Hi! Coming from the Baryon Cycle conference?

If so, you may be looking for the "Gadget/Arepo Halo Comparison Project".

Astronomical Observing

Predicted Weather Conditions (Cambridge, MA)

Cloud Cover:

Overcast 90% covered 80% covered 70% covered 60% covered 50% covered 40% covered 30% covered 20% covered 10% covered Clear


Poor Below Average Average Above average Transparent

"The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed."

-Albert Einstein


My name is Dylan Nelson. I am currently a sixth (and final!) year graduate student in astrophysics at the Center for Astronomy (CfA) at Harvard University, and am headed to a postdoc at MPA in Munich next year. I work with Lars Hernquist, modeling cosmological gas accretion and its connection to the formation and evolution of galaxies and galactic structure over cosmic time. We run numerical simulations using Arepo, a finite volume hydrodynamics code based on a moving unstructured mesh. I am also part of the Illustris Simulation project.

Herein you will find a further description of my research interests, more technical code projects, some visualization and WebGL experiments, my CV, and contact information.



Zooming in on accretion - I. The structure of halo gas

[arXiv] [high-res PDF] We study the properties of gas in and around 10^12 Msun haloes at z=2 using a suite of high-resolution cosmological hydrodynamic 'zoom' simulations. We quantify the thermal and dynamical structure of these gaseous reservoirs in terms of their mean radial distributions and angular variability along different sightlines. With each halo simulated at three levels of increasing resolution, the highest reaching a baryon mass resolution of ~10,000 solar masses, we study the interaction of filamentary inflow and the quasi-static hot halo atmosphere. We highlight the discrepancy between the spatial resolution available in the halo gas as opposed to within the galaxy itself. Stream morphologies become increasingly complex at higher resolution, with large coherent flows revealing density and temperature structure at progressively smaller scales. Moreover, multiple gas components co-exist at the same radius within the halo, making radially averaged analyses misleading. This is particularly true where the hot, quasi-static, high entropy halo atmosphere interacts with cold, rapidly inflowing, low entropy accretion. We investigate the process of gas virialization and identify different regimes for the heating of gas as it accretes from the intergalactic medium. Haloes at this mass have a well-defined virial shock, associated with a sharp jump in temperature and entropy at ~1.25 rvir. The presence, radius, and radial width of this boundary feature, however, vary not only from halo to halo, but also as a function of angular direction, covering roughly ~85% of the 4π sphere. Our findings are relevant for the proper interpretation of observations pertaining to the circumgalactic medium, including evidence for large amounts of cold gas surrounding massive haloes at intermediate redshifts.

Movies for each halo showing rotations at z=2 and time evolution (1080p): (Impatient? watch h0 on Vimeo)

4K resolution (3840x2160) versions: h0, h1, h2, h3, h4, h5, h6, h7.

The impact of feedback on cosmological gas accretion

[arXiv] We investigate how the way galaxies acquire their gas across cosmic time in cosmological hydrodynamic simulations is modified by a comprehensive physical model for baryonic feedback processes. To do so, we compare two simulations -- with and without feedback -- both evolved with the moving mesh code AREPO. The feedback runs implement the full physics model of the Illustris simulation project, including star formation driven galactic winds and energetic feedback from supermassive blackholes. We explore:

  • (a) the accretion rate of material contributing to the net growth of galaxies and originating directly from the intergalactic medium, finding that feedback strongly suppresses the raw, as well as the net, inflow of this "smooth mode" gas at all redshifts, regardless of the temperature history of newly acquired gas.
  • (b) At the virial radius the temperature and radial flux of inflowing gas is largely unaffected at z=2. However, the spherical covering fraction of inflowing gas at 0.25 rvir decreases substantially, from more than 80% to less than 50%, while the rates of both inflow and outflow increase, indicative of recycling across this boundary.
  • (c) The fractional contribution of smooth accretion to the total accretion rate is lower in the simulation with feedback, by roughly a factor of two across all redshifts. Moreover, the smooth component of gas with a cold temperature history, is entirely suppressed in the feedback run at z<1.
  • (d) The amount of time taken by gas to cross from the virial radius to the galaxy -- the "halo transit time" -- increases in the presence of feedback by a factor of ~2-3, and is notably independent of halo mass. We discuss the possible implications of this invariance for theoretical models of hot halo gas cooling.

