AY 145: HW 9

Due Wednesday, April 27th

1. Age of the Universe

(a) Find the lifetime of a closed universe (expressed as a multiple of the Hubble time, t_H) as a function of the density parameter, Ω_0.

(b) Suppose the universe is closed and flat. From the facts that the Sun is about 4.5 billion years old and you live in an expanding universe, what limit could you put on the present value of the density parameter, Ω_0? Consider the cases of $h = 0.5$ and $h = 1$.

2. Cosmological Distances Write a computer program (any language, any machine — this is for you, not me!) to calculate the proper, luminosity and angular diameter distances as a function of redshift, for any H_0, Ω_M and Ω_Λ. Plot these for $H=70$ km/s/Mpc and for $\Omega_M = 0.0$, 0.3 and 1.0, and $\Omega_\Lambda = 0.0$ and 0.7, as appropriate, for $z = 0$ to 6.

You will need to numerically integrate the equations for distance in a Lambda Cosmology:

$$d_P = R(t) \int_0^{r_i} \frac{dr_1}{(1 - kr_1^2)^{1/2}}$$

which can be written, in a matter and Λ dominated model (no radiation), for the Luminosity Distance as

$$d_P = \frac{c}{H_0} |\Omega_K|^{-1/2} \sin\left(\frac{|\Omega_K|^{1/2}}{2} \int_0^z \frac{dz'}{(1 + z')^2(1 + \Omega_M z') - z' (2 + z') \Omega_\Lambda} \right)^{1/2}$$

where $\Omega_K = 1 - \Omega_M - \Omega_\Lambda$, $\sinh(x) = \sinh(x)$, $\sin(x)$, or $\sinh(x)$ for $k=1$, 0, and -1 respectively (and Ω_k has the opposite sign from k: $\Omega_k = -k/H_0^2$), and the other terms are self evident. Also remember that $d_L = (1 + z)d_P$ and $d_A = d_L(1 + z)^{-2}$, where d_P is the comoving or “proper” distance.