(Small) bibliography on the Casimir Effect

compiled by James F. Babb
It seems as if a new study appears every day touching on Casimir effects or Casimir forces—I will continue to add here some of those papers (and others) as before. Click here for a straight search of Casimir effect and Casimir force in titles of some arXiv preprints of the last year to get an idea of the rate of paper appearance. (A convenient but not exhaustive Casimir effect search tool!) Here is a another search tool with greater scope (Casimir effect, Casimir force, and Casimir-Polder in all records back to 2008).

This page contains a (small) bibliography.

Last update February 6, 2014.
Before jumping down for the rest of the bibliography, check out Casimir effects, a group in Chemistry, Mathematics, Physics on Mendeley. It is regularly updated with historically important papers and with recent noteworthy (to me) papers. This is a nice tool that will allow you to generate citation information, to research related papers and to see what others are interested in, etc.


  • Measured long-range repulsive Casimir-Lifshitz forces, J. N. Munday, Federico Capasso, and V. Adrian Parsegian, see Nature , vol. 457, January 8, 2009, pp. 170-173. See also Superlubricity Using Repulsive van der Waals Forces, Adam A. Feiler, Lennart Bergström, and Mark W. Rutland, Langmuir vol. 24 (2008) 2274. Both experiments carried out in liquids.

    * Fatal attraction - Quantum forces create a sticky situation for microdevices by Melinda Rose discusses MEMS applications and intermolecular forces such as van der Waals and Casimir interactions, see Photonics Spectra , vol. 42, issue 11, November 2008, page 77.

    A brief article Exploiting zero-point energy by Philip Yam explores the issue of whether the Casimir effect has practical applications, see Scientific American, vol. 277, No. 6, December 1997, pp. 82-85.

    See also Quantum stickiness put to use by Eric J. Lerner, The Industrial Physicist, vol. 7, No. 4, August/September 2001, p. 8, which talks about the MEMS experiment of Chan et al..

    The Economist, May 22, 2008, featured a brief article.

  • General articles.

    Fundamental physics: Feel the force, by Philip Ball, Nature 447, 772-774 (14 June 2007), doi:10.1038/447772a. Profile of F. Capasso and collaborators.

    Casimir forces: Still surprising after 60 years, by Steve K. Lamoreaux, Physics Today, February 2007, p. 40.

    The Casimir effect: a force from nothing by Astrid Lambrecht, Physics World, September 2002, p. 3.

    Another good introduction, very accessible. Retarded, or Casimir, long-range potentials by Larry Spruch, Physics Today, November 1986, pp. 37-45.

  • Very introductory material can be found in A short history of the universe, Joseph Silk (Scientific American Library/W.H. Freeman, New York, 1994) pp. 67-69. See also Vacuum matters, Hans Christian von Baeyer, Discover, March 1992, pp. 108-112

  • A short essay on the interplay between theory and experiment in studies of the Casimir effect.
  • Here are some more technical, but still general, introductory works

    Long-range (Casimir) interactions, Larry Spruch, Science 272, June 7, 1996, pp. 1452-1455

    The quantum vacuum: An introduction to quantum electrodynamics, Peter W. Milonni (Academic Press, Boston, 1995, ISBN 978-0-12-498080-8 ). Also, lecture by Peter Milonni at the Institute for Quantum Computing, video, given on February 7, 2011 amplifies and updates some of the book's topics.

    Casimir Forces, Peter W. Milonni and Mei-Li Shih, Contemporary Physics 33, no.5 (1992), pp. 313-322

    Nothing's plenty: The vacuum in modern quantum field theory, I. J. R. Aitchison, Contemporary Physics 26, no.4 (1985), pp. 333-391. This one is a nice overview of The Vacuum and discusses the Casimir effect in Section 3.2.

    Essay Review: Field theorists strike back---Stochastic electrodynamics, M. H. Wallis, Contemporary Physics 39, (1998), pp. 483-486. A book review with some interesting comments about the Casimir effect and stochastic electrodynamics (a way of doing Q.E.D., see Milonni's book above).

