The Parsec-Scale Accretion Disk in NGC 3393
Paul T. Kondratko, Lincoln J. Greenhill, and James M. Moran

Abstract.

We present a Very Long Baseline Interferometry image of the water maser emission in
the nuclear region of NGC 3393. The maser emission has a linear distribution oriented at
a position angle of ~–34°, perpendicular to both the kiloparsec-scale radio jet and the axis of
the narrow-line region. The position-velocity diagram displays a red-blue asymmetry about the
systemic velocity and the estimated dynamical center, and is thus consistent with rotation.
Assuming Keplerian rotation in an edge-on disk, we obtain an enclosed mass of \((3.1 \pm 0.2) \times 10^7 \, M_\odot\) within 0.36 ± 0.02 pc (1.48 ± 0.06 mas), which corresponds to a mean mass density of \(\sim 10^{8.2} \, M_\odot \, \text{pc}^{-3}\). We also report the measurement with the Green Bank Telescope of a velocity drift, a
manifestation of centripetal acceleration within the disk, of \(5 \pm 1 \, \text{km s}^{-1} \, \text{yr}^{-1}\) in the \(\sim 3880 \, \text{km s}^{-1}\) maser feature, which is most likely located along the line of sight to the dynamical center of
the system. From the acceleration of this feature, we estimate a disk radius of 0.17 ± 0.02 pc, which
is smaller than the inner disk radius (0.36 ± 0.02 pc) of emission that occurs along the midline
(i.e., the line of nodes). The emission along the line of sight to the dynamical center evidently
occurs much closer to the center than the emission from the disk midline, contrary to the
situation in the archetypal maser systems NGC 4258 and NGC 1068. The outer radius of the disk
as traced by the masers along the midline is about 1.5 pc.

Fig. 2.—Distribution of maser emission in the nuclear region of NGC 3393. Position uncertainties are 1 σ, and the colors of the maser spots indicate heliocentric optical
line-of-sight velocity in accordance with the bar on the right. The dotted line in the color bar shows the adopted systemic velocity of 3750 km s\(^{-1}\). The adopted
location for the dynamical center (black circle) is the weighted mean for the low-velocity maser features. A line fitted to the distribution of maser emission on the sky
(P.A. ~ –34°) is close to orthogonal to the kiloparsec-scale radio jet (P.A. ~ 45°, black arrows [Marganti et al. 1999]; ~56° [Schmitt et al. 2001b]) and to the axis of
the NLR (dashed cone, P.A. ~ 55° with an opening angle of ~50° [Schmitt & Kinney 1996; Cooke et al. 2000]). The coordinates are relative to \(\alpha = 10^\text{h}48^\text{m}23.4666^\text{s}\)
and \(\delta = -25^\circ09'43.756''\) (J2000.0). At a distance of 30 Mpc, 0.25 pc subtends 1 mas.