jonathan Fay,
Michael Kurtz, Alberto Accomazzi, Julie Steffen, Laura Trouille, David Hogg, Dustin Lang,
Christopher Stumm, Chris Beaumont & Phil Rosenfield for making this all work!




ADS All-Sky Survey & Astronomy Rewind

ON A GREAT NEBULOUS REGION AND ON THE QUES-
TION OF ABSORBING MATTER IN SPACE AND THE
TRANSPARENCY OF THE NEBULAE

. ARNARD

(.é astrophysics
P data system

1. Images Extracted from Journal Articles

9=\ astrophysics

X&) data system
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2. Missing coordinate metadata added
back to images, either...

..automatically, applying astronometry.net to
wide-field optical images, or

nAstrometrg.net

"putting articles and images (back) on the Sky”

via “Astronomy Rewind” Zooniverse Citizen
Science Project

ZO@® NIVERSE

RA (deg)
e
k Not ol e 0t o |

J

82\ astrophysics click entries
"a“ ZO@® NIVERSE c
~9) data system on the llstrometrg.net flickr

ADS timeline to -~ WorldWide Telescope  Zooniverse  Astrometry.net

3. “Solved” images returned to ADS & Astronomy Image Explor®

('a astrophysics [l "astronomy
7 data system image explorer

4. New button in Astronomy Image Explorer offers image-in-
context, using AAS" WorldWide Telescope in the browser

Tastronomy
image explorer

ADS All Sky Survey Astronomy Image Explorer  Astronomy Rewind

]992 try out

services

2008 2009 2011

2014 2014 2017



Who, How, and Who's Paying?
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coueet FEEDBACK
THE AsTRONOMICAL JOURNAL, 131:2921-2933, 2006 June
© 2006, The American Astronomical Society. All rights reserved. Printed in US.A.

The ADS All Sky Survey
THE COMPLETE SURVEY OF STAR-FORMING REGIONS: PHASE I DATA .
Naomt A. Rice,' James D1 Francesco,? HeLen Kirk, > Dr Ly, »* Avyssa A. Goopmay,' JoZo F. ALves,® was ﬁ rsr fu nded via a 2 0] 2 g ra nt

Hécror G. ARCE,° MIiCHELLE A. Bom(m,7 PaoLa CASELL[,X JoNATHAN B. FC\STER,] Mark H. HEYER,

Douc JornsTong,>* Davip A. KossLyw,! Marco Lomsaror,* Jamve E. Pvepa,! ‘From i‘he NASA ADAP prog ram
Scorr L. SceNEE,! AND MARIO TAFALLA'®
Received 2005 November 8; accepted 2006 February 22

to Seamless Astronomy, in
ABSTRACT
‘We present an overview of dala_availab_lc for ﬂu_: Ophiuchus a_nd Perseus molecular clouds from Phase I of the co I I a bo ra ﬁo n w“-h C D S,

COMPLETE Survey of Star-Forming Regions. This survey provides a range of data complementary to the Spitzer
Legacy Program “From Molecular Cores to Planet Forming Disks.” Phase I includes the following: extinction

maps derived from the Two Micron All Sky Survey (2MASS) near-infrared data using the NICER algorithm;

extmcuon and tempemture maps denved ﬁ'om IRAS 60 and 100 pm emission; H 1 maps of atomic gas; 12CO and As" rom e'rY' n e" an d
13CO maps of lar gas; and images of emission from dust in dense cores. Not .

unexpectedly, the morphology of the regions appears quite different depending on the column density tracer that is M ICroso ft Re sedarc h .

used, with JR4S tracing mainly warmer dust and CO being biased by chemical, excitation, and optical depth effects.
Histograms of column density distribution are presented, showmg that extinction as derived from 2MASS NICER

gives the closest match to a lognormal distribution, as is p by numerical si; ions. All the data
in this paper, and links to more detailed publications on thclr implications, are publicly available at the COMPLETE
Web site.

Key words: ISM: clouds — stars: formation — surveys

Articles-on-the-Sky
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This project is part of an ongoing NASA-funded effort aimed at turning the SAO/NASA Astrophysics
g ra nll- Data System (ADS) into a data resource. The result will be a database of astro-referenced images, i.e.,
images of the sky for which coordinates, orientation, and pixel scale will be publicly available through

Fi6. 3.—Map of extinction in Ophiuchus derived using 2MASS NICER. The contour indicates an 4y of 3 mag and is repeated in subsequent figures for orientation.
Note that the small “hole” at the center of the L1688 cluster is an artifact due to the high extinction at that position.
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Seeing the Sky

Visualization & Astronomers

Alyssa A. Goodman
Harvard Smithsonian Center for Astrophysics & Radcliffe Institute for Advanced Study
(aagie
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To continue the conversation. . .

— 1‘

TEN QUESTIONS TO ASK WHEN CREATING A VISUALIZATION

The 10 Questions

. Who | Who is your audience? How expert will they be about the subject and/or display conventions?

. Explore-Explain | /s your goal to explore, document, or explain your data or ideas, or a combination of these?
. Feature & Pattern Recognition | /s feature and/or pattern recognition, a goal?

. Predictions & Uncertainty | Are you making a comparison between data and/or predictions? Is representing uncertainty a Role/Play: Collaborative Creativity and Creative Coll

concern? National Academy of Sciences Sackler Student Fellows Symposium, March 12

Creativity & Collaboration: Revisiting Cybernetic Serendipity
National Academy of Sciences Sackler Colloquium, March 13-14, 2 1 0

AN W N~

5. Dimensions | What is the intrinsic number of dimensions (not necessarily spatial) in your data, and how many do you want
to show at once? e
6. Categories & Clustering | Are there natural, or imposed, categories within the data? Are you interested in clustering? www.nasonline.org/Sackler-Creativity-Collaboration Sibenn Google
7. Abstraction & Accuracy | Do you need to show all the data, or is summary or abstraction OK?
8. Context & Scale | Can you, and do you want to, put the data into a standard frame of reference, coordinate system, or show
scale(s)?

9. Metadata | Do you need to display or link to non-quantitative metadata? (including captions, labels, etc.) Crea t Z UZ l:)/ G CO l lab O V&l lL Z On
10. Display Modes | What display modes might be used in experiencing your display?
at NAS March 2018

r. Join the 10QViz Conversation! r. u a wll‘/? Ben Sbnel'derman,

, Maneesh Agrawala, Roger Malina,
1 Oq DIZ.OTY with Arzu Goltekin (beta 2017, release 2018) Youngmoo Kim & Donna Cox