Moving mesh cosmology: Tracing cosmological gas accretion

[arXiv] We investigate the nature of gas accretion onto haloes and galaxies at z=2 using cosmological hydrodynamic simulations run with the moving mesh code AREPO. Implementing a Monte Carlo tracer particle scheme to determine the origin and thermodynamic history of accreting gas, we make quantitative comparisons to an otherwise identical simulation run with the smoothed particle hydrodynamics (SPH) code GADGET-3. Contrasting these two numerical approaches, we find significant physical differences in the thermodynamic history of accreted gas in massive haloes above 1010.5 solar masses. In agreement with previous work, GADGET simulations show a cold fraction near unity for galaxies forming in massive haloes, implying that only a small percentage of accreted gas heats to an appreciable fraction of the virial temperature during accretion. The same galaxies in AREPO show a much lower cold fraction, ‹20% in haloes of ~1011 solar masses. This results from a hot gas accretion rate which, at this same halo mass, is an order of magnitude larger than with GADGET, together with a cold accretion rate which is lower by a factor of two. These discrepancies increase for more massive systems, and we explain both trends in terms of numerical inaccuracies with the standard formulation of SPH. We note, however, that changes in the treatment of ISM physics -- feedback, in particular -- could modify the observed differences between codes as well as the relative importance of different accretion modes. We explore these differences by evaluating several ways of measuring a cold mode of accretion. As in previous work, the maximum past temperature of gas is compared to either a constant threshold value or some fraction of the virial temperature of each parent halo. We find that the relatively sharp transition from cold to hot mode dominated accretion at halo masses of ~1011, is a consequence of the constant temperature criterion, which can only separate virialised gas above some minimum halo mass. Examining the spatial distribution of accreting gas, we find that the filamentary geometry of accreting gas near the virial radius is a common feature in massive haloes above 1011.5 solar masses. Gas filaments in GADGET, however, tend to remain collimated and flow coherently to small radii, or artificially fragment and form a large number of purely numerical "blobs". These same filamentary gas streams in AREPO show increased heating and disruption at 0.25-0.5 virial radii and contribute to the hot gas accretion rate in a manner distinct from classical cooling flows.

You may also be interested in the: [Gadget/Arepo Halo Comparison Project]

Spiral Structure

This short video Compares two N-body (gravity only) simulations of a disk galaxy forming spiral arms due to the gravitational perturbations from massive "giant molecular clouds" (GMCs) which are represented as dots. The GMCs have a finite lifetime of 10Myr after which time they are reborn. On the left the formation is biased towards existing overdensities (i.e., GMCs are reborn within arms), while on the right the formation is unbiased (random). See D'Onghia et al. (2012) for more details.

Despite the several recognized methods for generating galactic spiral structure through interactions with external bodies, invoking a similar response in a secularly evolving galaxy is notably more difficult. Using high resolution (100 million particle) N-body simulations we model the evolution of an isolated stellar disk embedded in a Hernquist dark matter halo. We extend the work of D'Onghia et al. (2011) and consider the spiral structure arising from the gravitational influence of massive perturbers (e.g., giant molecular clouds) corotating in the stellar disk. Within a single rotation period we can develop a prominent, large-scale response in an initially smooth disk. This response represents the incoherent sum of small amplitude "wakes" generated by the swing amplifier acting locally in the neighborhood of each perturber. We systematically investigate this effect over a range of galaxy models.

By varying the critical wavelength with respect to axisymmetric instability, and requiring the disk to be everywhere stable by insuring Toomres Q>1, we explore the spectrum of spiral morphologies generated by the collective swing amplification mechanism. We make quantitative correlations between spiral structure and host galaxy and halo properties. We also predict the number of arms as a function of the strutural properties of the galaxy, and construct a classification catalog of arm morphologies to compare to spatially resolved observations of nearby galaxies. We measure radial variation of the spiral pattern speed using a modified Tremaine-Weinberg method, and find taht the pattern speed both decreases with radius and closely tracks the circular velocity of the disk, in excellent agreement with several recent observations. [Cefalu Poster] [ads]

The following four snapshots link to movies showing the evolution of projected surface density for the LC-2, LC-4, LC-6, and LC-8 models (from left to right) from t=0 to 1 Gyr.

