Since the energy of each photon is just its momentum times the speed of light, the radiative energy flux is simply given by the change in the radiation pressure (momentum flux), $P_{\rm rad}={1\over 3}aT^4$, per mean-free-path, \begin{equation} F =-c {dP_{\rm rad}\over d\tau}, \end{equation} where the optical-depth $\tau$ is related to the frequency-averaged (so-called, Rosseland-mean) opacity coefficient of the gas, $\kappa$, \begin{equation} \tau=\int_c^h \kappa \rho dz \approx {1\over 2} \kappa \Sigma , \end{equation} where $\Sigma= 2h\rho$. For the characteristic mass density $\rho$ and temperature $T$ encountered in the midplane of accretion disks, there are two primary sources of opacity: {\it electron scattering} with \begin{equation} \kappa_{\rm es}={\sigma_{\rm T} \over m_p}, \end{equation} and {\it free-free} absorption with \begin{equation} \kappa_{\rm ff}=8\times 10^{22} {\rm cm}^2\,{\rm g}^{-1}) \left({\rho \over {\rm g}\,{\rm cm}^{-3}\right) \left({T\over {\rm K}\right)^{-7/2}, \end{equation} where we assume a pure hydrogen plasma for simplicity. %$\nu=\eta/\rho$, \subsection{Disk Structure} We normalize the accretion rate in the disk relative to the so-called Eddington rate which would produce the maximum possible disk luminosity, $L_{\rm Edd}$ (see derivation in equation \ref{LEdd} below). When the luminosity approaches the Eddington limit, the disk bloates and $h$ approaches $r$, violating the thin-disk assumption. We write $\dot M_{\rm Edd}\equiv L_{\rm Edd}/(\epsilon {\rm c}^2)$, where $\epsilon$ is the radiative efficiency (for converting rest-mass to radiation near the ISCO). In local thermodynamic equilibrium, the emergent flux from the surface of the disk (equation \ref{fluxdisk}) can be written in terms of the temperature at disk midplane $T$ as $F\approx c aT^4/kappa\Sigma$. The surface temperature of the disk is the roughly, \begin{equation} T_s\approx\left(4F\over a\right)^{1/4}=10^6~{\rm K}\left({M\over 10^8M_\odot}\right)^{-1/4}\left({\dot{M}\over \dot{M}_E}\right)^{1/4} \left({r\over r_{\rm Sch}}\right)^{-3/4}\left[1-({r\over r_{\rm ISCO}})^{1/2}\right] . \end{equation} In characterizing the structure of the disk, we use the following dimensionless parameters: $r_1=R/10R_{\rm Sch}$, $M_8=M/(10^8 M_{\odot})$, $\dot m = \dot M/\dot M_{\rm Edd}$, %$\dot m_{0.1}=\dot m/0.1$, $\alpha_{-1}=\alpha/0.1$, $\epsilon_{-1}=\epsilon/0.1$, %$\tilde\kappa_{\rm es}=\kappa/\kappa_{{\rm es}}$, and %$\tilde\kappa_{\rm ff}=\kappa/\kappa_{\rm ff}$. The accretion disk can be divided radially into three distinct regions, \begin{enumerate} \item {\it Inner region:} Radiation pressure and electron-scattering opacity dominate, $P\approx P_{\rm rad}$, $\tilde\kappa_{\rm es}\approx 1$, valid inside $r_3\ll r_3^{{\rm gas}/{\rm rad}}$ where $r_3^{{\rm gas}/{\rm rad}}$ is defined in equations~(\ref{e:gas/radb1}) and~(\ref{e:gas/radb0}) below. \item {\it Middle region:} Gas pressure and electron-scattering opacity dominate, $P\approx P_{\rm gas}$, $\tilde\kappa_{\rm es}\approx 1$, valid between $ r_3^{{\rm gas}/{\rm rad}}\ll r_3 \lsim r_3^{{\rm es}/{\rm ff}}$, where $r_3^{{\rm es}/{\rm ff}}$ is defined in equation~(\ref{e:es/ff}) below. \item {\it Outer region:} Gas pressure and free-free opacity dominate, $P\approx P_{\rm gas}$, $\tilde\kappa_{\rm ff}\approx 1$, valid outside of $r_3 \gsim r_3^{{\rm es}/{\rm ff}}$. \end{enumerate} In region (1), it makes a difference whether the viscosity is proportional to the total pressure or just the gas pressure, labeled below by $b=0$ or 1, (i.e. $\alpha$ or $\beta$ disk) respectively. In all cases, we assume that the disk is optically thick, i.e. $\tau \gg 1$. We obtain $\Sigma(r)$ and $H(r)$ following \citet{goodman03} or \citet{goodmantan04}, % \begin{eqnarray}\label{e:Sigma_definition} \Sigma(r) &=& \frac{2^{4/5}}{3\pi^{3/5}} \sigma_{\rm SB}^{1/5} \left(\frac{\mu_0 m_{\rm H}}{{\rm k_B}}\right)^{4/5} f_{T}^{-2}\alpha^{-4/5} \kappa^{-1/5} \dot M^{3/5} \Omega^{2/5} \beta^{-(4/5)(b-1)},\\\label{e:H_definition} H(r) &=& \frac{f_{T} \kappa \dot M}{2\pi {\rm c} (1-\beta)}. \end{eqnarray} % where $b=0$ or 1, and the radial dependence is implicit in $\Omega$ and $\beta$. Here, $\beta(r) \equiv P_{\rm gas}/(P_{\rm rad}+P_{\rm gas})$ which satisfies % \begin{eqnarray} \frac{\beta^{(1/2) + (1/10)(b-1)}}{1-\beta} &=& 2^{3/5}\pi^{4/5} {\rm c} \sigma_{\rm SB}^{-1/10} \left(\frac{{\rm k_B}}{\mu_0 m_{\rm H}}\right)^{2/5}\alpha^{-1/10} \kappa^{-9/10}\dot M^{-4/5} \Omega^{-7/10} \label{e:beta_definition}. \end{eqnarray} The asymptotic limits of equations~(\ref{e:Sigma_definition}) and (\ref{e:H_definition}) can be obtained in regions (1--3), using equation~(\ref{e:beta_definition}). The results are \noindent{\em Inner region:} % \begin{eqnarray}\label{e:Sigma_inb1} \Sigma(r) &=& (1.63 \times 10^5 {\,\rm g}{\,\rm cm}^{-2}) \mu_0^{4/5}\mu_e^{-4/5}\tilde\kappa_{\rm es}^{-1/5} f_{T}^{-2} \alpha_{0.3}^{-4/5} \left(\frac{\dot m}{\eff_{0.1}}\right)^{3/5} M_7^{1/5} r_3^{-3/5} \rm{~~if~} b=1,\\\label{e:Sigma_inb0} &=& (2.50 \times 10^4 {\,\rm g}{\,\rm cm}^{-2}) \mu_e^{-1} \tilde\kappa_{\rm es}^{-2} f_{T}^{-2} \alpha_{0.3}^{-1} \left(\frac{\dot m}{\eff_{0.1}}\right)^{-1} r_3^{3/2} \rm{~~~~if~} b=0, \\\label{e:H_in} H(r) &=& (10.0 R_S) f_{T} \frac{\dot m}{\epsilon_{0.1}}~~~~~{\rm for}~{\rm arbitrary}~b. \end{eqnarray} \noindent{\em Middle region:} % \begin{eqnarray}\label{e:Sigma_middle} \Sigma(r) &=& (1.63 \times 10^5 {\,\rm g}{\,\rm cm}^{-2}) \mu_0^{4/5}\mu_e^{-4/5} \tilde\kappa_{\rm es}^{-1/5} f_{T}^{-2} \alpha_{0.3}^{-4/5} \left(\frac{\dot m}{\eff_{0.1}}\right)^{3/5} M_7^{1/5} r_3^{-3/5}, \\\label{e:H_middle} H(r) &=& (3.11 R_S) \mu_e^{-1/10} \mu_0^{-2/5} \tilde\kappa_{\rm es}^{1/10}f_{T} \alpha_{0.3}^{-1/10} \left(\frac{\dot m}{\epsilon_{0.1}}\right)^{1/5} M_7^{-1/10} r_3^{21/20}. \end{eqnarray} \noindent{\em