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1.2.1 Cosmological context: the expanding Universe

I. Introduction

When we look at our image reflected off a mirror at a distance of 1 meter, we see the way we looked 6.7
nanoseconds ago, the light travel time to the mirror and back. If the mirror is spaced 1019 cm ≃ 3 pc
away, we will see the way we looked twenty one years ago. Light propagates at a finite speed, and so by
observing distant regions, we are able to see what the Universe looked like in the past, a light travel time
ago. The statistical homogeneity of the Universe on large scales guarantees that what we see far away is a
fair statistical representation of the conditions that were present in our region of the Universe a long time
ago.

This fortunate situation makes cosmology an empirical science. We do not need to guess how the Universe
evolved. Using telescopes we can simply see how it appeared at earlier cosmic times. In principle, this allows
the entire 13.7 billion year cosmic history of our universe to be reconstructed by surveying the galaxies and
other sources of light to large distances. Since a greater distance means a fainter flux from a source of a fixed
luminosity, the observation of the earliest sources of light requires the development of sensitive instruments
and poses challenges to observers. As the universe expands, photon wavelengths get stretched as well. The
factor by which the observed wavelength is increased (i.e. shifted towards the red) relative to the emitted one
is denoted by (1 + z), where z is the cosmological redshift. Astronomers use the known emission patterns of
hydrogen and other chemical elements in the spectrum of each galaxy to measure z. This then implies that
the universe has expanded by a factor of (1 + z) in linear dimension since the galaxy emitted the observed
light, and cosmologists can calculate the corresponding distance and cosmic age for the source galaxy. Large
telescopes have allowed astronomers to observe faint galaxies that are so far away that we see them more
than twelve billion years back in time. Thus, we know directly that galaxies were in existence as early as
850 million years after the Big Bang, at a redshift of z ∼ 6.5 or higher.

We can in principle image the Universe only if it is transparent. Earlier than 400 000 years after the big
bang, the cosmic hydrogen was broken into its constituent electrons and protons (i.e. “ionized”) and the
Universe was opaque to scattering by the free electrons in the dense plasma. Thus, telescopes cannot be used
to electromagnetically image the infant Universe at earlier times (or redshifts > 103). The earliest possible
image of the Universe was recorded by the COBE and WMAP satellites, which measured the temperature
distribution of the cosmic microwave background (CMB) on the sky.

The CMB, the relic radiation from the hot, dense beginning of the universe, is indeed another major
probe of observational cosmology. The universe cools as it expands, so it was initially far denser and hotter
than it is today. For hundreds of thousands of years the cosmic gas consisted of a plasma of free protons and
electrons, and a slight mix of light nuclei, sustained by the intense thermal motion of these particles. Just
like the plasma in our own Sun, the ancient cosmic plasma emitted and scattered a strong field of visible and
ultraviolet photons. About 400 000 years after the Big Bang the temperature of the universe dipped for the
first time below a few thousand degrees Kelvin. The protons and electrons were now moving slowly enough
that they could attract each other and form hydrogen atoms, in a process known as cosmic recombination.
With the scattering of the energetic photons now much reduced, the photons continued traveling in straight
lines, mostly undisturbed except that cosmic expansion has redshifted their wavelength into the microwave
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regime today. The emission temperature of the observed spectrum of these CMB photons is the same in all
directions to one part in 100 000, which reveals that conditions were nearly uniform in the early universe.

It was just before the moment of cosmic recombination (when matter started to dominate in energy
density over radiation) that gravity started to amplify the tiny fluctuations in temperature and density ob-
served in the CMB data. Regions that started out slightly denser than average began to contract because
the gravitational forces were also slightly stronger than average in these regions. Eventually, after hundreds
of millions of years of contraction, the overdense regions stopped expanding, turned around, and eventually
collapsed to make bound objects such as galaxies. The gas within these collapsed objects cooled and frag-
mented into stars. This process, however, would have taken too long to explain the abundance of galaxies
today, if it involved only the observed cosmic gas. Instead, gravity is strongly enhanced by the presence of
dark matter – an unknown substance that makes up the vast majority (83%) of the cosmic density of matter.
The motion of stars and gas around the centers of nearby galaxies indicates that each is surrounded by an
extended mass of dark matter, and so dynamically-relaxed dark matter concentrations are generally referred
to as “halos”.