The barred galaxy verification simulation, steadily centered and rotating with a constant pattern speed of ~45 km/s/kpc at t > 600 Myr. 150mb video file.

Undergraduate Research

MWA Correlator FoV Weighting (MIT Haystack)

Feasibility study of a correlator field of view weighting technique to address data volume and processing requirements of next generation radio telescope arrays (MWA and SKA), including mitigating the impact of excised frequency bands due to radio-frequency interference. [paper] [presentation]

Cloud Structure and the Origin of the IMF in rho-Ophiuchus (IfA Hawaii)

An in-depth, multi-wavelength comparison between the populations of dense, pre-stellar cores, and young, pre-main sequence stars in the rho-Ophiuchus region. We examined cloud structure and stellar content in order to probe the idea of a one-to-one mapping between core and stellar mass distributions.[paper] [presentation]

Weak Lensing Survey of Nearby SDSS Galaxy Clusters (Fermilab)

Investigation of galaxy clusters as probes of cosmology and the physics of structure formation. Cluster masses are derived through weak gravitational lensing measurements, using the Sloan Digital Sky Survey (SDSS) data. We presented weak lensing measurements of a sample of high-mass, low redshift (z < 0.1) clusters and found good agreement when compared with dynamical and X-ray estimates. [paper] [presentation]

LHC Tier2 Monitoring (INFN Roma)

Extension a monitoring/diagnostic system for the high-performance Tier2 grid designed for LHC data storage and analysis. Our implementation is a scalable, distributed system with a dynamic web-based interface provides status monitoring, diagnostic data visualization, and automatic fault notification and resolution. [presentation]


Some older writeups which occasionally get requested:

Brief descriptions of some of the more technical projects I am working on.

Illustris Simulation Website and Data Release

Illustris Website Logo

In support of the Illustris simulation project I developed the web presence for the collaboration, as a public showcase, its results, visuals/movies, and the full public data release. It acts as a platform for full download of the data, a comprehensive web-based API, and interactive data exploration and analysis. Current functionality allows dynamic queries over the data products (group catalogs) from the simulation, which are hosted in a relational database. This is coupled to a gigapixel-zoom interface in the Explorer, and a viewer for synthetic/mock stellar light images in the Observatory. Additional features tied into the API include data introspection and extraction from the full dataset (~300TB) hosted on a remote cluster, leveraging a Django-based backend and in-browser visualization of e.g. the merger trees of galaxies, using d3.js and three.js (WebGL). [Data Release Paper]

[See website for additional information.]

Arepo Visualization Toolkit (ArepoVTK)

ArepoVTK Logo

ArepoVTK is designed to produce high quality, presentation-ready visualizations of hydrodynamic simulations run with Arepo. It performs volumetric ray tracing in 3D through linearly reconstructed scalar and vector fields defined on an unstructured Voronoi tessellation of space. It also includes higher order spatial interpolation techniques such as natural neighbor interpolation. Time interpolation between discrete snapshots is currently under investigation. The framework supports multi-dimensional transfer functions to investigate fluid quantities, and explores novel visualization techniques for combining such a volume rendering approach with coincident point particle datasets (both luminous and dark).

[Website coming soon.]

Delaunay Triangulation using Parallel Incremental Extrapolation on GPUs

GPU Delaunay Logo

We develop a method for constructing the Delaunay triangulation of a point set which is massively parallel and designed for the many-core architecture of graphical processing units (GPUs). We implement a "parallel incremental extrapolation" algorithm on the plane (2D) under the general position assumption and measure promising speedup with respect to our naive serial implementation.

[See website for additional information.]

Monte Carlo Tracer Particles on a Moving Mesh

Tracers Logo

Tracing the origin and (thermo)dynamical history of accreting gas in Eulerian grid codes requires Lagrangian “tracer particles”. The typical approach, whereby massless particles are passively advected by interpolating the local fluid velocity field, is found to exhibit systematic bias in its ability to trace the mass flow. An alternative, probabilistic “Monte Carlo” method associates tracers with parent gas cells and exchanges them based on mass fluxes through each face. The Poisson noise inherent in this approach is minimized with the ALE moving mesh scheme but may be intractable for strictly Eulerian AMR codes.