Outer region:} % \begin{eqnarray}\label{e:Sigma_out} \Sigma(r) &=& (2.61 \times 10^5 {\,\rm g}{\,\rm cm}^{-2}) \mu_e^{-4/5} \mu_0^{3/4} \tilde\kappa_{\rm ff}^{-1/10} f_{T}^{-143/80} \alpha_{0.3}^{-4/5} \left(\frac{\dot m}{\eff_{0.1}}\right)^{7/10} M_7^{1/5} r_3^{-3/4}, \\\label{e:H_out} H(r) &=& (3.08 R_S) \mu_e^{-1/10}\mu_0^{-3/8}\tilde\kappa_{\rm ff}^{1/20} f_{T}^{143/160} \alpha_{0.3}^{-1/10}\left(\frac{\dot m}{\epsilon_{0.1}}\right)^{3/20} M_7^{-1/10} r_3^{9/8}. \end{eqnarray} The boundaries between the inner/middle and middle/outer regions can be found from equations (\ref{e:Sigma_definition})-(\ref{e:beta_definition}), by requiring $P_{\rm gas}=P_{\rm rad}$ and $\kappa_{\rm ff}=\kappa_{\rm es}$, respectively. Note that $\kappa_{\rm ff}(r)\propto \rho T^{7/2}$ depends on radius implicitly through the density and the temperature. Using the (mid-plane) temperature given by \citet{goodmantan04}, % \begin{eqnarray}\label{e:Temperature_definition} T(r) &=& \left(16\pi^2\right)^{-1/5} \left(\frac{\mu_0 m_{\rm H}}{{\rm k_B}\sigma_T}\right)^{1/5} \alpha^{-1/5} \kappa^{1/5} \dot M^{2/5} \Omega^{3/5} \beta^{-(1/5)(b-1)}, \end{eqnarray} % we find that the transitions are located at the radii % \begin{eqnarray} r_3^{{\rm gas}/{\rm rad}} &=& 0.482 \,\tilde\mu_0^{8/21}\tilde\mu_e^{2/21} \tilde\kappa_{\rm es}^{6/7} \alpha_{0.3}^{2/21} (\dot m_{0.1}/\epsilon_{0.1})^{16/21} M_7^{2/21}~~\rm{~~if~} b=1,\label{e:gas/radb1}\\ &=& 0.515 \,\tilde\mu_0^{8/21}\tilde\mu_e^{2/21} \tilde\kappa_{\rm es}^{6/7} \alpha_{0.3}^{2/21} (\dot m_{0.1}/\epsilon_{0.1})^{16/21} M_7^{2/21}~~\rm{~~if~} b=0,\label{e:gas/radb0}\\ r_3^{{\rm es}/{\rm ff}} &=& 4.10 \,\tilde\mu_0^{-1/3} \tilde f_{T}^{17/12} (\tilde \kappa_{\rm ff}/\tilde \kappa_{\rm es})^{-2/3} (\dot m_{0.1}/\epsilon_{0.1})^{2/3}\label{e:es/ff}. \end{eqnarray} Note that the middle and outer regions differ only in their opacity laws, and the equations in these two regions are equivalent (this can be seen by setting $\tilde \kappa_{\rm es}\equiv \tilde \kappa_{\rm ff}\kappa_{\rm ff}(r)/\kappa_{\rm es}$). Since $\Sigma$, $H$, $\rho$, and $T$ scale with a low power of $\tilde \kappa_{\rm ff}$, the radial dependence ends up being similar in the middle and outer regions. The distinction between these equations is nevertheless useful, since we can assume that $\tilde \kappa_{\rm es}\rightarrow 1$ and $\tilde \kappa_{\rm ff}\rightarrow 1$ are constants in the middle and outer regions, respectively. We emphasize that equations~(\ref{e:Sigma_inb1})-(\ref{e:H_out}) represent only a very non-exhaustive subset of solutions even for radiatively efficient steady thin accretion disks. In particular, at large radii, there are several effects that can invalidate the disk model described by these equations. First, these solutions assume that the self--gravity of the disk is negligible. This assumption