According to the standard cosmological model, the dark matter is cold (abbreviated as CDM), i.e.,
it behaves as a collection of collisionless particles that started out at matter domination with negligible
thermal velocities and have evolved exclusively under gravitational forces. The model explains how both
individual galaxies and the large-scale patterns in their distribution originated from the small initial density
fluctuations. On the largest scales, observations of the present galaxy distribution have indeed found the
same statistical patterns as seen in the CMB, enhanced as expected by billions of years of gravitational
evolution. On smaller scales, the model describes how regions that were denser than average collapsed due
to their enhanced gravity and eventually formed gravitationally-bound halos, first on small spatial scales and
later on larger ones. In this hierarchical model of galaxy formation, the small galaxies formed first and then
merged or accreted gas to form larger galaxies. At each snapshot of this cosmic evolution, the abundance of
collapsed halos, whose masses are dominated by dark matter, can be computed from the initial conditions
using numerical simulations. The common understanding of galaxy formation is based on the notion that
stars formed out of the gas that cooled and subsequently condensed to high densities in the cores of some of
these halos.

Gravity thus explains how some gas is pulled into the deep potential wells within dark matter halos and
forms the galaxies. One might naively expect that the gas outside halos would remain mostly undisturbed.
However, observations show that it has not remained neutral (i.e., in atomic form) but was largely ionized
by the UV radiation emitted by the galaxies. The diffuse gas pervading the space outside and between
galaxies is referred to as the intergalactic medium (IGM). For the first hundreds of millions of years after
cosmological recombination, the so-called cosmic “dark ages”, the universe was filled with diffuse atomic
hydrogen. As soon as galaxies formed, they started to ionize diffuse hydrogen in their vicinity. Within less
than a billion years, most of the IGM was re-ionized. We have not yet imaged the cosmic dark ages before
the first galaxies had formed. One of the frontiers in current cosmological studies aims to study the cosmic
epoch of reionization and the first generation of galaxies that triggered it.

II. Preliminaries

The modern physical description of the Universe as a whole can be traced back to Einstein, who assumed for
simplicity the so-called “cosmological principle”: that the distribution of matter and energy is homogeneous
and isotropic on the largest scales. Today isotropy is well established for the distribution of faint radio
sources, optically-selected galaxies, the X-ray background, and most importantly the CMB. The constraints
on homogeneity are less strict, but a cosmological model in which the Universe is isotropic but significantly
inhomogeneous in spherical shells around our special location, is also excluded.

In General Relativity, the metric for a space which is spatially homogeneous and isotropic is the Friedman-
Robertson-Walker metric, which can be written in the form

ds2 = c2dt2 − a2(t)

[

dR2

1 − k R2
+ R2

(

dθ2 + sin2 θ dφ2
)

]

, (1)

where c is the speed of light, a(t) is the cosmic scale factor which describes expansion in time t, and (R, θ, φ)
are spherical comoving coordinates. The constant k determines the geometry of the metric; it is positive in
a closed Universe, zero in a flat Universe, and negative in an open Universe. Observers at rest remain at
rest, at fixed (R, θ, φ), with their physical separation increasing with time in proportion to a(t). A given
observer sees a nearby observer at physical distance D receding at the Hubble velocity H(t)D, where the
Hubble constant at time t is H(t) = d a(t)/dt. Light emitted by a source at time t is observed at t = 0 with
a redshift z = 1/a(t) − 1, where we set a(t = 0) ≡ 1 for convenience.
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The Einstein field equations of General Relativity yield the Friedmann equation

