Magnetic fields are dynamically important on large scales. However, below the dense-core scale...

B-fields and outflows are not always aligned

Above & left: a subset of the isolated, low-mass Class 0 protostars mapped at 1 mm as part of the CARMA TADPOL survey. One of the TADPOL science goals is to probe the intrinsic (mis)alignment of magnetic fields and bipolar outflows in forming stars.

Grayscale: Stokes I thermal dust emission. Contours: red- and blueshifted lobes of the sources' bipolar outflows, mapped in CO(2–1) (L1157, IRAS 4B, IRAS 2A, IRAS 4A, CB230) or SiO(5–4) (Ser-emb 8). Orange vectors: orientation of the projected magnetic field, presumed to be perpendicular to the orientation of the polarized emission from dust grains. Vector lengths are proportional to polarized intensity, not percentage (typical peak polarization is a few percent). Vectors are plotted only where $>3\sigma_{QU}$ polarization detection and $>2\sigma$ Stokes I intensity coincide; typical noise in the Stokes Q & U maps is $\sigma_{QU} \approx 0.5$ mJy. Blue ovals: size of the synthesized beam of the dust polarization and outflow maps.

RESULTS: distribution of outflow vs. B-field angle

Simulation: outflows & B-fields are aligned within a 20º cone (takes into account projection effects). Simulation: outflows & B-fields are randomly oriented.

KS test results

20º cone ruled out
(p-value $\sim 10^{-4}$)

Random orientations cannot be ruled out
(p-value ~ 0.65)

TADPOL collaboration

UC Berkeley
Chat Hull (PI), Dick Plambeck, Meredith Hughes, Mel Wright, Carl Heiles, Geoff Bower

University of Maryland
Marc Pound, Alberto Bolatto, Katherine Jameson, Lee Mundy

Caltech
Thushara Pillai, John Carpenter, James Lamb, Nikolaus Volgenau

University of Illinois, Urbana-Champaign
Ian Stephens, Leslie Looney, Woojin Kwon, Dick Crutcher, Nick Hakobian

University of Chicago
Roger Hildebrand

Other
Jason Fuge (Manitoba), Erica Franzmann (Manitoba), Martin Houde (UWO), Caltech, Dan Marrone (Arizona), Brenda Matthews (NRC-CNRC), John Vlahovetz (USRA-SOFIA)

Observations powered by the CARMA 1 mm full-Stokes system

CARMA
Combine Array for Research in Millimeter-wave Astronomy

Consortium: Berkeley, Caltech, Illinois, Maryland, Chicago