becomes invalid at radii where the Toomre $Q$--parameter equals unity, % \begin{eqnarray} r^{\rm sg}_3 &=& 12.6 \,\tilde\mu_0^{-8/9}\tilde\mu_e^{14/27} \tilde f_T^{20/9} \tilde\kappa_{\rm es}^{2/9} \alpha_{0.3}^{8/9} \left(\dot m_{0.1}/\eff_{0.1}\right)^{-8/27} M_7^{-26/27} \rm{~~~~if~} \tilde\kappa_{\rm es}\rightarrow1\\ r^{\rm sg}_3 &=& 30.99 \tilde\mu_0^{-1} \tilde\mu_e^{28/45} \tilde f_T^{143/60} \tilde \kappa_{\rm ff}^{2/15} \alpha_{0.3}^{28/45} \left(\dot m_{0.1}/\eff_{0.1}\right)^{-22/45} M_7^{52/45} \rm{~~~~if~} \tilde\kappa_{\rm ff}\rightarrow 1. \end{eqnarray} Beyond these radii, the disk is commonly believed to be unstable to fragmentation. Second, at large radii, the disk can also become optically thin \cite[see][where solutions can be obtained by fixing the Toomre parameter in the outermost region at $Q\equiv 1$]{sirkogoodman03}. At these binary separations, the disks may not actually be geometrically thin \citep{dot08,mke08}, and slim or thick solutions might instead be relevant. Third, beyond the radii where the disk temperature falls below $\approx 10^4$K, the gas becomes neutral. The corresponding change in opacity will modify the disk structure, and the disk may become susceptible to ionization instabilities (although see \citealt{mq01}). Finally, at large radii (where the orbital velocity $\gsim 100$ km/s), the gravitational potential of the galaxy can no longer be ignored. These regimes, however, turn out to correspond to separations larger than we are interested in the present paper, for BH masses above $\approx 10^5~{\rm M_\odot}$ (as will be shown in Figures~\ref{fig:tres_q1} and \ref{fig:tres_q0.01} below). \bibitem[Armitage(2007)]{arm07} Armitage, P. J. 2007, preprint arXiv:astro-ph/0701485 \bibitem[Armitage \& Natarajan(2002)]{an02} Armitage, P. J., \& Natarajan, P. 2002, \apj, 567, L9 \bibitem[Armitage \& Natarajan(2005)]{an05} Armitage, P. J., \& Natarajan, P. 2005, \apj, 634, 921 \bibitem[Artymowicz \& Lubow(1994)]{al94} Artymowicz, P., \& Lubow, S. H. 1994, ApJ, 421, 651 \bibitem[Artymowicz \& Lubow(1996)]{al96} Artymowicz, P., \& Lubow, S. H. 1996, ApJ, 467, L77 \bibitem[Bardeen \& Peterson(1975)]{bp75} Bardeen, J. M., \& Peterson, J. A. 1975, ApJ, 195, L65 \bibitem[Barger et al.(2005)]{barger05} Barger, A. J., Cowie, L. L., Mushotzky, R. F., Yang, Y., Wang, W.-H., Steffen, A. T., \& Capak, P. 2005, ApJ, 129, 578 \bibitem[Barnes(2002)]{barnes} Barnes, J. E. 2002, MNRAS, 333, 481 \bibitem[Barnes \& Hernquist(1992)]{bh92} Barnes, J. E., \& Hernquist, L. 1992, \araa, 30, 705 \bibitem[Bauer et al.(2003)]{bauer03} Bauer, F. E., et al. 2003, AN, 324, 175 \bibitem[Bauer et al.(2004)]{bauer04} Bauer, F. E., et al. 2004, AdSpR, 34, 2555 \bibitem[Beckmann et al.