[See Nelson et al. (2013) and Genel et al. (2013) for additional information.]

Front-Tracking Techniques for Multiphase Viscous Flow

Multiphase Flow Logo

We investigate the numerical simulation of multiphase fluid flow problems in two dimensions. In particular, we implement a front-tracking approach where a number of discrete points represent the free interface between two fluid phases. This boundary is advected in time, and at each timestep we calculate the surface curvature and include a model for surface tension effects. The Lagrangian surface is coupled to a fixed, Cartesian grid mapped to a square domain. The incompressible Navier Stokes equations are used to model continuum fluid flow of both phases, which have different densities and physical viscosities. We use the projection technique to split the second order time update into an advection-diffusion step following by a pressure correction step to enforce the divergence free constraint, while the spatial discretization uses the finite volume approach with staggered, rectangular control volumes for pressure and velocity. We investigate the numerical accuracy and convergence of the curvature calculation, area conservation of a high density drop surrounded by low density air, and the generation of spurious numerical velocities. The approach is then used to simulate the bounce of a water drop off of a rigid boundary. A proof of concept boundary merger algorithm is presented to handle the topological change of two colliding water drops, and extensions to more accurate numerical methods and physical models are discussed.

[See PDF Writeup and Matlab Code.]

[Also related: Continuous Galerkin Navier-Stokes in 2D Writeup.]

These experiments are almost all works in progress. Comments welcome!

Zooming in: the structure of halo gas

The distribution of gas (+ dark matter + stars) in and around a 10^12 Msun halo at z=2 simulated with a high-resolution cosmological hydrodynamic 'zoom'. This is h0L11, see the Research page for movies of the other seven halos. We show gas density, temperature, entropy, and radial velocity on the halo scale (circles are 1.0, 0.5, and 0.15 rvir). Also gas density and stellar density on small scales (circle is 0.15), and gas density and DM density on large scales (circles are 0.5 and 1.0 rvir). [1080p download] [4K download]

The Universe in Gas

"The Universe in Gas" shows a large volume of a simulated universe, 20 Mpc/h on a side, at redshift zero (the present time). Volume rendering highlights iso-surfaces of gas density, temperature, and their relation. Bright peaks in the density reveal galaxies, which are surrounded by their hot halo atmospheres, and interconnected with filaments arising from the large scale structure of the universe. This animation visualizes results from a numerical hydrodynamical simulation of a cosmological volume run with the moving mesh code AREPO. Included are the effects of gas (baryons), dark matter (not shown), as well as stars and black holes (also not shown) and their energetic feedback processes. Made with ArepoVTK. [1080p HD download]

Illustris: Hierarchical "Zoom" into a Galaxy

Continuous zoom-in from the scale of the entire simulation volume (~100 Mpc) to the scale of an individual spiral galaxy (~10 kpc), highlighting the diversity of structure across spatial scale, the large dynamic range of the simulation (10^6 per dimension), and the relationship between dark matter, gas, and stars. Made from images extracted from the interactive Illustris Explorer app. [1080p HD download]

Coffee Cup Problem (3D)

An impressive early animation made by V. Springel for the AREPO code was a 2D box within which a moving, curved solid boundary moves in a circular motion, meant to represent a spoon stirring a cup of coffee. We extend this to toy problem to 3D with an importer which creates an initial condition from any STL surface mesh - in this case, a spoon. Volume rendered with ArepoVTK, illuminating the spoon and highlighting density features due to mixing and the development of KH-like instabilities. [1080p HD download]

Gadget/Arepo Halo Comparison Project (v1)

We present a large catalog of several thousand halos extracted from cosmological simulations. Each is shown from three orthogonal views and with different rendering techniques - velocity field scatter plots, SPH kernel projection maps, and a large scale comparison with the dark matter field. A range of halo masses is rendered at each z=0,1,2,3 and individual halos are matched between the two simulations. [Visit Website]

Cosmological Gas Accretion Trajectories

This animation shows the trajectories of individual gas elements (on the left) and dark matter particles (on the right) which are bound to the same halo at redshift zero, evolving in time from redshift four.

Voronoi Meshing

When things go wrong...

ArepoVTK Development Gallery

A scrapbook of sorts of the ongoing development of ArepoVTK. Some extremely simple test meshes exploring different rendering techniques and approaches for transfer functions, as well as mesh visualization. Some galactic disks, face-on and edge-on. Some whole box and zoom-ins from cosmological hydro simulations.

