Synthetic spectra with the Reference Forward Model (RFM)

IRDAS-EXP
The presence of methane in the atmosphere of an extrasolar planet

Mark R. Swain¹*, Gautam Vasisht¹* & Giovanna Tinetti²*
The extrasolar planet atmosphere and exosphere: Emission and transmission spectroscopy

Giovanna Tinetti1,2 and Jean-Philippe Beaulieu2,3

1University College London, Gower street, London WC1E 6BT, UK
e-mail: g.tinetti@ucl.ac.uk

2 HOLMES collaboration

3 Institut d'Astrophysique de Paris, 98bis Boulevard Arago, 75014 PARIS, France.
e-mail: beaulieu@iap.fr

![Graph showing absorption spectrum vs wavelength](image-url)
VENUS

- Sulfuric acid cloud layers
- Sulfuric acid haze
- Troposphere

Diagram showing the vertical distribution of temperature and pressure on Venus.
Since I have failed with Exoplanets, and with the Solar system, why not to look at the Mythology

The Birth of Venus

Botticelli

Mars

Velázquez

Cronus

Goya
One slide about PHOENIX

- http://www.hs.uni-hamburg.de/EN/For/ThA/phoenix/index.html
- General purpose radiative transfer code for HR-diagram starts, Ttauri stars, novae, supernovae, brown dwarfs and extrasolar giant planets
- Thesis dissertation by Mariana Wagner:
 “Reflectance Spectra of Earth-Like Exoplanets” June 2011
The Reference Forward Model (RFM)

- Many thanks to Anu Dudhia (AOPP University of Oxford)
- web page: www.atm.ox.ac.uk/RFM/
- Line-by-line transfer model based on GENLN2 model by D. P. Edwards (1992)
- Started as a limb line-by-line model link to MIPAS studies but now it is a quite general line-by-line model
ENVISAT

- ESA
- Sun Synchronous Polar Orbit (800 km)
- 98.55° inclination
- Period 101 minutes, 14.25 Orbits per day
- Launched in 2002
MIPAS

Michelson Interferometer for Passive Atmospheric Sounding

- Fourier Transform Spectrometer
- Spectrum 685-2410 cm\(^{-1}\) (14.6-4.15 \(\mu\)m) at 0.035 cm\(^{-1}\) resolution in 4.5s
- Limb scan in 17 steps from 150-6km in 85s (~500km)
- 72 profiles per orbit
- ~1000 profiles per day
RFM applications

- Simulating atmospheric emission/transmission spectra
- Modelling cell transmittances for spectroscopy
- Flux calculations for radiative forcing
- Generating look-up tables of absorption cross-section
- Atmospheric path ray-tracing and integrations
RFM Geometries

Cell Transmittance

Atmospheric Transmittance

Flux Calculations

Limb Radiance
What RFM can do part I

- Spherical or plane-parallel atmospheres, homogeneous paths
- Field-of-View & Instrument Line Shape convolutions
- CO_2 line mixing
- Curtis-Godson approximation
- Continua for H_2O, O_2, N_2 and CO_2
- Non-LTE
What RFM can do part II

- Jacobians for p, T, VMR, line-of-sight pointing and surface temperature and emissivity
- Satellite/Balloon & Aircraft/Ground-based viewing geometries
- Surface reflections
- Output spectra of radiance, transmittance, absorption, cooling rates, optical depth and brightness temperature
What RFM can do part III

- Output diagnostics from ray-tracing
- Can do horizontal structure of the atmosphere
- Flux calculations
- Different isotopic mixing ratio profiles
- Compatible with HITRAN 2008 and HITRAN cross-sections for heavier molecules such as CFCs and N_2O_5
What RFM can not handle

- Scattering
- Instrument line shape wider than around 1 cm$^{-1}$

But I like it quite a lot because it is really easy to install and to use.
Radiance

Path Transmittance: \[\tau = \prod_j \tau_j \]

Radiance: \[R = \int B \, d\tau = \sum B_i \Delta \tau_i \quad (\text{+} \; B_s \tau) \]
Transmittance

Absorption Coefficient: \(k(v) = \sum_i S_i(T) F(v-v_{0i}, p, T) \)

Transmittance: \(\tau_i(v) = \exp(-k \rho s) \)

Multiple absorbers \(j \): \(\tau_i(v) = \prod_j \tau_{ij} \)
The continua

For more on continuum refer to University of Reading, CAVIAR project
http://www.met.reading.ac.uk/caviar/background.html
Curtis-Godson approximation