(2007)]{beckmann} Beckmann, V., et al. 2007, A\&A, 475, 827 \bibitem[Begelman, Blandford, \& Rees(1980)]{bbr80} Begelman, M. C., Blandford, R. D., \& Rees, M. J. 1980, Nature, 287, 307 \bibitem[Blanchet, Qusailah \& Will(2005)]{blanchet05} Blanchet, L., Qusailah, M. S. S., \& Will, C. M., 2005, ApJ, 635, 508 \bibitem[Bogdanovic, Eracleous \& Sigurdsson(2009)]{bogdanovic09} Bogdanovic, T., Eracleous, M., \& Sigurdsson, S. 2009, \apj, in press, preprint arXiv:0809.3262 \bibitem[Boroson \& Lauer(2009)]{boroson09} Boroson, T. A., \& Lauer, Tod R. 2009, Nature, 458, 53 \bibitem[Chornock et al.(2009)]{chornock09} Chornock, R., Bloom, J. S., Cenko, S. B. et al. 2009, The Astronomer's Telegram, \#1955, http://www.astronomerstelegram.org/?read=1955 \bibitem[Ciotti \& Ostriker(2001)]{co01} Ciotti, L., \& Ostriker, J. P. 2001, ApJ, 551, 131 \bibitem[Corasaniti et al.(2006)]{alpaca} Corasaniti, P. S., LoVerde, M., Crotts, A., \& Blake C. 2006, MNRAS, 369, 798 \bibitem[Crowder \& Cornish(2004)]{cornish04} Crowder, J., \& Cornish, N. J. 2004, \prd, 70, 082004 \bibitem[Cuadra et al.(2009)]{cuadra09} Cuadra, J., Armitage, P. J., Alexander, R. D., \& Begelman, M. C. 2009, 393, 1423 \bibitem[Deffayet \& Menou(2007)]{dm07} Deffayet, C. \& Menou, K. 2007, \apj, 668, L143 \bibitem[Dobbs-Dixon et al.(2007)]{dobbs07} Dobbs-Dixon, I., Li, S. L., \& Lin, D. N. C. 2007, ApJ, 660, 791 \bibitem[Dotti et al.(2006)]{dot06} Dotti, M., Salvaterra, R., Sesana, A., Colpi, M., \& Haardt, F. 2006, \mnras, 372, 869 \bibitem[Dotti et al.(2008)]{dot08} Dotti, M., Colpi, M., Haardt, F., \& Mayer, L. 2008, arXiv eprint, arXiv:0807.3626 \bibitem[Dunkley et al.(2009)]{wmap} Dunkley, J., et al. 2009, \apjs, 180, 306 \bibitem[Escala et al.(2004)]{elcm04} Escala, A., Larson, R. B., Coppi, P. S., \& Mardones, D. 2004, \apj, 607, 765 \bibitem[Escala et al.(2005)]{elcm05} Escala, A., Larson, R. B., Coppi, P. S., \& Mardones, D. 2005, \apj, 630, 152 \bibitem[Fan(2005)]{fanjh05} Fan, J. H. 2005, ChJA\&A, 5, 213 \bibitem[Ferrarese(2002)]{ferrarese02} Ferrarese, L. 2002, ApJ, 578, 90 \bibitem[Ferrarese \& Ford(2005)]{ff05} Ferrarese, L., \& Ford, H. 2005, SSRv, 116, 523 \bibitem[Frank et al.(2002)]{accretionpower} {Frank}, J., {King}, A., \& {Raine}, D.~J. ``Accretion Power in Astrophysics: Third Edition,'' 2002, Cambridge University Press, ISBN 0521620538 \bibitem[Frey et al.(2008)]{frey} Frey, S., Gurvits, L. I., Paragi, Z., \& Gabanyi, K. E. 2008, A\&A, 484, L39 \bibitem[Fuhrmeister \& Schmitt(2003)]{fuhrmeister} Fuhrmeister, B., \& Schmitt, J. H. M. M. 2003, A\&A, 403, 247 \bibitem[Gaskell et al.(2006)]{variabilitybook} Gaskell, C. M., McHardy, I. M., Peterson, B. M., \& Sergeev, S. G. 2006, ``AGN Variability from X-rays to Radio Waves'', ASP Conf. Series, volume 360 \bibitem[Gaskell(2009)]{gaskell09} Gaskell, C. M. 2009, Nature, submitted, arXiv:0903.4447 \bibitem[Goodman (2003)]{goodman03} Goodman, J. 2003, \mnras 339, 937 \bibitem[Goodman \& Tan (2004)]{goodmantan04} Goodman, J., \& Tan, J. C. 2004, \apj, 608, 108 \bibitem[Gould \& Rix(2000)]{gr00} Gould, A., \& Rix, H.