H2(t) =
8πG

3
ρ − k

a2
, (2)

which relates the expansion of the Universe to its matter-energy content. The constant k determines the
geometry of the universe; it is positive in a closed universe, zero in a flat universe, and negative in an open
universe. For each component of the energy density ρ, with an equation of state p = p(ρ), the density ρ
varies with a(t) according to the thermodynamic relation

d(ρc2R3) = −pd(R3) . (3)

With the critical density

ρC(t) ≡ 3H2(t)

8πG
(4)

defined as the density needed for k = 0, we define the ratio of the total density to the critical density as

Ω ≡ ρ

ρC
. (5)

With Ωm, ΩΛ, and Ωr denoting the present contributions to Ω from matter (including cold dark matter as
well as a contribution Ωb from ordinary matter [“baryons”] made of protons and neutrons), vacuum density
(cosmological constant), and radiation, respectively, the Friedmann equation becomes

H(t)

H0
=

[

Ωm

a3
+ ΩΛ +

Ωr

a4
+

Ωk

a2

]

, (6)

where we define H0 and Ω0 = Ωm + ΩΛ + Ωr to be the present values of H and Ω, respectively, and we let

Ωk ≡ − k

H2
0

= 1 − Ωm. (7)

In the particularly simple Einstein-de Sitter model (Ωm = 1, ΩΛ = Ωr = Ωk = 0), the scale factor varies
as a(t) ∝ t2/3. Even models with non-zero ΩΛ or Ωk approach the Einstein-de Sitter scaling-law at high
redshift, i.e. when (1 + z) ≫ |Ωm

−1 − 1| (as long as Ωr can be neglected). In this moderately high-z regime
the age of the Universe is

t ≈ 2

3H0

√
Ωm

(1 + z)
−3/2 ≈ 109yr

(

1 + z

7

)−3/2

. (8)

Recent observations confine the standard set of cosmological parameters to a relatively narrow range. In
particular, we seem to live in a universe dominated by a cosmological constant (Λ) and cold dark matter, or in
short a ΛCDM cosmology (with Ωk so small that it is usually assumed to equal zero) with an approximately
scale-invariant primordial power spectrum of density fluctuations, i.e., n ≈ 1 where the initial power spectrum
is P (k) = |δk|2 ∝ kn in terms of the wavenumber k of the Fourier modes δk (see § below). Also, the Hubble
constant today is written as H0 = 100h km s−1Mpc−1 in terms of h, and the overall normalization of the
power spectrum is specified in terms of σ8, the root-mean-square amplitude of mass fluctuations in spheres
of radius 8 h−1 Mpc. For example, the best-fit cosmological parameters matching the WMAP data together
with large-scale gravitational lensing observations are σ8 = 0.826, n = 0.953, h = 0.687, Ωm = 0.299,
ΩΛ = 0.701 and Ωb = 0.0478.

2.2 Growth of linear perturbations

As noted in the Introduction, observations of the CMB show that the universe at cosmic recombination
(redshift z ∼ 103) was remarkably uniform apart from spatial fluctuations in the energy density and in
the gravitational potential of roughly one part in ∼ 105. The primordial inhomogeneities in the density
distribution grew over time and eventually led to the formation of galaxies as well as galaxy clusters and
large-scale structure. In the early stages of this growth, as long as the density fluctuations on the relevant
scales were much smaller than unity, their evolution can be understood with a linear perturbation analysis.

