Astronomy 45 - Fall 2002
Introduction to Astrophysics
Table of Contents

1. Introduction to Astrophysics

1.1 Introduction
1.2 Planets
 1.2.1 Geometry
 1.2.2 Parallax
 1.2.3 Transit of Venus
 1.2.4 Luminosity and Flux
 1.2.5 Circular Motion

2. The Astronomical Context

2.1 Angles and Positions
 2.1.1 Coordinate systems in the sky
 2.1.2 Angular separations
 2.1.3 Solid angle
2.2 Brightness Measurements
 2.2.1 Flux and UBV system
 2.2.2 Apparent magnitudes
 2.2.3 Absolute magnitude
 2.2.4 Spectra
2.3 Velocity measurements
 2.3.1 Proper Motion
2.4 Distance Measurements

3. Radiation

3.1 Photons
3.2 The specific intensity
 3.2.1 Flux
3.3 Energy Density
3.4 Radiation Pressure
3.5 Flux from a sphere of uniform brightness
 3.5.1 Thermal Radiation
 3.5.2 High and low T limits
3.6 Stefan-Boltzmann Law
 3.6.1 Einstein A and B coefficients
3.7 Radiation balance
 3.7.1 Temperatures of the planetary surfaces
3.8 Spectral Sequence of Stars
3.9 Other Radiation Mechanisms
 3.9.1 Synchrotron and cyclotron radiation
 3.9.2 Bremsstrahlung
3.10 Telescopes
4. Classical Dynamics

4.1 Newtonian Gravity
 4.1.1 Newton’s laws
 4.1.2 Gravitational potential
 4.1.3 Gravitational attraction of a spherical shell
 4.1.4 Solid sphere
 4.1.5 Two solid spherical bodies

4.2 The Two-body Problem
 4.2.1 Two-body orbits
 4.2.2 Runge-Lenz vector
 4.2.3 Orbits
 4.2.4 Mass of sun
 4.2.5 Interplanetary travel
 4.2.6 Moment of inertia of a spinning sphere
 4.2.7 Total Angular Momentum of the Jupiter-Sun System

4.3 Binary Stars

4.4 Extrasolar Planets
4.5 Supernovae in binary systems

4.6 Tides
 4.6.1 Weak tides
 4.6.2 Tidal friction

4.7 Roche stability limits for satellites
4.8 Roche lobes
 4.8.1 Effect of mass transfer on binary orbits

4.9 The Virial Theorem

4.10 Gravitational Collapse

5. Stars and Stellar Structure

5.1 Phenomenology
 5.1.1 Element Abundances
 5.1.2 Nuclear reactions
 5.1.3 Collapse of a Massive Star - Type II supernova

5.2 Stellar Structure
 5.2.1 Order of magnitude
 5.2.2 Stellar interiors
 5.2.3 Equations of stellar structure

5.3 Equation of State
5.4 The Perfect (Ideal) Gas Law
 5.4.1 Adiabatic index
 5.4.2 Convection
 5.4.3 Equation of State for Degenerate Matter
 5.4.4 White Dwarf Stars
 5.4.5 Neutron Stars
 5.4.6 Black Holes
 5.4.7 Stellar Structure Virial Theorems
6. Cosmology

6.1 Cosmological Principle
6.2 Cosmic Microwave Background
6.3 Expansion of the Universe
 6.3.1 Age Of Universe
6.4 Newtonian Dynamics
 6.4.1 Critical Density
6.5 Flatness Problem
6.6 Einstein-deSitter Universe
 6.6.1 Relativistic Matter (Radiation)
 6.6.2 Matter-dominated Einstein-deSitter Universe
 6.6.3 Radiation-Dominated Einstein-deSitter Universe
 6.6.4 Red Shift Universe
6.7 Cosmological Constant
6.8 History Of The Early Universe — Recombination

7. Interstellar Medium

7.1 Nebulae
7.2 Interstellar Gas and Dust
 7.2.1 Phases
 7.2.2 Hot gas