    Essentials of the Casimir effect and its computation, E. Elizalde and A. Romeo, Am. J. Phys. 59, no.8 (1991), pp. 711-719

    Resource Letter VWCPF-1: Van der Waals and Casimir-Polder forces, at arXiv, K. A. Milton, Am. J. Phys. 79, no. 7, 697-711 (2011).

    Resource Letter CF-1: Casimir Force, S. K. Lamoreaux, Am. J. Phys. 67 (1999), 850-861.

    A book composed of chapters by experts in the field:
    Casimir Physics, Lecture Notes in Physics 834, Diego A. R. Dalvit, Peter W. Milonni, David C. Roberts and Felipe S. S. Rosa, eds., Springer-Verlag (Berlin Heidelberg), 2011.

    A book:
    Advances in the Casimir effect, M. Bordag, G. L. Klimchitskaya, U. Mohideen and V. M. Mostepanenko (Oxford, 2009, ISBN 978-0-19-923874-3 ). See also, The Casimir effect and its applications, V. M. Mostepanenko and N. N. Trunov (Oxford, 1997).

    Another book:
    The Casimir effect: Physical manifestations of zero-point energy, K. A. Milton (World Scientific, 2001, ISBN 978-981-02-4397-5 ).

    Other books:
    Surface modes in physics, Bo. E. Sernelius, (Wiley-VCH, Berlin, 2001, ISBN 978-3-527-40313-4 ), van der Waals forces, V. Adrian Parsegian, (Cambridge, 2006, ISBN 978-0-521-83906-8 ). and see also Quantum optics, W. Vogel and D.-G. Welsch (3rd edition, Wiley, 2005, ISBN 978-3-527-40507-7 ).

  • Critical works on the Casimir effect/vacuum fluctuation connection

    The Casimir Effect and the Interpretation of the Vacuum, S. E. Rugh, H. Zinkernagel, and T. Y. Cao, Studies in History and Philosophy of Science Part B: vol. 30 (1999), pp. 111-139, doi:10.1016/S1355-2198(98)00034-3 . Worth a look.

    Also, Casimir effect and the quantum vacuum, R. L. Jaffe, Phys. Rev. D 72 (2005), 021301(R), doi:10.1103/PhysRevD.72.021301 .

  • Historical, review type, works

    Julian Schwinger: Source Theory and the UCLA Years---From Magnetic Charge to the Casimir Effect, K. A. Milton, Metaphysical Review, 3 (4), November 1, 1996, pp. 1-7. Also a list of J. Schwinger's publications. See also, K. A. Milton and J. Mehra, Climbing the mountain: The scientific biography of Julian Schwinger (Oxford U. Press, 2003 ).

  • Technical, review type, works

    New developments in the Casimir effect, M. Bordag, U. Mohideen, and V. M. Mostepanenko, Phys. Rep., 353 (2001) 1-205.

    The Casimir effect: Recent controversies and progress, Kimball A. Milton, J. Phys. A.: Math. Gen., 37 (2004) R209-R277. Touches on plates, atoms and surfaces, and cosmology.

    New aspects of the Casimir effect: Fluctuations and radiative reaction, G. Barton, Advances in Atomic and Molecular Physics, Suppl.2, P. R. Berman, ed., Academic Press, NY, (1994), pp. 425-458.

    Movement and fluctuations of the vacuum, Marc-Thierry Jaekel and Serge Reynaud, Rep. Prog. Physics, 60 (1997), pp. 863-887. Casimir effects can be derived using vacuum fluctuation arguments.

  • A classic paper

    The general theory of van der Waals forces, I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii Advances in Physics, 10 (1961) pp. 165-209

  • And of course the papers that started it all

    The influence of retardation on the London-van der Waals forces, H. B. G. Casimir and D. Polder, Physical Review 73 (1948) pp. 360-372

    On the attraction between two perfectly conducting plates, H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 60, (1948) pp. 793-795. A tip of the hat to August Romeo for sending me a copy of the paper.

Particular Applications


  • Experiments

    Effect of hydrogen-switchable mirrors on the Casimir force, D. Iannuzzi, M. Lisanti, and F. Capasso, PNAS 101 (12), pp. 4019-4023.

    Measurement of the Casimir Force between Dissimilar Metals, R. S. Decca, D. López, E. Fischbach, and D. E. Krause, Phys. Rev. Lett. 91, 050402 (2003).

