star Formation

\& DATA VISUALIZATION
at the
presented by Alyssa Goodman at HHSF14, MPIA Heidelberg, June 2014

AFFINTY DETALLS (LIVE. ONLINE)

star Formation

at the

presented by Alyssa Goodman at HHSF14, MPIA Heidelberg, June 2014

star Formation

 DATA VISUALIZATIONat the

hitp://www.assrobetter.com/linking-visulizution-ond-understanding-in-ustronomy-aus223

VISUALIZNG VISUALIZATION

Thomas Roblaille MPIA

LINKED VEWS OF HIGH-DIMENSIONAL DATA

"DATA. DIMENSIONS. DISPLAY"

ID: Columns = "Spectra", "SEDs" or "Time Series"
2D: Faces or Slices = "Images"
3D: Volumes = "3D Renderings","2D Movies"
4D: Time Series of Volumes = "3D Movies"

Figure 2 | Comparison of the 'dendrogram' and 'CLUMPFIND' featureidentification algorithms as applied to ${ }^{13} \mathrm{CO}$ emission from the L 1448 region of Perseus. a, 3D visualization of the surfaces indicated by colou
the dendrogram shown in c. Purple illustrates the smallest scale selfthe dendrogram shown in c. Purple illustrates the smallest scale self-
gravitating structures in the region corresponding to the leaves of the dendrogram; pink shows the smallest surfaces that contain distinct selfgravitating leaves within them; and green corresponds to the surface in the
data cube containing all the significant emission. Dendrogram branches data cube containing all the significant emission. Dendrogram branches corresponding to self-gravitating objects have been highlighted in yellow
over the range of T_{m} (main-beam temperature) test-level values for which over the range of mb (main-beam temperature) test-level values for whic
the virial parameter is less than 2 . The $x-y$ locations of the four selfgravitating' leaves labelled with billiard balls are the same as those shown in Fig. 1. The 3D visualizations show position-position-velocity $(p-p-v)$ space. RA, right ascension; dec., declination. For comparison with the ability of dendrograms (c) to track hierarchical structure, \mathbf{d} shows a pseudodendrogram of the CLUMPFIND segmentation (b), with the same four
labels used in Fig. 1 and in a. As 'clumps' are not allowed to esong to labels used in Fig. 1 and in a. As 'clumps' are not allowed to belong to larger
structures, each pseudo-branch in dis simply a series of lines connecting the maximum emission value in each clump to the threshold value. A very large number of clumps appears in b because of the sensitivity of CLUMPFIND to noise and small-scale structure in the data. In the online PDF version, the 3D cubes (\mathbf{a} and \mathbf{b}) can be rotated to any orientation, and surfaces can be turned the printed version, the front face of each 3D cube (the 'home' view in the interactive online version) corresponds exactly to the patch of sky shown in Fig. 1, and velocity with respect to the Local Standard of Rest increases from front $\left(-0.5 \mathrm{~km} \mathrm{~s}^{-1}\right)$ to back $\left(8 \mathrm{~km} \mathrm{~s}^{-1}\right)$.
data, CLUMPFIND typically finds features on a limited range of scales, above but close to the physical resolution of the data, and its results can be overly dependent on input parameters. By tuning CLUMPFIND's two free parameters, the same molecular-line data set ${ }^{8}$ can be used to as the ither that the frequency distribution of clump mass is the same lower mass functionction of stars with large-scale molecular clouds (Supplementary Fig. 1)
Four years before the advent of CLUMPFIND, 'structure trees'9 were proposed as a way to characterize clouds' hierarchical structure
using 2D maps of column density. With $\mathrm{tr} \quad \mathrm{ll}_{v}$ 2D work as inspiration, we have developed a structure-id $\mathrm{V}_{0} / 457 / I_{\text {Ianuary }} \quad$ thm m that abstracts the hierarchical structure of a an easily visualized representation calle well developed in other data-intensive application of tree methodologies so f_{2} and almost exclusively within the merger trees are being used with Figure 3 and its legend explain t schematical. The dendrogram qu explained in Supplementary Mett determined almost entirely by tt sensitivity to algorithm paramet possible on paper and 2D screen possible on paper and 2D screen
data (see Fig. 3 and its legend cross, which eliminates dimen preserving all information Numbered 'billiard ball' lab features between a 2D map online) and a sorted dendro A dendrogram of a spect of key physical properties surfaces, such as radius ((L). The volumes can have any shape,
 (Fig. 2a). The luminosity is an approximate proxy for mass, on the tocanthat $M_{\text {lum }}=X_{13 C O} L_{13 C O}$, where $X_{13 C O}=8.0 \times 10^{20} \mathrm{~cm}^{2} \mathrm{~K}^{-1} \mathrm{~km}^{-1} \mathrm{~s}$ (ref. 15; see Supplementary Methods and Supplementary Fig. 2).
The derived values for size, mass and velocity dispersion can then be The derived values for size, mass and velocity dispersion can then be via calculatione the role of self-gravis atean por $\quad=5 \sigma^{2} R / G M$, In principle extended portions of the tree (Fig 2 yellowhighlighting) where $\alpha_{\text {obs }}<2$ (where gravitational energy is comparable to or larger than kinetic energy) correspond to regions of $p-p-v$ space where selfgravity is significant. As $\alpha_{\text {obs }}$ only represents the ratio of kinetic energy to gravitational energy at one point in time, and does not explicitly capture external over-pressure and/or magnetic fields ${ }^{16}$, its measured value should only be used as a guide to the longevity (boundedness) of any particular feature.