These WebGL experiments are all works in progress and may frequently change. Any modern version of Firefox or Chrome should have no problem with these examples. Comments welcome!

Interactive Gadget/Arepo Halo Comparison Project (v2)

Gadget Arepo Halo Comparison WebGL App

The interactive Gadget/Arepo halo comparison project is a WebGL experiment that compares the gas distribution around two dark matter halos. Part of the Moving Mesh Cosmology simulations, one halo is taken from a cosmological simulation run with the well-known SPH code GADGET3. The other is a matched object run with the new moving mesh code AREPO. The experiment allows the user to manipulate the view, the fluid quantities which are displayed, and the rendering method employed. [Launch Now]

Tracing Cosmological Gas Accretion... Through Time

Galaxy Formation (Tracer Time Evolution) WebGL App

This second experiment visualizes the time evolution of tracer particles as they accrete into a galaxy at low redshift. Their trajectories relative to the evolving halo are animated, while the maximum temperature they obtain between each point is represented by a color mapping. Catmull-Rom splines interpolate between tracer positions at discrete snapshots. The evolving radius and virial temperature of the parent halo are represented by the changing virial sphere. In addition to viewing one instant at time, the radial mode also allows us to move all tracers to the same radius and investigate the time-collapsed geometry and thermal heating. [Launch Now]

Structure of 3D Voronoi Tesellations

Galaxy Formation (3D Voronoi Mesh) WebGL App

We implement the single-pass, shader-based wireframe rendering technique of Bærentzen et al. (2008) in WebGL (no geometry shaders), for the case of arbitrary polygonal faces. A Voronoi mesh is exported as its constituent faces, each having N vertices and requiring N+2 triangles in our approach. The edges and interiors of each face are simultaneously rendered by the fragment shader, using at each pixel the window space distance to the edge of the face. For large meshes, we can "illuminate" only a slab or a radial shell. The geometry can also be "exploded" by radially displacing each cell center. Note: The last two data sets (diego_disk and halo314) are extremely large (>2GB card required, e.g. GTX 670) and may make your browser unstable. With this technique we can render at most ~100k cells, corresponding to ~1mil faces and ~5mil triangles. Stereoscopic 3D support for side-by-side type systems (e.g. Oculus Rift, or see the CfA dual polarized projector setup). [Launch Now]

See also a rendered animation on Vimeo exploring the cosmological datasets and visualization options. [or download 800x800 or 1920x1080 versions]

PDF Version

Dylan Nelson :: Curriculum Vitae

Mail Stop 10, 60 Garden St, Cambridge, MA 02138


  • Cosmological Gas Accretion, Galaxy Formation and Evolution
  • Circumgalactic Medium, Galactic Scale Star Formation, Spiral Structure
  • Hydrodynamic/N-body Numerical Simulations, Methods, and Visualization Techniques


Harvard University, Cambridge, MA

  • September 2009 - Present
  • Astrophysics PhD Program
  • Secondary Field: Computational Science and Engineering (CSE)

University of California Berkeley, Berkeley, CA - Graduated 2008

  • Triple Major: Physics, Astrophysics, and Mathematics
  • Member: National Society of Collegiate Scholars
  • Junior Member: American Astronomical Society
  • Honors Standing: September 2004 - May 2008

Montgomery High School, Santa Rosa, CA - Graduated 2004

  • International Baccalaureate (IB) Diploma
  • Member: California Scholarship Association


  • Harvard Institute for Applied Computational Science (IACS) Student Fellowship: 2014
  • National Science Foundation (NSF) Graduate Research Fellowship: 2009-2011 - Harvard
  • John P. Merrill Graduate Fellowship: 2009-2010 - Harvard
  • Pomerantz Physics Scholarship Recipient: 2007-08 - UC Berkeley
  • Dean's Honor List: Fall 2005 - UC Berkeley


The Illustris Simulation: Public Data Release, A&C submitted. [ads] [arXiv]
Nelson, D. R., Pillepich, A., Genel, S., Vogelsberger, M., Springel, V., Torrey, P., Rodriguez-Gomez, V., Sijacki, D., Snyder, G., Griffen, B., Marinacci, F., Blecha, L., Sales, L., Xu, D., Hernquist, L. (2015c)

Zooming in on accretion - I. The structure of halo gas, MNRAS submitted, [ads] [arXiv]
Nelson, D. R., Genel, S., Pillepich, A., Vogelsberger, M., Springel, V., Hernquist, L. (2015b)

The impact of feedback on cosmological gas accretion, MNRAS. [ads] [arXiv]
Nelson, D. R., Genel, S., Vogelsberger, M., Sijacki, D., Springel, V., Torrey, P., Hernquist, L. (2015a).

