Polarization SYS#224, 225

Hiroshi Nagai (NAOJ)

With the help by K. Nakanishi (JAO/NAOJ), Y.-W. Tang (ASIAA), E. Chapillon (ASIAA -> French ARC-node)

Verification items

- On-axis (#224)
 - Instrumental polarization (D-term) < 10%
 - Residual after calibration <1%-> 0.1% error on a polarization image
 - These apply over 30 deg in azimuth or elevation and with a calibration interval 4 hours
- Off-axis (#225)
 - D-term within the -6dB primary beam < 10% after the subtraction of on-axis D-term
 - Residual after calibration and after on-axis D-term has been removed < 2% -> This statement should be revisited
 - These apply over a range of antenna elevation of 5 to 80 degrees and with a calibration interval of 20 days

What's D-terms?

$$\hat{V_X} = V_X + D_X V_Y$$

$$\hat{V_Y} = V_Y + D_Y V_X$$

The D terms: fraction of the input signal voltage in one polarization that leaks into the output of the other polarization.

$$\begin{split} \hat{V}_{X_m} \hat{V}_{X_n}^* &= I + Q \cos(2\psi_m) + U \sin(2\psi_m) \\ \hat{V}_{Y_m} \hat{V}_{Y_n}^* &= I - Q \cos(2\psi_m) - U \sin(2\psi_m) \\ \hat{V}_{X_m} \hat{V}_{Y_n}^* &= I(D_{X_m} + D_{Y_n}^*) - Q \sin(2\psi_m) + U \cos(2\psi_m) + iV \\ \hat{V}_{Y_m} \hat{V}_{X_n}^* &= I(D_{Y_m} + D_{X_n}^*) - Q \sin(2\psi_m) + U \cos(2\psi_m) - iV \end{split}$$

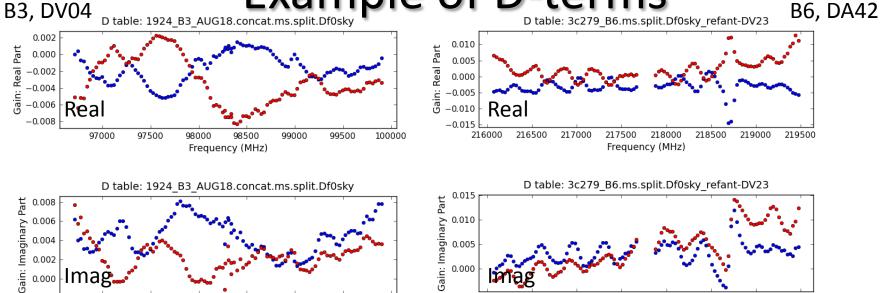
- Mostly originates in antenna and frontend
- Typically a few % at on-axis field

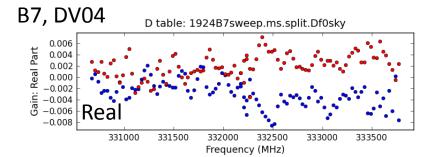
On-axis requirements

ALMA Scientific Specifications and Requirements Polarized flux error (σ_p) < 0.1%

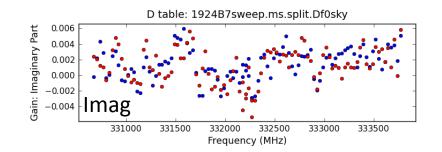
- There are two D-terms for each of ~50 antennas.
 (in total 100 independent D-terms)
 - If the residual error after D-term calibration per antenna is ~1%, the polarized flux error on a image will be 0.1% (=1%/sqrt(100)).
- Assuming 10% calibration accuracy, the D-term shall be <10%.
- These applies over a typical calibration cycle (4hrs).

Off-axis requirements


- There is no scientific constraint on the off-axis polarization in ALMA Scientific Specifications and Requirements. SysTech Requirements (by D. Slamek) assume that the off-axis D-term requirement applies after the on-axis D-term has been removed by calibration.
 - $(D_{off}-D_{on})<10\%$, and residual D_{off} after the calibration and after on-axis D-term removed < 2%
- Above statement is not very clear, but, for the moment, we test:
 - $(D_{off} D_{on}) < 10\%$
 - the polarized flux error at off-axis is not greater than
 0.1% on a polarization image after the on-axis calibration.