    Measurement of the Casimir force between parallel metallic surfaces, G. Bressi, G. Carugno, R. Onofrio, and G. Ruoso, Phys. Rev. Lett. 88, 041804 (2002).

    Nonlinear micromechanical Casimir oscillator, H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, F. Capasso, Phys. Rev. Lett., 87, 211801 (2001). Measured Casimir force effects in a MEMS oscillatory system.

    Quantum mechanical acutation of microelectromechanical systems by the Casimir force, H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, F. Capasso, Science, 291, 1941 (2001). Detected Casimir force effects on static properties of MEMS device.

    Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20-100-nm range, T. Ederth, Phys. Rev. A 62, 062104 (2000). Describes measurements using gold surfaces.

    Precision Measurement of the Casimir Force from 0.1 to 0.9 microns, U. Mohideen and Anushree Roy, Phys. Rev. Lett. 81, No.21, (1998) p. 4549-4552; Precision measurement of the Casimir force using gold surfaces, B. W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62, 052109 (2000) (5 pages). Used an AFM to measure the force between a sphere and plate.
    Their result was used to constrain hypothetical interactions....

    Stronger constraints for nanometer scale Yukawa-type hypothetical interactions the new measurement of the Casimir force, M. Bordag, B. Geyer, G. L. Klimchitskaya and V. M. Mostepanenko, Phys. Rev. D 60 (1999) 055004.

    See also, Precise calculation of the Casimir force between gold surfaces, V. B. Svetovoy and M. V. Lokhanin, Mod. Phys. Lett. A 15 (2000) 1437-1444, where it is concluded that "possibly, a new force has been detected at small separations between bodies."

  • S. K. Lamoreaux published a paper detailing experiments showing the presence of the Casimir effect for two conducting plates (well, actually a lens and a plate) with separations of the order of microns. See the article, Physical Review Letters, 78, 5 (1997); and the erratum, 81, 5475-6 (1998).

    The Lamoreaux experiment was covered Malcolm W. Browne in the New York Times, Jan. 21, 1997, p.C1

    Lamoreaux presented an analysis of the interaction between conducting plates for Au, Cu, and Al in Calculation of the Casimir force between imperfectly conducting plates, Phys. Rev. A, 59 (1999), R3149-R3153. Later workers reanalyzed the details of the calculation of the dielectric function in Lamoreaux's analysis, see A. Lambrecht and S. Reynaud, Phys. Rev. Lett., 84 (2000), 5672, and corrected a fitting error, see M. Bostrom and Bo E. Sernelius, Comment on "Calculation of the Casimir force between imperfectly conducting plates", Phys. Rev. A, 61 (2000), 046101. There is a reply to Lambrecht and Reynaud from Lamoreaux in Phys. Rev. Lett., 84 (2000), 5673. Another article by Bostrom and Sernelius, Thermal effects on the Casimir force in the 0.1 - 5 micron range, Phys. Rev. Lett. 84 (2000), 4757-4760, investigates finite temperature effects for situations such as that studied by Lamoreaux. See the ensuing comment: Comment on "Thermal Effects on the Casimir Force in the 0.1-5 μm Range", S. K. Lamoreaux, Phys. Rev. Lett. 87, 139101 (2001), and reply, Sernelius Replies:, B. E. Sernelius, ibid.,139102.

  • Demonstration of the lateral Casimir force, F. Chen, U. Mohideen , G. L. Klimchitskaya and V. M. Mostepanenko, Phys. Rev. Lett. 88, 101801 (2002).
  • and see
    Constraints for hypothetical interactions from a recent demonstration of the Casimir force and some possible improvements, M. Bordag, B. Geyer, G. L. Klimchitskaya and V. M. Mostepanenko, Phys. Rev. D, 58, in press (1998).
    Used Lamoreaux's data.

    Complete roughness and conductivity corrections for Casimir force measurement, G. L. Klimchitskaya, Anushree Roy, U. Mohideen, and V. M. Mostepanenko, Phys. Rev. A 60 (1999), pp. 3487-3495.

    Used Mohideen and Roy's data.