Moving mesh cosmology: Tracing cosmological gas accretion, MNRAS. [ads] [arXiv]
Nelson, D. R., Vogelsberger, M., Genel, S., Sijacki, D., Keres, D., Springel, V., Hernquist, L. (2013).


Hydrogen Reionization in the Illustris Universe, MNRAS submitted. [ads] [arXiv]
Bauer, A., Springel, V., Vogelsberger, M., Genel, S., Torrey, P., Sijacki, D., Nelson, D. R., Hernquist, L. (2015).

Galaxy Morphology and Star Formation in the Illustris Simulation at z=0, MNRAS submitted. [ads] [arXiv]
Snyder, G., Torrey, P., Lotz, J., Genel, S., McBride, C., Vogelsberger, M., Pillepich, A., Nelson, D. R., Sales, L., Sijacki, D., Hernquist, L., Springel, V. (2015).

The merger rate of galaxies in the Illustris simulation, MNRAS. [ads] [arXiv]
Rodriguez-Gomez, V., Genel, S., Vogelsberger, M., Sijacki, D., Pillepich, A., Nelson, D. R., Torrey, P., Springel, V., Ma, C-P., Hernquist, L. (2015).

Formation of Massive, Compact Galaxies in the Illustris Simulation, MNRAS. [ads] [arXiv]
Wellons, S., Torrey, P., Ma, C-P., Hernquist, L., Vogelsberger, M., Kriek, M., van Dokkum, P., Nelson, E., Genel, S., Springel, V., Sijacki, D., Xu, D., Snyder, G., Nelson, D. R., Sales, L., Pillepich, A., Rodriguez-Gomez, V.

The Illustris simulation: Evolving population of black holes across cosmic time, MNRAS submitted. [ads] [arXiv]
Sijacki, D., Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Snyder, G., Nelson, D. R., Hernquist, L. (2014).

Star-forming galaxies and the star formation main sequence in the Illustris simulation, MNRAS.
Sparre, M., Hayward, C.C., Springel, V., Vogelsberger, M., Genel, S., Torrey, P., Nelson, D. R., Sijacki, D., Hernquist, L. (2015). [ads] [arXiv]

The colors of satellite galaxies in the Illustris Simulation, MNRAS Letters.
Sales, L., Vogelsberger, M., Genel, S., Torrey, P., Nelson, D. R., Rodriguez-Gomez, V., Wang, W., Pillepich, A., Sijacki, D., Springel, V., Hernquist, L. (2014). [ads] [arXiv]

Synthetic galaxy images and spectra from the Illustris simulation, MNRAS.
Torrey, P., Snyder, G., Vogelsberger, M., Hayward, C. C., Genel, S., Sijacki, D., Springel, V., Hernquist, L., Nelson, D. R., Kriek, M., Pillepich, A., Sales, L., McBride, C. (2014). [ads] [arXiv]

Halo Mass and Assembly History Exposed in the Faint Outskirts: the Stellar and Dark Matter Haloes of Illustris Galaxies, MNRAS.
Pillepich, A., Vogelsberger, M., Deason, A., Rodriguez-Gomez, V., Genel, S., Sales, L., Nelson, D. R., Torrey, P., Marinacci, F, Springel, V., Sijacki, D., Hernquist, L. (2014). [ads] [arXiv]

The Illustris Simulation: the evolution of galaxy populations across cosmic time, MNRAS.
Genel, S., Vogelsberger, M., Springel, V., Sijacki, S., Nelson, D. R., Snyder, G., Rodriguez-Gomez, V., Torrey, P., Hernquist, L. (2014). [ads] [arXiv]