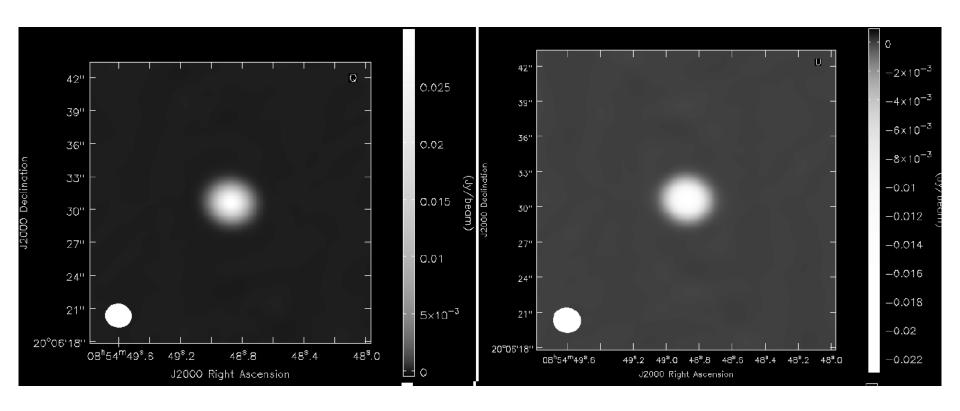

On-axis: Procedure

- Observe a bright polarized quasar over a wide range of parallactic angle (>90deg??) and then separate source polarization and D-terms
 - The source must be polarized at a level of few %
 - See the polarization calibrator list (<u>CSV-2721</u>)
 - Typical observation: 3min x 6 scans / frq. tuning
 - Appropriate parallactic angle range is to be tested (CSV-2910)
- For the stability check, observe two polarized quasars separated by >4 hrs in hour angle.
 - Compare two D-term solutions to check the stability


DV04 Example of D-terms

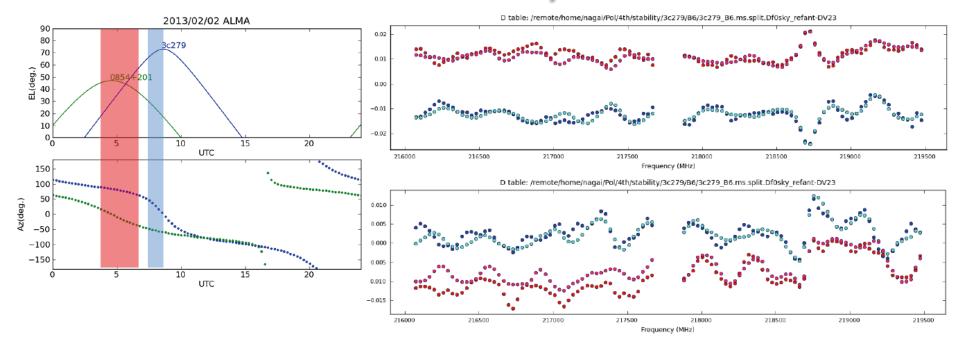
D table: 1924_B3_AUG18.concat.ms.split.Df0sky

Frequency (MHz)



Typically few %

Meets the requirement

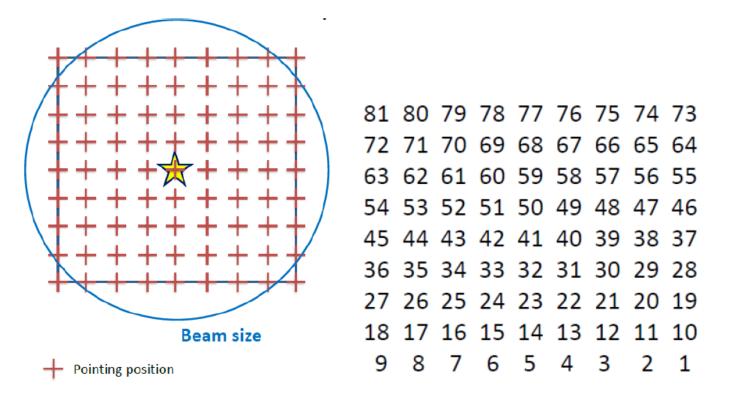

Frequency (MHz)

Example of polarization image

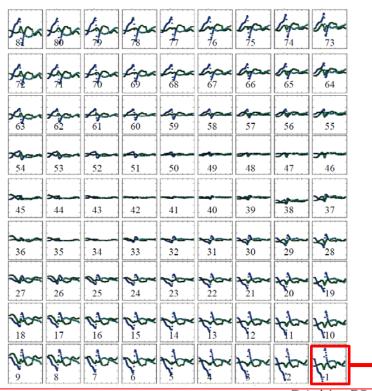
- Stokes Q (left) and U (right) map after the D-term calibration.
- The rms on the images are << 0.1% of Stokes I
 - Meets the requirement