- For Lorentzian absorption the effective pressure and temperature for an heterogeneous path:

\[\bar{p} = \frac{1}{m} \int p \rho \, dz \]
\[\bar{T} = \frac{1}{m} \int T \rho \, dz \]
\[m = \int \rho \, dz \]
Curtis-Godson approximation in the “strong” limit is exact as it is in the “weak” limit

\[\tau = e^{-\int \frac{S}{\pi} \frac{\alpha_L}{(\nu - \nu_0)^2} \rho \, dz} \]

\[\alpha_L \sim \alpha \cdot \frac{p}{p_0} \]

\[\tau = e^{-\frac{-S}{\pi} \frac{\alpha_0}{(\nu - \nu_0)^2} \bar{p} m \, p_0} \]
The molecules included

<table>
<thead>
<tr>
<th>ID</th>
<th>Molecule</th>
<th>ID</th>
<th>Molecule</th>
<th>ID</th>
<th>Molecule</th>
<th>ID</th>
<th>Molecule</th>
<th>ID</th>
<th>Molecule</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H2O</td>
<td>2</td>
<td>CO2</td>
<td>3</td>
<td>O3</td>
<td>4</td>
<td>N2O</td>
<td>5</td>
<td>CO</td>
</tr>
<tr>
<td>6</td>
<td>CH4</td>
<td>7</td>
<td>O2</td>
<td>8</td>
<td>NO</td>
<td>9</td>
<td>SO2</td>
<td>10</td>
<td>NO2</td>
</tr>
<tr>
<td>11</td>
<td>NH3</td>
<td>12</td>
<td>HNO3</td>
<td>13</td>
<td>OH</td>
<td>14</td>
<td>HF</td>
<td>15</td>
<td>HCl</td>
</tr>
<tr>
<td>16</td>
<td>HBr</td>
<td>17</td>
<td>HI</td>
<td>18</td>
<td>ClO</td>
<td>19</td>
<td>OCS</td>
<td>20</td>
<td>H2CO</td>
</tr>
<tr>
<td>21</td>
<td>HOCI</td>
<td>22</td>
<td>N2</td>
<td>23</td>
<td>HCN</td>
<td>24</td>
<td>CH3Cl</td>
<td>25</td>
<td>H2O2</td>
</tr>
<tr>
<td>26</td>
<td>C2H2</td>
<td>27</td>
<td>C2H6</td>
<td>28</td>
<td>PH3</td>
<td>29</td>
<td>COF2</td>
<td>30</td>
<td>SF6q</td>
</tr>
<tr>
<td>31</td>
<td>H2S</td>
<td>32</td>
<td>HCOOH</td>
<td>33</td>
<td>HO2</td>
<td>34</td>
<td>O</td>
<td>35</td>
<td>ClONO2q</td>
</tr>
<tr>
<td>36</td>
<td>NO+</td>
<td>37</td>
<td>HOB</td>
<td>38</td>
<td>C2H4</td>
<td>39</td>
<td>CH3OH</td>
<td>40</td>
<td>CH3Br</td>
</tr>
<tr>
<td>41</td>
<td>CH3CN</td>
<td>42</td>
<td>CF4</td>
<td>43</td>
<td>BrO</td>
<td>44</td>
<td>C3H8</td>
<td>45</td>
<td>C2N2</td>
</tr>
<tr>
<td>46</td>
<td>C4H2</td>
<td>47</td>
<td>HC3N</td>
<td>48</td>
<td>C3H4</td>
<td>49</td>
<td>GeH4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- Standard HITRAN line molecules
- HITRAN line Molecules also represented as cross-sections
- Additional GEISA line molecules (RFM-specific IDs)
- Extinction cross-section [km⁻¹] (RFM-specific IDs)
- Molecular cross-section [cm²/molec] (RFM-specific IDs)
- Dummy names for extra cross-section molecules (RFM-specific IDs)
Installation

- In Linux/Unix with a Fortran77 compiler
- Source code is distributed as a tar file:
 - rfm_v4.28.tar.gz
 - Unpack tar -xzf rfm_v4.28.tar.gz
- With ifort: ifort -O3 -o rfm *.for
Input files: Driver table

*HDR
RFM run for IRDAS studies
*FLG
TRA
*SPC
4029.104610 4029.114610 0.00001
*GAS
3
*ATM
/home/gga500/atmfascodes/tro.atm ! Atmospheric conditions, TROPICAL
*TAN
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
59 60
*HIT
/home/gga500/HITRAN08.bin
*TRA
../out/tro.atm/Target_Species_Transmission/I01/RFM_*.tra
*GRD
!/export/home/ndca500/RFM-source/fov.rfm !mipas.fov
*END
Input files: Atmospheric profile