-W. 2000, \apj, 532, 29 \bibitem[Halpern \& Filippenko(1988)]{halpern88} Halpern, J. \& Filippenko, A. 1988, Nature, 331, 46 \bibitem[Hayasaki(2009)]{hayasaki09} Hayasaki, K. 2009, \pasj, in press, e-print arXiv:0805.3408 \bibitem[Hayasaki et al.(2008)]{hayasaki08} Hayasaki, K., Mineshige, S., \& Ho, L. C. 2008, \apj, 682, 1134 \bibitem[Hayasaki et al.(2007)]{hayasaki07} Hayasaki, K., Mineshige, S., Sudou, H. 2007, \pasj, 59, 427 \bibitem[Hirose, Krolik \& Blaes(2009)]{hirose09} Hirose, S., Krolik, J. H., \& Blaes, O. 2009, \apj, 691, 16 \bibitem[Holz \& Hughes(2005)]{hh05} Holz, D. E., \& Hughes, S. A. 2005, \apj, 629, 15 \bibitem[Hopkins et al.(2005)]{hopkins05} Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Robertson, B., \& Springel, V. 2005, ApJ, 630, 716 \bibitem[Hopkins et al.(2006)]{hopkins06} Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Robertson, B., \& Springel, V. 2006, ApJS, 163, 1 \bibitem[Hopkins et al.(2007a)]{hopkins07a} Hopkins, P. F., Bundy, K., Hernquist, L., \& Ellis, R. S. 2007a, ApJ, 659, 976 \bibitem[Hopkins et al.(2007b)]{hopkins07b} Hopkins, P. F., Richards, G. T., \& Hernquist, L. 2007b, ApJ, 654, 731 \bibitem[Hughes(2007)]{hughes07} Hughes, S. A. 2007, in the Proceedings of the 7th Edoardo Amaldi Conference on Gravitational Waves (to be published by Classical and Quantum Gravity), in press, e-print arXiv:0711.0188 \bibitem[Ivanov, Papaloizou, \& Polnarev(1999)]{ivanov} Ivanov, P. B., Papaloizou, J. C. B., \& Polnarev, A. G. 1999, \mnras, 307, 79 \bibitem[Jenet et al.(2004)]{pulsars} Jenet, F. A., Lommen, A., Larson, S. L., \& Wen L. 2004, ApJ, 606, 799 \bibitem[Kauffman \& Haehnelt(2000)]{kh00} Kauffmann, G., \& Haehnelt, M. 2000, \mnras, 311, 576 \bibitem[Kazantzidis et al.(2005)]{kazantzidis05} Kazantzidis, S., et~al. 2005, \apjl, 623, L67 \bibitem[Kocsis et al.(2006)]{koc06} Kocsis, B., Frei, Z., Haiman, Z. \& Menou, K. 2006, \apj , 637, 27 \bibitem[Kocsis et al.(2007)]{paper1} Kocsis, B., Haiman, Z., Menou, K., \& Frei, Z. 2007, \prd, 76, 022003 \bibitem[Kocsis et al.(2008)]{paper2} Kocsis, B., Haiman, Z., \& Menou, K. 2008, ApJ, 684, 870 \bibitem[Kocsis \& Loeb(2008)]{kocsisloeb08} Kocsis, B., \& Loeb, A., 2008, \prl, 101, 041101 \bibitem[Kollmeier et al.(2006)]{kollmeier06} Kollmeier, J. A., et al. 2006, ApJ, 648, 128 \bibitem[Komossa et al.(2003)]{komossa03} Komossa, S. et al. 2003, \apj, 582, L15 \bibitem[Komossa, Zhou \& Lu(2008)]{komossa08} Komossa, S., Zhou, H., \& Lu, H. 2008, \apj, 678, L81 \bibitem[Kormendy \& Richstone(1995)]{kr95} Kormendy, J., \& Richstone, D.