    Higher-order conductivity corrections to the Casimir force,V. B. Bezerra, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. A 62 (2000), 014012.

    And see, Probing the strong boundary shape dependence of the Casimir force, T. Emig, A. Hanke, R. Golestanian, and M. Kardar, Phys. Rev. Lett. 87, 260402 (2001).

  • More mathematical works

    Is repulsive Casimir force physical? Sung Nae Cho, quant-ph/0408184. Recent study of a problem of contemporary interest.

    Electromagnetic waves near perfect conductors. I. Multiple scattering expansions. Distribution of modes, R. Balian and B. Duplantier, Ann. Physics (NY) 104 (1977), 300-335 (doi:10.1016/0003-4916(77)90334-7) and Electromagnetic waves near perfect conductors. II. Casimir effect, R. Balian and B. Duplantier, Ann. Physics (NY) 112 (1978), 165-208 (doi:10.1016/0003-4916(78)90083-0). Casimir effect for general temperature, conductor geometry, and topology.

    Now, the Casimir force is admittedly a small effect. Even tinier in magnitude than the main effect are radiative corrections... Radiative corrections to the Casimir energy, Xinwei Kong and Finn Ravndal, Phys. Rev. Lett. 79 (1997), 545-548.
    O(alpha) radiative correction to the Casimir energy for penetrable mirrors, M. Bordag and K. Scharnhorst, Physical Review Letters, 81 (1998) pp. 3815-18.
    Radiative correction to the Casimir force on a sphere, M. Bordag and J. Lindig, Physical Review D, 58 (1998) pp. 1-16.

    Repulsive Casimir force as a result of vacuum radiation pressure, V. Hushwater, Am. J. Phys., 65 (1997), pp. 381-384.

    Unified treatment of some Casimir energies and Lamb shifts: A dielectric between two ideal conductors, Martin Schaden, Larry Spruch, and Fei Zhou, Phys. Rev. A 57 (1998), pp. 1108-1120.

    Casimir interaction among objects immersed in a fermionic environment, A. Bulgac and A. Wirzba, Phys. Rev. Lett. 87 (2001), p. 120404 (4 pp.).

  • More works on surface roughness

    Casimir force between a flat plate and a spherical lens: Application to the results of a new experiment, V. B. Bezerra, G. L. Klimchitskaya, and C. Romero, Mod. Phys. Lett. A 12, (1997) 2613-2622,

    Surface roughness contribution to the Casimir interaction between an isolated atom and a cavity wall, V. B. Bezerra, G. L. Klimchitskaya, and C. Romero, Phys. Rev. A 61 (2000).

  • Finite temperature

    Correlation between plasma and temperature corrections to the Casimir force, C. Genet, A. Lambrecht, and S. Reynaud, Int. J. Mod. Phys. A17, 761-766 (2002).

    Casimir Effect: The Classical Limit, J. Feinberg, A. Mann, M. Revzen. Ann. Phys. (N.Y.) 288, 103 (2001).

    Classical Casimir interactions of some simple systems at very high temperature, L. Spruch Phys. Rev. A 66, 022103 (2002).

    Classical Casimir effect: The interaction of ideal parallel walls at a finite temperature, M. Schaden and L. Spruch, Phys. Rev. A 65, 034101 (2002).

    Semiclassical Casimir energies at finite temperature, M. Schaden and L. Spruch, Phys. Rev. A 65, 022108 (2002).

    Atom-atom interactions at and between metal surfaces at nonzero temperature, M. Boström, J. J. Longdell, and B. W. Ninham, Phys. Rev. A 64, 062702 (2001) .

    Perturbative Casimir shifts of nondispersive spheres at finite temperature, G. Barton, Phys. Rev. A 64 (2001), 032103 (7 pp.); Long-range Casimir-Polder-Feinberg-Sucher intermolecular potential at nonzero temperature, G. Barton, Phys. Rev. A 64 (2001), 032102 (4 pp.)

    Investigation of the temperature dependence of the Casimir force between real metals, G. L. Klimchitskaya and V. M. Mostepanenko, Phys. Rev. A63 (2001), 062108 (18 pp.)