Figure $\mathbf{3} \mid$ Schematic illustration of the dendrogram process. Shown is the construction of a dendrogram from a hypothetical one-dimensional
emission profile (black). The dendrogram (blue) can be constructed by 'dropping' a test constant emission level (purple) from above in tiny steps (exaggerated in size here, light lines) until all the local maxima and mergers are found, and connected as shown. The intersection of a test level with the emission is a set of points (for example the light purple dots) in one dimension, a planar curve in two dimensions, and an isosurface in thre dimensions. The dendrogram of $3 D$ data shown in Fig. 2 c is the direct than 'point' intersections. It has been sorted and flattened for representation on a flat page, as fully representing dendrograms for 3D data cubes would require four dimensions.

Goodman et al. 2009, Nature, cf: Fluke et al. 2009

A role for self-gravity at multiple length scales in the process of star formation

Alyssa A. Goodman ${ }^{1,2}$, Erik W. Rosolowsky ${ }^{2,3}$, Michelle A. Borkin ${ }^{1} \dagger$, Jonathan B. Foster ${ }^{2}$, Michael Halle ${ }^{1,4}$, Jens Kauffmann ${ }^{1,2}$ \& Jaime E. Pineda ${ }^{2}$

Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size ~ 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems ${ }^{1}$. But self-gravity's role at earlier times (and on larger length scales, such as ~ 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function ${ }^{2}$. Here we report a 'dendrogram' (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by ${ }^{13} \mathrm{CO}$ observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact 'pre-stellar cores' traced by peaks of dust emission ${ }^{3}$ are projected on the sky within one of the dendrogram's self-gravitating 'leaves'. As these peaks mark the locations of already-forming stars, or of those probably about to form, a celfegravitating coconn ceems a critical condition for their oxist
overlapping features as an option, significant emission found between prominent clumps is typically either appended to the nearest clump or turned into a small, usually 'pathological', feature needed to encompass all the emission being modelled. When applied to molecular-line

LINKED VEWS OF HIGH-DIMENSIONAL DATA

Video \& implementation: Christopher Beaumont, CfA; inspired by AstroMed work of Douglas Alan, Michelle Borkin,AG, Michael Halle, Erik Rosolowsky

WIDE DATA

C ${ }^{(2) M P L E T E}$

 mm peak (Enoch et al. 2006)sub-mm peak (Hatchell et al. 2005, Kirk et al. 2006)
${ }^{13} \mathrm{CO}$ (Ridge et al. 2006)
mid-IR IRAC composite from c2d data (Foster, Laakso, Ridge, et al.)

Optical image (Barnard I927)

 +2. *2 x 3.3

Movie:Volker Springel, formation of a cluster of galaxies

BIG DATA and HUMAN-ADED COMPUTNG

example here from: Beaumont, Goodman, Kendrew, Williams \& Simpson 2014; based on Milky Way Project catalog (Simpson et al. 20 I3), which came from Spitzer/GLIMPSE (Churchwell et al. 2009, Benjamin et al. 2003), cf. Shenoy \& Tan 2008 for discussion of HAC; astroml.org for machine learning advice/tools

ASTRONOMICAL TREES (LINKED VIEWS OF DENDROGRAMS)

Selected structure: 48
Selected structure: 157
Selected structure: 58

Plot Options - Image Widget
Data iras

Monochrome \odot RGB
Contrast Visible

Blue TEMP \uparrow © $\quad \downarrow$

Circular ROI RA=54.5640582446
DEC=31.4211848621
Contrast

Polygonal ROI
${ }^{1 l i c}=$ glue
Beaumont, w/Goodman, Robitaille \& Borkin

(GLLLEDPPO:AUTHOREA)