\ 1995, \araa, 33, 581 \bibitem[Lang \& Hughes(2006)]{lh06} Lang, R. \& Hughes, S. A. 2006, \prd, 74, 122001 \bibitem[Lang \& Hughes(2008)]{lh08} Lang, R. N., \& Hughes, S. A. 2008, \apj, 677, 1184 \bibitem[Lightman \& Eardley(1974)]{le74} Lightman, A. P., \& Eardley, D. M. 1974, \apj, 187, L1 \bibitem[Lippai, Frei \& Haiman(2008a)]{lippaidisk} Lippai, Z., Frei, Zs., \& Haiman, Z. 2008a, ApJ, 676, L5 \bibitem[Lippai, Frei \& Haiman(2008b)]{lippaimergers} Lippai, Z., Frei, Zs., \& Haiman, Z. 2008b, ApJ, submitted \bibitem[Liu(2004)]{liu04} Liu, F. K. 2004, MNRAS,347, 1357 \bibitem[Liu, Liu \& Xie(1997)]{liu97} Liu, F. K., Liu, B. F., \& Xie, G. Z. 1997, A\&AS, 123, 569 \bibitem[Liu, Wu \& Cao(2003)]{liu03} Liu F. K., Wu X.-B., \& Cao S.L. 2003, MNRAS, 340, 411 \bibitem[Liu, Xie \& Bai(1995)]{liu95} Liu, F. K., Xie, G. Z., \& Bai, J. M. 1995, A\&A, 295, 1 \bibitem[Loeb(2007)]{loeb07} Loeb, A. 2007, PRL, 99, d1103 \bibitem[Lynden-Bell \& Pringle(1974)]{lp74} Lynden-Bell, D., \& Pringle, J. E. 1974, \mnras, 168, 603 \bibitem[MacFadyen \& Milosavljevi\'c(2008)]{mm08} MacFadyen, A., \& Milosavljevi\'c, M. 2008, ApJ, 672, 83 \bibitem[MacLeod \& Hogan(2007)]{mh07} MacLeod, C. L., \& Hogan, C. J. 2007, Phys. Rev. D., vol. 77, Issue 4, id. 043512 \bibitem[Markowitz \& Edelson(2001)]{markowitz} Markowitz, A., \& Edelson, R. 2001, ApJ, 547, 684 \bibitem[Martini(2004)]{martini04} Martini, P. 2004, in Carnegie Observatories Astrophysics Series, Vol. 1: Coevolution of Black Holes and Galaxies, ed. L. C. Ho (Cambridge: Cambridge Univ. Press), p. 169 \bibitem[Mayer, Kazantzidis, \& Escala(2008)]{mke08} Mayer, L., Kazantzidis, S., \& Escala, A. 2008, preprint arXiv:0807.3329 \bibitem[Menou, Haiman \& Narayanan(2001)]{mhn01}Menou, K., Haiman, Z., \& Narayanan, V. K. 2001, \apj, 558, 535 \bibitem[Menou \& Quataert(2001)]{mq01} Menou, K., \& Quataert, E. 2001, ApJ, 552, 204 \bibitem[Merritt \& Ekers(2002)]{merritt} Merritt, D., Ekers, R. D. 2002, Science 297, 1310 \bibitem[Milosavljevic \& Phinney(2005)]{mp05} Milosavljevic, M., \& Phinney, E. S. 2005, \apj, 622, L93 \bibitem[Morokuma et al.(2008a)]{morokuma1} Morokuma et al. 2008a, ApJ, 676, 163 \bibitem[Morokuma et al.(2008b)]{morokuma2} Morokuma et al. 2008b, ApJ, 676, 121 \bibitem[Neugebauer \& Matthews(1999)]{neugebauer} Neugebauer, G., \& Matthews, K. 1999, AJ, 118, 35 \bibitem[Padmanabhan(2002)]{padmanabhan} Padmanabhan, T., ``Theoretical Astrophysics,'' 2002, Cambridge University Press, ISBN 0521562422, Vol. 1, Eq. 6.235 \bibitem[Qian et al.(2007)]{qian07} Quian, S.-J., et al. 2007, ChJA\&A, 7, 364 \bibitem[Papadakis et al.(2008)]{papadakis08} Papadakis, I. E., Chatzopoulos, E., Athanasiadis, D., Markowitz, A., \& Georgantopoulos, I. 2008, A\&A, 487, 475 \bibitem[Paolillo et al.(2004)]{paolillo04} Paolillo, M., Schreier, E. J., Giacconi, R., Koekemoer, A. M. \& Grogin, N. A. 2004, ApJ, 611, 93 \bibitem[Rafikov(2002)]{rafikov02} Rafikov, R. R. 2002, ApJ, 572, 566 \bibitem[Raiteri et al.(2001)]{raiteri01} Raiteri, C. M., et al. 2001, A\&A, 377, 396 \bibitem[Rieger(2007)]{rieger07} Rieger, F. M. 2007, Ap\&SS, 309, 271 \bibitem[Robertson et al.(2006)]{robertson06} Robertson, B., Cox, T. J., Hernquist, L, Franx, M., Hopkins, P. F., Martini, P., \& Springel, V. 2006, ApJ, 641, 21 \bibitem[Rodriguez et al.