Introducing the Illustris Project: Simulating the coevolution of dark and visible matter in the Universe, MNRAS.
Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, S., Xu, D., Snyder, G., Nelson, D. R., Hernquist, L. (2014). [ads] [arXiv]

Properties of galaxies reproduced by a hydrodynamic simulation, NATURE.
Vogelsberger, M., Genel, S., Springel, V., Torrey, P., Sijacki, S., Xu, D., Snyder, G., Bird, S., Nelson, D. R., Hernquist, L. (2014). [ads] [arXiv]

Following the flow: tracer particles in astrophysical fluid simulations, MNRAS.
Genel, S., Vogelberger, M., Nelson, D. R., Sijacki, D., Springel, V., Hernquist, L. (2013). [ads] [arXiv]

The Sloan Nearby Cluster Weak Lensing Survey, ApJ.
Kubo, J. M., Annis, J., Hardin, F. M., Kubik, D., Lawhorn, K., Lin, H., Nicklaus, L., Nelson, D. R., Reis, R. R., Seo, H-J., Soares-Santos, M., Stebbins, A., Yunker, T. (2009). [ads] [arXiv]


  • DARK Cosmology Centre (11 Feb, 2015). Copenhagen.
  • Caltech Astronomy Tea Talk (15 Dec, 2014). Pasadena, CA.
  • UC Berkeley Theoretical Astrophysics Center (TAC) Seminar (24 Nov, 2014). Berkeley, CA.
  • "Arepofest-2" Workshop 2014 (Sep 2014). Boston, MA.
  • Santa Cruz Galaxy Formation Workshop (Aug 2014). Santa Cruz, CA.
  • Mind the Gap: from microphysics to large-scale structure in the universe (July 2013). Cambridge, UK.
  • Feeding, Feedback, and Fireworks: Celebrating Our Cosmic Landscape (June 2013). Hamilton Island, Australia.
  • Institute for Theory and Computation (ITC) Luncheon (Nov 2012). Harvard University.


  • Computational Astrophysics: Physical Foundations and Numerical Techniques. International Max Planck Research School (IMPRS). Heidelberg, Germany. Sept, 2012.
  • AstroInformatics: International UC-High Performance Astrocomputing Center (HIPACC) Summer School. San Diego, CA. July, 2012.
  • XSEDE/PRACE Challenges in Computational Sciences: HPC Summer School. Dublin. June, 2012.
  • The Morphology and Pattern Speed of Spiral Structure. Nelson, D.R., D'Onghia, E., Hernquist, L. (2011). Advances in Computational Astrophysics Conference Proceeding, cefalu 2011. [ads]
  • Cloud Structure and the Origins of the Stellar Initial Mass Function in rho-Ophiuchus. Nelson, D. R., Swift, J. J., Williams, J. P. (2007). AAS Meeting 211, Austin, Session #89.12. [ads]
  • Effectiveness of the Correlator Field of View Weighting Technique in Source Attenuation. Nelson, D. R., Doeleman, S. S., Lonsdale, C. J., Oberoi, D., Cappallo, R. J. (2006). AAS Meeting 209, Seattle, Session #85.10. [ads]


Harvard University Teaching Fellow:

  • Astronomy 16 (Undergrad) - Stellar and Planetary Astronomy (Prof. D. Charbonneau)
  • Astronomy 17 (Undergrad) - Galactic and Extragalactic Astronomy (Prof. J. Lee)
  • Applied Mathematics 274 (Grad) - Computational Fluid Dynamics (Prof. D. Knezevic)
  • Computer Science 207 (Grad) - Systems Development for Computational Science (Prof. C. Cecka)


  • Kavli Foundation: Building the Universe Pixel by Pixel
  • Full Dome Demo Visualization @ Boston Museum of Science Hayden Planetarium (AAS Summer 2014 Press Dinner Event)
  • Illustris video animations: incorporated into our Youtube video (450k views) and Nature Video (800k views)
  • Illustris visualizations: featured on The New York Times, BBC News, CNN, Der Spiegel, The Guardian, Le Monde and others
  • Planned and developed the Illustris simulation website and The Explorer interface
  • Supercomputing 2013 keynote/plenary "Walk-in Video Loop" (3D Coffee, 3D Voronoi)
  • Developer of ArepoVTK: visualization of cosmological simulations for science exploration and public presentation