! FASCOD Model 6 U.S. Standard Atmosphere
! Transformed to RFM .atm file format by program USARFM v.23-AUG-96

1 ! No.Levels in profiles
*HGT [km]
 2.0
*PRE [mb]
 7.950E+02
*TEM [K]
 275.20
*H2O [ppmv]
 4.631E+03
*CO2 [ppmv]
 3.300E+02
*O3 [ppmv]
 3.237E-02
*N2O [ppmv]
 3.200E-01
*CO [ppmv]
 1.399E-01
*CH4 [ppmv]
 1.700E+00
*O2 [ppmv]
 2.090E+05
*END
HITRAN08.bin

- It is a binary version of the HITRAN database compatible with the GENLN2 input format
- It can be created starting with the HITRAN ASCII *.par file using hitbin.f program
MIPAS spectral range radiance 15 km
Something about ACE-FTS

- Solar occultation FTS
- 0.02 cm\(^{-1}\)
- Spectral range 750-4400 cm\(^{-1}\)
- “High” signal to noise ratio, usually above 300
ACE-FTS region RFM radiance spectra
ACE-FTS region transmission spectra
Formic acid

1 !Driver table for lecture HCOOH
2 *HDR
3 RFM run using Driver Table SAO 1 (19/03/2012)
4 *FLG
5 TRA ABS RAD !Transmission, absorption and radiance
6 *SPC
7 FullACE 750.0 4400 2.0 !To have a full picture
8 RetrACE 1100 1110 0.02 !Where it was actually done
9 *GAS
10 32
11 *ATM
12 /home/ggonzale/TOOLS/RFM/atmospheres/hgt_std.atm
13 /home/ggonzale/TOOLS/RFM/atmospheres/std.atm
14 /home/ggonzale/TOOLS/RFM/atmospheres/minor.atm
15 /home/ggonzale/TOOLS/RFM/atmospheres/HCOOH.atm
16 *TAN
17 1 5 10 17 40
18 *HIT
19 /home/ggonzale/TOOLS/RFM/HITRAN08/HITRAN08.bin
20 *ABS
21 /home/ggonzale/TOOLS/RFM/HCOOH_1/efm_*.abs
22 *TRA
23 /home/ggonzale/TOOLS/RFM/HCOOH_1/efm_*.tra
24 *RAD
25 /home/ggonzale/TOOLS/RFM/HCOOH_1/efm_*.rad
26 *END
27
An example: HCOOH
Formic acid, used microwindow
ACE-FTS spectra with HCOOH residual
Line selection

CO$_2$ region

Transmission

Wavenumbers cm$^{-1}$

4766 4768 4770 4772 4774 4776 4778 4780
Project 2

!Driver table for lecture project_2
2 *HDR
3 RFM run using Driver Table SAO 2 (16/04/2012)
4 *FLG
5 TRA ABS RAD OBS!Transmission, absorption and radiance
6 *SPC
7 !OH 118 119 0.0002 !Project second
8 HCl 2923.00 2926.00 0.0005 ! Project first
9 !MIPAS 685 2410 2.0 !To have a full picture
10 !RetrACE 1100 1110 0.02 !Where it was actually done
11 *GAS
12 15
13 !13 13 !H2O O3 OH
14 !1 3 6 10 15 !H2O O3 CH4 NO2 HCl
15 *ATM
16 /home/ggonzale/TOOLS/RFM/atmospheres/hgt_std.atm
17 /home/ggonzale/TOOLS/RFM/atmospheres/std.atm
18 /home/ggonzale/TOOLS/RFM/atmospheres/minor.atm
19 /home/ggonzale/TOOLS/RFM/atmospheres/HCOOH.atm
20 !*TAN
21 !25 30 35 40 45
22 *ELE
23 45
24 *OBS
25 0.0 !Observer in ground
26 *HIT
27 /home/ggonzale/TOOLS/RFM/HITRAN08/HITRAN08_22.bin
28 *XSC
29 /home/ggonzale/TOOLS/RFM/CX/f12.xsc_h2k !52 CFC-12 cross section
30 /home/ggonzale/TOOLS/RFM/CX/f22.xsc_h2k !56 HCFC-22 cross section
31 /home/ggonzale/TOOLS/RFM/CX/f134.xsc_h2k !79 HFC-143a cross section
32 *ABS
33 /home/ggonzale/TOOLS/RFM/PROJECT_2/rfm_*.abs
34 *TRA
35 /home/ggonzale/TOOLS/RFM/PROJECT_2/rfm_*.tra
36 *RAD
37 /home/ggonzale/TOOLS/RFM/PROJECT_2/rfm_*.rad
38 *END