Chris Beaumuini

Atrian Price-Whetan

\leftarrow C @ https://www.authorea.com/users/2786/articles/4039/_show_article

Authorea

O: Settings QFork \varangle Quick edit * Tour $\otimes 0$ Comments Export

- Beyond Galileo

\author{

- Josh Peek, Alberto Pepe +Add author
}
$s_{0} \quad$ In the last portion of Sidereus Nuncius, Galileo reported his discovery of four objects that appeared to form a straight line of stars near Jupiter. The first night, he witnessed a line of three little stars close to Jupiter parallel to the ecliptic; the following nights brought different arrangements and another star into his view, totaling four stars around Jupiter. (Galilei 1618) Throughout the text, Galileo gave illustrations of the relative positions of Jupiter and its apparent companion stars as they appeared nightly from late January through early March 1610. The fact that they changed their positions relative to Jupiter from night to night, but always appeared in the same straight line near Jupiter, brought Galileo to deduce that they were four bodies in orbit around Jupiter. On January 11 after 4 nights of observation he wrote:
"I therefore concluded and decided unhesitatingly, that there are three stars in the heavens moving about Jupiter, as Venus and Mercury round the Sun; which at length was established as clear as daylight by numerous subsequent observations. These observations also established that there are not only three, but four, erratic sidereal bodies performing their revolutions round Jupiter...the revolutions are so swift that an observer may generally get differences of position every hour." (Galilei

https://www.cfa.harvard.edu/~agoodman/seamless/

Supported by Nesearch
 \square 0

(1)

Pary

Experience WorldWide Telescope at worldwidetelescope.org and later this week right here at the HdA!

NEW WAYS TO LEARN \& EXPLORE

Hope Chen CfA

Experience WorldWide Telescope at worldwidetelescope.org and later this week right here at the HdA!

COMPLETE Data Available

 Center on Perseus Center on Ophichus Center on Serpens
Full-Cloud Data (Phase I, All Data Available)

COMPLETE Data Available					
Center on Perseus Cer	ter on Op	hichus	nter on Serpe		
Full-Cloud Data (Phase I, All Data Available)					
Dataset	Show	Perseus	Ophiuchus	Serpens	Link
GBT: HI Data Cube	∇	$\sqrt{ }$	\checkmark	\varnothing	Data
IRAS: Av/Temp Maps		$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	Data
FCRAO: 12CO	\checkmark	\checkmark	\checkmark	$\sqrt{ }$	Data
FCRAO: 13CO		\downarrow	\downarrow	$\sqrt{ }$	Data
JCMT: 850 microns	\checkmark	\downarrow	\checkmark	\varnothing	Data
Spitzer c2d: IRAC 1,3 (3.6,5.8 $\mu \mathrm{m}$)	∇	\checkmark	\checkmark	$\sqrt{ }$	Data
Spitzer c2d: IRAC 2,4 (4.5,8 $\mu \mathrm{m}$)		$\sqrt{ }$	$\sqrt{ }$	\checkmark	Data
CSO/Bolocam: $1.2-\mathrm{mm}$	\checkmark	\downarrow	\varnothing	\varnothing	Data
Spitzer MIPS: Derived Dust Map	\checkmark	\checkmark	\varnothing	\varnothing	Data
Targeted Regions (Phase II, Some Data Not Yet Available)					
CTIO/Calar Alto: NIR (J,H,Ks)	\checkmark	\checkmark	\checkmark	\varnothing	Data
IRAM 30-m: $\mathrm{N} 2 \mathrm{H}+$ and C18O		$\sqrt{ }$	\varnothing	\varnothing	Data
IRAM 30-m: 1.1 -mm continuum		$\sqrt{ }$	\varnothing	\varnothing	Data
Megacam/MMT: r,i,z images		$\sqrt{ }$	\varnothing	\varnothing	Data
Catalogs \& Pointed Surveys					
NH3 Pointed Survey	-	$\sqrt{ }$	\varnothing	\varnothing	Data
YSO Candidate list (c2d)	\square	$\sqrt{ }$	\checkmark	$\sqrt{ }$	Data

A great photographic nebula near pi and delta Scorpii.

Barnard, E. E.