    Casimir force at both nonzero temperature and finite conductivity, M. Bordag, B. Geyer, G. L. Klimchitskaya, and V. M. Mostepanenko, Phys. Rev. Lett. 85 (2000), pp. 503-506. See also ensuing comments from Bostrom and Sernelius, Phys. Rev. Lett. 87, 259101 (2001) and reply from Bordag, Geyer, Klimchitskaya, and Mostepanenko, Phys. Rev. Lett. 87, 259102 (2001) concerning Bostrom and Sernelius, Phys. Rev. Lett. 84 (2000) 4757, mentioned

    also above.

    Linear temperature correction to the Casimir force,V. B. Svetovoy and M. V. Lokhanin, Phys. Lett. A 280 (2001) 177-181.

    Temperature dependence of the Casimir effect between metallic mirrors,C. Genet, A. Lambrecht, and S. Reynaud , Phys. Rev. A 62 (2000), p. 012110

    Temperature dependence of atom-atom interactions, H. Wennerstrom, J. Daicic, and B.W. Ninham, Phys. Rev. A 60 (1999), pp. 2581-2584..

    Casimir-Polder interaction at finite temperature, G. H. Goedecke and R. C. Wood, Phys. Rev. A 60 (1999), pp. 2577-2580.

    Lifshitz theory of Casimir forces at finite temperature, B. W. Ninham and J. Daicic, Phys. Rev. A 57 (1998), pp. 1870-1880.

  • Dynamical Casimir effect

    Path-integral approach to the dynamic Casimir effect with fluctuating boundaries, Ramin Golestanian and Mehran Kardar, Phys. Rev. A 58 (1998), pp. 1713-1722.

    Renormalization-group approach to the dynamical Casimir effect, Diego A. R. Dalvit and Francisco D. Mazzitelli, Phys. Rev. A 57 (1998), pp. 2113-2119.

    Decoherence via the dynamical Casimir effect, Diego A. R. Dalvit and P. A. Maia Neto, Phys. Rev. Lett. 84 (2000), 798-801; Radiation pressure as a source of decoherence, P. A. Maia Neto and D. A. R. Dalvit, Phys. Rev. A 62 (2000), 042103 (11 pp.).

    Sonoluminescence as a QED vacuum effect: Probing Schwinger's proposal, S. Liberati, F. Belgiorno, M. Visser, D.W. Sciama, quant-ph/9805031

    Dynamical Casimir effect at finite temperature, G. Plunien, R. Schützhold, and G. Soff, Phys. Rev. Lett. 84 (2000), 798-801882-1885.

  • Approaches related to classical (closed) paths

    Infinity-free semiclassical evaluation of Casimir effects, Martin Schaden and Larry Spruch, Phys. Rev. A 58 (1998), pp. 935-953.

    Semiclassical Casimir energies at finite temperature, Martin Schaden and Larry Spruch, Phys. Rev. A 65 (2002), 022108.

    Casimir effects: an optical approach I. Foundations and examples, A. Scardicchio and R.L. Jaffe, Nuc. Phys. B, 704 (2005), pp. 552-582.

    Global and local vacuum energy and closed orbit theory, S. A. Fulling, in Proceedings of the 6th Workshop on Quantum Field Theory under the Influence of External Conditions (Norman, OK, Sept. 2003), ed. by K. Milton, Rinton Press, 2004, pp. 166-174.

    See also Balian and Duplantier, above, and (at the formerly active link http://www.math.tamu.edu/research/workshops/semivac) Workshop on Semiclassical Approximation and Vacuum Energy, Texas A and M University (TAMU), Jan. 12-16, 2005.

  • More works on plates

    *Repulsive Casimir Effect with Chern Insulators, Pablo Rodriguez-Lopez and Adolfo G. Grushin, Phys. Rev. Lett. 112 (2014) 056804 (5 pp.) Predicts thin films of Chern insulator materials could yield repulsive Casimir forces.

    Casimir effect between two dielectric slabs, R. Matloob and H. Falinejad, Phys. Rev. A 64 (2001) 042102(11 pp.), includes consideration of finite temperature.

    Casimir effect between two conducting plates, R. Matlob, Phys. Rev. A 60 (1999), pp. 3421-3428.