Stability

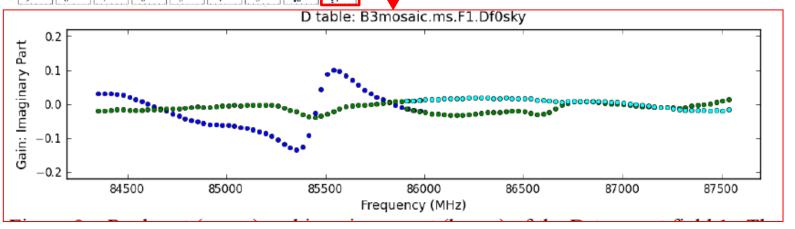
- Blue (Dx) and red (Dy) are solutions from 0854+201, and cyan (Dx) and pink (Dy) are solutions from 3c279.
- Two solutions agree within a level of ~0.5%.
 - Meets the requirement

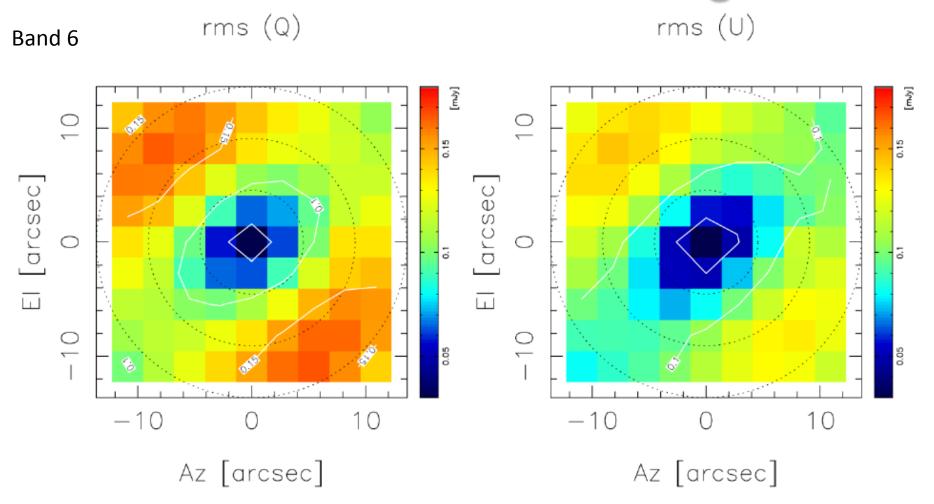

On-axis Status

	B3		B6		B7	
	Observa tion	Analysis	Observa tion	Analysis	Observa tion	Analysis
D-term level	Done	Done	Done	Done	Done	Done
Error on pol. Image	Done	Done	Done	Done	Done	Done
Stability	Done	Done	Done	Done	Done	Not done


- •All observations were done in TDM mode at two frequency tunings with 12-m array.
- •Future works
 - •FDM mode
 - more frequency tunings
 - •Band 4,8,9
 - •7m array

Off-axis: Procedure


- Mosaicing to cover the -6dB contour
 - So far we have tested within -3dB
- 9 x 9 mosaic at several parallactic angles


Example of off-axis D-terms

- D-term level is as large as 15% at some frequency in bands 3 and 6.
 - D_{off}-D_{on}>10%: does not meet the requirement
- Band-7 D-term level is good.
 - ~5% at the -3dB contour

Error on Polarization Image

- < 0.1% of Stokes I within -3dB contour
 - Meets the requirement

Status

	B3		B6		B7	
	Observa tion	Analysis	Observa tion	Analysis	Observa tion	Analysis
D-term level	Partially done	Partially done	Partially done	Partially done	Partially done	Partially done
Error on pol. Image	Partially done	Partially done	Partially done	Partially done	Partially done	Partially done
Stability	Not done	Not done	Not done	Not done	Not done	Not done

- All observations were done within -3dB contour in TDM mode at one frequency tunings with 12m array
- Future works
 - Out to -6dB contour
 - FDM mode
 - more frequency tunings
 - Band 4,8,9
 - Stability
 - 7m array

Hand-over?

- Basic script for data analysis is attached in the report #224, but there is still room for improvements
- I can continue to work on these polarization verification with an agreement by EA Porject Manager (S. Iguchi).
- I believe K. Nakanishi will also continue to work in CSV side.