Astrophysical Journal, 23, 144-147 (1906)
Published in Mar 1906
DOI: 10.1086/141311

A GREAT PHOTOGRAPHIC NEBULA NEAR π AND

$$
\begin{gathered}
\delta \text { SCORPII } \\
\text { By E. E. BARNARD }
\end{gathered}
$$

Through the courtesy of Professor Hale and the generosity of Mr. John D. Hooker, of Los Angeles, I spent the past spring and summer in photographic work at the Solar Observatory of the Carnegie Institution on Mount Wilson, California, at an altitude of 6000 feet. Mr. Hooker's generous grant made it possible to transport the Bruce Photographic Telescope of the Yerkes Observatory to Mount Wilson, where it was installed from February until September, 1905. It is hoped that the results may later be published in full, with reproductions of the principal photographs. At this time I wish to call attention to an especial region in Scorpio.
The main object of the work at Mount Wilson was to secure the best possible photographs of the Milky Way as far south as the latitude would permit. But little time was available for independent investigations in other parts of the sky, though the conditions for such work were often superb.
A few exposures were made, however, at various points in a search for diffused nebulosities. The extraordinary nebulosities in Scorpio and Ophiuchus which I found by photography in 1894-those of ρ Ophiuchi, ν Scorpiii, etc.-suggested the immediate region of the upper part of the Scorpion as a suitable hunting-ground. Trial plates were exposed on ρ Scorpii, and π Scorpii, and elsewhere. The photographs of the region of π showed a very remarkable, large, straggling nebula extending from π to δ Scorpii, with branches involving several other naked-eye stars near

With the exception of the great curved nebula in Orion and some of the exterior nebulosities of the Pleiades, this nebula is quite excep tional in its extent, and in the peculiarities of its various branches. A simple description of it would be inadequate to give a fair conception of these features.

FILTER BY:
CHOOSE HEATMAP

| Object Al Stars Galaxies Hil regions Nebulae Other | Go to... | Q |
| :--- | :--- | :--- | :--- |
| Band Radio Infrared Ultraviolet X-ray | | |
| Custom Harvard/All | | |
| Year | | |
| BACKGROUND LAYER | | |
| Optical 2MASS WISE SFD IRIS GLIMPSE H-alpha ROSAT Fermi VLSS | | |
| WISE | | |

nDS ALL SKY survey

View in Aladin • View in WorldWide Telescope adsass.org
here is a 180-degree heatmap of article density on all kinds of objects, on the Sky, over all time

Object
 AII Stars Galaxies HII regions Nebulae Other

Band
Radio Infrared Ultraviolet X-ray

Custom
Harvard

Year

let's zoom in (on Ophiuchus)

FILTER BY
Object
AII Stars Galaxies HII regions Nebulae Other

12000

Band
Radio Infrared Ultraviolet X-ray

Custom
Harvard
Year

TOGGLE BASE LAYER

Optical Mellinger GALEXAIS DSS2 Red IRIS 2MASS Halpha VTSS

Select tool

now, let's toggle on the "Mellinger" view of the Sky
 ...to see a nice optical image of Ophiuchus

```
FILTER BY
Object
All Stars Galaxies HII regions
Nebulae Other
Band
Radio Infrared Ultraviolet X-ray
Custom
Harvard
```


Year

```
TOGGLE BASE LAYER
Optical Mellinger GALEX AIS DSS2 Fee Inाi - - ivisS Halpha VTSS
```


to add markers for SIMBAD sources, we can click the Select Tool

FILTER BY
Object
All Stars Galaxies HII regions
Nebulae Other
Band
Radio Infrared Ultraviolet X-ray
Custom
Harvard
Year

TOGGLE BASE LAYER
Optical Mellinger GALEX AIS DSS2 Rea into ZIVASS Halpha VTSS

Object

All Stars Galaxies HII regions

Custom
Harvard

Year

TOGGLE BASE LAYER
Optical Mellinger GALEX AIS DSS2 Red IRIS 2MASS Halpha VTSS

panning over a bit, we can center our region of interest

FILTER BY

Object

AII Stars Galaxies HII regions Nebulae Other

Band
Radio Infrared Ultraviolet X-ray

Custom
Harvard

Year

TOGGLE BASE LAYER
Optical Mellinger GALEX AIS DSS2 Red IRIS 2MASS Halpha VTSS

Select tool

let's change the color table from rainbow to greyscale to make sources more apparent

Band
Radio Infrared Ultraviolet X-ray

Custom
Harvard

Year

TOGGLE BASE LAYER

Optical Mellinger GALEXAIS
DSS2 Red IRIS 2MASS Halpha VTSS

1637 37.05-20 2037.47

14 184
let's look now at the distribution of articles about "Hill regions" and select an area we're curious about

when we release the selection rectangle, we get a pop-up list of papers (ADS) mentioning these objects, or a list of the objects (CDS/SIMBAD) we highlighted