    Casimir effect for two lossy dispersive dielectric slabs, R. Matloob, A. Keshavarz, and D. Sedighi, Phys. Rev. A 60 (1999), pp. 3410-3420.

    Superluminal travel requires negative energies, K. D. Olum, Phys. Rev. Lett. 81 (1998), pp. 3567-3570.

    *Retarded dispersion forces in periodic dielectric media, C. L. Adler and N. M. Lawandy, Phys. Rev. Lett. 66 (1991), pp. 2617-2620. Theoretical investigation of Casimir effect in photonic band gap material.

  • Permeable wall/s

    Retarded electric and magnetic Casimir interaction of a polarizable system and a dielectric permeable wall,Y. Tikochinsky and L. Spruch, Phys. Rev. A 48 (1993), pp. 4236-4244. Consider an atom and a wall that can be characterized as dielectric and permeable.

    See Schaden and Spruch, Phys. Rev. A 58 (1998), pp. 935-953, listed above, for the case of a dielectric wall and a permeable wall. Also M. V. Cougo-Pinto, C. Farina, F. C. Santos. A. C. Tort, J. Phys. A 32 (1999), pp. 4463-4474.

  • Rectangular cavity

    Analysis of zero-point electromagnetic energy and Casimir forces in conducting rectangular cavities, G. Jordan Maclay, Phys. Rev. A 61 (2000), p. 052110 (18 pp.).

  • Spheres, circles, wedges, and lines

    Perturbative Casimir energies of dispersive spheres, cubes and cylinders, G Barton, J. Phys. A: Math. Gen. 34 (2001), pp. 4083-4114.

    Casimir force between a dielectric sphere and a wall: A model for amplification of vacuum fluctuations, L. H. Ford, Phys. Rev. A 58 (1998), pp. 4279-4286.

    Casimir-Polder effect for a perfectly conducting wedge, I. Brevik, M. Lygren, and V. N. Marachevsky, Annals of Physics 267 (1998), pp. 134-42. (This is not the first "wedge" paper, however.)

    Complete zeta-function approach to the electromagnetic Casimir effect for spheres and circles, S. Leseduarte and August Romeo, Annals of Physics 250 (1996), pp. 448-484

    Casimir interaction between a microscopic dipole oscillator and a macroscopic solenoid, R. Blanco, K. Dechoum, H. M. França, and E. Santos, Phys. Rev. A 57 (1998), pp. 724-730

    Energy level shifts in two-dimensional hydrogen atoms near a metallic rod, Jens O. Andersen, Physics Letters A,180 (1993), pp. 203-207. Theoretical treatment.

    Interaction potential for two filaments and for an atom interacting with a filament, Yu. S. Barash and A. A. Kyasov, Soviet Physics-JETP, 68 (1989), p. 39. Comprehensive theoretical treatment.

Casimir potential for an atom and a plate

  • Experiment with very slow metastable neon atoms

    Specular reflection of very slow metastable neon atoms from a solid surface, F. Shimizu, Phys. Rev. Lett. 86 (2001), pp. 987-990.

    Theory of atom near a parabolic mirror

    Focusing vacuum fluctuations, L. H. Ford and N. F. Scaiter, Phys. Rev. A. 62 (2000), 062105.

Casimir potential for a Bose-Einstein condensate and a surface

  • Experiment with Rb atoms and Cu or silicon nitride

    Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces, Yu-ju Lin, Igor Teper, Cheng Chin, and Vladan Vuletic, Phys. Rev. Lett. 92 (2004), 050404 (4 pp.).

Casimir potential for an atom between two plates

  • Experiment with sodium atoms

    Measurement of the Casimir-Polder force, C. I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar, and E. A. Hinds, Phys. Rev. Lett. 70, (1993) pp. 560-563.