(2006)]{rodriguez06} Rodriguez, C. et al. 2006, ApJ, 646, 49 \bibitem[Roos, Kaastra \& Hummel(1993)]{roos} Roos, N., Kaastra, J. S., \& Hummel, C. A. 1993, ApJ, 409, 130 \bibitem[Rybicki \& Lightman(1986)]{rybicki} {Rybicki}, G. B., \& {Lightman}, A. P., ``Radiative Processes in Astrophysics,'' 1986, Wiley-VCH, ISBN 0-471-82759-2, Eq. 5.20 \bibitem[Sarajedini(2008)]{sarajedini} Sarajedini, V. L. 2008, Rev. Mex. A\&A, 32, 34 \bibitem[Sarajedini et al.(2006)]{sarajedini06} Sarajedini, V. L., et al. 2006, ApJS, 155, 271 \bibitem[Schoenmakers(2000)]{schoenmakers} Schoenmakers, A. P. 2000, MNRAS, 315, 371 \bibitem[Schutz(1986)]{sch86} Schutz, B. F. 1986, Nature, 323, 310 \bibitem[Schnittman et al.(2008)]{anatomy08} Schnittman, J. D., Buonanno, A., van Meter, J. R., Baker, J. G., Boggs, W. D., Centrella, J., Kelly, B. J., \& McWilliams, S. T. 2008, Phys. Rev. D., vol. 77, Issue 4, id. 044031 \bibitem[Schnittman \& Krolik(2008)]{schnittmankick} Schnittman, J. D., \& Krolik, J. H., 2008, \apj, 684, 835 \bibitem[Sesana et al.(2004)]{sesana04} Sesana, A., Haardt, F., Madau, P., \& Volonteri, M. 2004, \apj, 611, 623 \bibitem[Sesana et al.(2005)]{sesana05} Sesana, A., Haardt, F., Madau, P., \& Volonteri, M. 2005, \apj, 623, 23 \bibitem[Shakura \& Sunyaev(1973)]{ss73} Shakura, N. I., \& Syunyaev, R. A. 1973, A\&A, 24, 337 \bibitem[Shapiro \& Teukolsky(1986)]{shapiroteukolsky} Shapiro, S. L., \& Teukolsky, S. A., ``Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects,'' 1986, Wiley-VCH, ISBN 0-471-87316-0, Eq. 14.5.26 \bibitem[Shields \& Bonning(2008)]{shieldskick} Shields, G. A., \& Bonning, E. W., 2008, \apj, 682, 758 \bibitem[Sillanp\"{a}\"{a} et al.(1988)]{sillanpaa} Sillanp\"{a}\"{a}, A., Haarala, S., Valtonen, M. J., Sundelius, B. \& Byrd, G. G. 1988, \apj, 325, 628 \bibitem[Sirko \& Goodman(2003)]{sirkogoodman03} Sirko, E., \& Goodman, J. 2003, \mnras, 341, 501 \bibitem[Springel, Di Matteo \& Hernquist(2005)]{springel05} Springel, V., Di Matteo, T., \& Hernquist, L. 2005, ApJ, 620, L79 \bibitem[Stubbs(2008)]{stubbs} Stubbs, C. W. 2008, in the Proceedings of the 12th Gravitational Wave Data Analysis Workshop, to appear in Classical and Quantum Gravity, preprint arXiv:0712.2598 \bibitem[Sudou et al.(2003)]{sudou} Sudou, H., Iguchi, S., Murata, Y., Taniguchi, Y. 2003, Science, 300, 1263 \bibitem[Syer \& Clarke(1995)]{syerclarke} Syer, D., \& Clarke, C. J. 1995, \mnras, 277, 758 \bibitem[Tanaka, Takeuchi, \& Ward(2002)]{tanaka02} Tanaka, H., Takeuchi, T., \& Ward, W. R. 2002, \apj, 565, 1257 \bibitem[Tao et al.(2008)]{tao08} Tao, J., Fan, J., Qian, B., \& Liu, Y. 2008, AJ, 135, 737 \bibitem[Vanden Berk et al.(2004)]{vandenberk04} Vanden Berk, D. E. et al. 2004, \apj, 601, 692 \bibitem[Vecchio(2004)]{vec04} Vecchio, A. 2004, \prd, 70, 042001 \end{thebibliography} \end{document}