Object
All Stars Galaxies Hill regions
Nebulae Other

Band
Radio Infrared Ulitraviolet X-ray

Custom
Harvard

Year

TOGGLE BASE LAYER
Optical Mellinger GALEXAIS DSS2 Red IRIS 2MASS Halpha VTSS

Papers Objects

Note: List truncated to 200 most recent papers
NISINI B., et al. Astron. Astrophys., 549A, 16-16 (2013) TAFALLA M., et al. Astron. Astrophys., 551A, 116-116 (2013) BJERKELI P., et al. Astron. Astrophys., 552, L8-8 (2013) ZHANG M., et al. Astron. Astrophys., 553A, 41-41 (2013) VAN DER MAREL N., et al. Astron. Astrophys., 556A, 76-76 (2013) MURILLO N.M., et al. Astrophys. J., 764, L15 (2013) STUTZ A.M., et al. Astrophys. J., 767, 36 (2013) CHEN X., et al. Astrophys. J., 768, 110 (2013) HULL C.L.H., et al. Astrophys. J., 768, 159 (2013) GREEN J.D., et al. Astrophys. J., 770, 123 (2013) HSIEH T.-H., et al. Astrophys. J., Suppl. Ser., 205, 5 (2013) MAURY A., et al. Astron. Astrophys., 539A, 130-130 (2012) LISEAU R., et al. Astron. Astrophys., 541A, 73-73 (2012) ROBERTS J.F., et al. Astron. Astrophys., 544A, 150-150 (2012) BJERKELI P., et al. Astron. Astrophys., 546A, 29-29 (2012) PEZZUTO S., et al. Astron. Astrophys., 547A, 54-54 (2012) BOURKE T.L., et al. Astrophys. J., 745, 117 (2012) BARSONY M., et al. Astrophys. J., 751, 22 (2012) CHIANG H.-F., et al. Astrophys. J., 756, 168 (2012) NAKAMURA F., et al. Astrophys. J., 758, L25 (2012) BUSQUET G., et al. Astron. Astrophys., 525A, 141-141 (2011) BERGMAN P., et al. Astron. Astrophys., 527A, 39-39 (2011) NAKAMURA F., et al. Astrophys. J., 726, 46 (2011) GIANNINI T., et al. Astrophys. J., 738, 80 (2011) VELUSAMY T., et al. Astrophys. J., 741, 60 (2011) WARD-THOMPSON D., et al. Mon. Not. R. Astron. Soc., 415, 2812-2817 (2011) SIMPSON R.J., et al. Mon. Not. R. Astron. Soc., 417, 216-227 (2011) VAN DISHOECK E.F., et al. Publ. Astron. Soc. Pac., 123, 138-170 (2011) LISEAU R., et al. Astron. Astrophys., 510, A98-98 (2010) MAURY A.J., et al. Astron. Astrophys., 512, A40-40 (2010)

[^0]
selecting "Open Papers in ADS" opens the paper list in ADS Labs

(From here, we can filter the list more, and more. e.g. clicking "SIMBAD Objects" lets us see particular objects in context on the Sky in WWT or Aladin.)

let's try "Open WWT Version," so we can see this same view in WWT, and use a transparency slider
The ADS All Sky Survey Alabout Watch videos © Tour Open WWT version

All Stars Galaxies HII regions Nebulae Other

TOGGLE BASE LAYER
Optical Mellinger GALEX AIS
DSS2 Red IRIS 2MASS Halpha VTSS

let's try the transparency (layer) slider in WorldWide Telescope

The ADS All Sky Survey Üopen Aladin version Astronomy articles. In the sky.

dust is nice, but we're curious about HIll regions, let's change view to H-alpha

Object All Stars Galaxies HII regions Nebulae Other
Band Radio infared Uitraviolet X-ray
Custom Harvard/All

BACKGROUND LAYER
Optical 2MASS WISE SFD IRIS GLIMPSE H-alpha ROSAT Fermi VLSS
 so we can slide between H -alpha and X-ray

now let's zoom in, and try "Show Sources" to see what the SIMBAD X-ray sources really are

select an
interesting
source

and, we can have plenty of information on the source, via CDS/SIMBAD or via ADS.

Credits

 funding NASA ADAP program PI: Alyssa Goodman, Harvard-CfA Co-I: Alberto Pepe, Harvard-CfA \& Authorea Co-I: August Muench, Smithsonian-CfA withAlberio Accomazzi, Smithsonian Institution, NASA/ADS Christopher Beaumont, Harvard-CfA Thomas Boch, CDS Strasbourg Jonathan Fay, Microsoft Research David Hogg, NYU, astrometry.net Alberio Conti, NASA/STScl, Norihrup Grumman

[^0]: AHUIS F. et al Astron Astrophys 519, A3-3 (2010)