  • Theoretical works

    Atom dynamics between conducting plates, S. Al-Awfi and M. Babiker, Phys. Rev. A 58, (1998) pp. 2274-2281

    Long-range interactions of sodium atoms, P. Kharchenko, J. F. Babb, and A. Dalgarno, Phys. Rev. A, vol. 55 (1997), pp. 3566-3572. Errata

Casimir potential for the helium dimer

  • Experimental papers

    Direct measurement of the size of the helium dimer, Fei Luo, Clayton F. Giese, and W. Ronald Gentry, J. Chemical Physics 104 (1996) pp. 1151-1154

    The nondestructuve detection of the helium dimer and trimer, W. Schoellkopf and J. P. Toennies, J. Chemical Physics 104 (1996), p.1155-1158; W. Schoellkopf and J. P. Toennies, Science 266, Nov. 25, 1994, pp. 1345-1348

  • Theoretical papers

    Onset of Casimir-Polder retardation in a long-range molecular quantum state, M. Przybytek, B. Jeziorski, W. Cencek, J. Komasa, J. B. Mehl, and K. Szalewicz, Phys. Rev. Lett. 108 (2012), 183201.

    Influence of retardation on the vibrational wave function and binding energy of the helium dimer, Fei Luo, Geunsik Kim, George C. McBane, Clayton F. Giese, and W. Ronald Gentry, J. Chemical Physics 98 (1993) p. 9687

    Retarded dipole-dipole dispersion interaction potential for helium, M. J. Jamieson, G. W. F. Drake, and A. Dalgarno, Phys. Rev. A 51 (1995) pp.3358-3361

Extra dimensions and the cosmological constant

  • Theory

    Casimir energy in deconstruction and the cosmological constant, Florian Bauer, Manfred Lindner, Gerhart Seidl, http://xxx.lanl.gov/abs/hep-th/0309200

Critical systems

  • Critical Casimir Effect near the 3He-4He Tricritical Point, M. Chan and R. Garcia, Phys. Rev. Lett. 88 (2002), 086101.

  • Order-parameter profiles and Casimir amplitudes in critical slabs , Z. Borjan and P. J. Upton, Phys. Rev. Lett. 81 (1998), pp. 4911-4914.

  • Casimir forces at tricritical points: theory and possible experiments, U. Ritschel, and M. Gerwinski, Physica A, 243 (1997), pp. 362-7.

Retardation effects in Rydberg states of the helium atom

  • Experimental papers

    E.A. Hessels, P.W. Arcuni, F.J. Deck, and S.R. Lundeen Phys. Rev. A, 46 (1992) pp. 2622

    Precision separated-oscillatory-field measurement..., C.H. Storry, N.E. Rothery, and E.A. Hessels, Phys. Rev. Letters, 75 (1995) pp. 3249-3252

    Separated-oscillatory-field measurement of the n=10 +F3-+G4 interval in helium: A 200-part-per-billion measurement, C.H. Storry, N.E. Rothery, and E.A. Hessels, Phys. Rev. A, 55 (1997) pp. 967-977

    Fast-beam measurements of the 10D-10F fine-structure intervals in helium, Nelson E. Claytor, E. A. Hessels, and S. R. Lundeen Phys. Rev. A., 52 (1995) pp. 165-177.

Retardation effects in Rydberg states of the lithium atom

  • Theoretical papers

    Retardation (Casimir) effect for a multielectron core system and a Rydberg electron, James F. Babb and Larry Spruch, Phys. Rev. A, vol. 40 (1989), pp. 2917-2927

    Relativistic, retardation, and radiative corrections in Rydberg states of lithium, A. K. Bhatia and R. J. Drachman, Phys. Rev. A., 55 (1997) pp. 1842-1845

  • Experimental papers

    Measurement of the n=9 F-to-G levels in atomic lithium, C. H. Storry, N. E. Rothery, and E. A. Hessels, Phys. Rev. A., 55 (1997) pp. 128-133.

Retardation in alkali-metal atom-atom interactions

  • Unretarded interactions

    Usually the interaction can be described in terms of van der Waals coefficients, see for example, J. Goodisman, Diatomic interaction potential theory (New York, Academic Press, 1973).

  • Relativisitic connections

    Short distance relativistic atom-atom forces, J. F. Babb. This is a short survey of the connection between the Casimir-Polder potentials from QED for the atom-atom and the ion-electron interactions and the corresponding relativistic potentials arising from the Breit-Pauli Hamiltonian. Read the preprint abstract (this link also contains links to get the entire preprint.) Text file approximation to the preprint.

Related meetings and conferences

Back to my home page

Valid HTML 4.01