As before, we distinguish between fixed and comoving coordinates. Using vector notation, the fixed
coordinate r corresponds to a comoving position x = r/a. In a homogeneous Universe with density ρ, we
describe the cosmological expansion in terms of an ideal pressureless fluid of particles each of which is at
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fixed x, expanding with the Hubble flow v = H(t)r where v = dr/dt. Onto this uniform expansion we
impose small perturbations, given by a relative density perturbation

δ(x) =
ρ(r)

ρ̄
− 1 , (9)

where the mean fluid density is ρ̄, with a corresponding peculiar velocity u ≡ v − Hr. Then the fluid is
described by the continuity and Euler equations in comoving coordinates:

∂δ

∂t
+

1

a
∇ · [(1 + δ)u] = 0 (10)

∂u

∂t
+ Hu +

1

a
(u · ∇)u = −1

a
∇φ . (11)

The potential φ is given by the Poisson equation, in terms of the density perturbation:

∇2φ = 4πGρ̄a2δ . (12)

This fluid description is valid for describing the evolution of collisionless cold dark matter particles until
different particle streams cross. This “shell-crossing” typically occurs only after perturbations have grown
to become non-linear, and at that point the individual particle trajectories must in general be followed.
Similarly, baryons can be described as a pressureless fluid as long as their temperature is negligibly small,
but non-linear collapse leads to the formation of shocks in the gas.

For small perturbations δ ≪ 1, the fluid equations can be linearized and combined to yield

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πGρ̄δ . (13)

This linear equation has in general two independent solutions, only one of which grows with time. Starting
with random initial conditions, this “growing mode” comes to dominate the density evolution. Thus, until
it becomes non-linear, the density perturbation maintains its shape in comoving coordinates and grows in
proportion to a growth factor D(t). The growth factor in the matter-dominated era is given by

D(t) ∝
(

ΩΛa3 + Ωka + Ωm

)1/2

a3/2

∫ a

0

a′3/2 da′

(ΩΛa′3 + Ωka′ + Ωm)
3/2

, (14)

where we neglect Ωr when considering halos forming in the matter-dominated regime at z ≪ 104. In the
Einstein-de Sitter model (or, at high redshift, in other models as well) the growth factor is simply proportional
to a(t).

The spatial form of the initial density fluctuations can be described in Fourier space, in terms of Fourier
components

δk =

∫

d3x δ(x)e−ik·x . (15)

Here we use the comoving wave-vector k, whose magnitude k is the comoving wavenumber which is equal
to 2π divided by the wavelength. The Fourier description is particularly simple for fluctuations generated
by inflation. Inflation generates perturbations given by a Gaussian random field, in which different k-modes
are statistically independent, each with a random phase. The statistical properties of the fluctuations are
determined by the variance of the different k-modes, and the variance is described in terms of the power
spectrum P (k) as follows:

〈δkδ∗
k′〉 = (2π)

3
P (k) δ(3) (k − k

′) , (16)

where δ(3) is the three-dimensional Dirac delta function. The gravitational potential fluctuations are sourced
by the density fluctuations through Poisson’s equation.

In standard models, inflation produces a primordial power-law spectrum P (k) ∝ kn with n ∼ 1. Pertur-
bation growth in the radiation-dominated and then matter-dominated Universe results in a modified final
power spectrum, characterized by a turnover at a scale of order the horizon cH−1 at matter-radiation equal-
ity, and a small-scale asymptotic shape of P (k) ∝ kn−4. The overall amplitude of the power spectrum is not
specified by current models of inflation, and it is usually set by comparing to the observed CMB temperature
fluctuations or to local measures of large-scale structure.

Since density fluctuations may exist on all scales, in order to determine the formation of objects of a given
size or mass it is useful to consider the statistical distribution of the smoothed density field. Using a window
function W (r) normalized so that

∫

d3r W (r) = 1, the smoothed density perturbation field,
∫

d3rδ(x)W (r),
itself follows a Gaussian distribution with zero mean. For the particular choice of a spherical top-hat, in
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Figure 1: Power spectra of density and temperature fluctuations vs. comoving wavenumber, at redshifts
1200, 800, 400, and 200. We consider fluctuations in the CDM density (solid curves), baryon density (dotted
curves), baryon temperature (short-dashed curves), and photon temperature (long-dashed curves).

which W =constant in a sphere of radius R and is zero outside, the smoothed perturbation field measures
the fluctuations in the mass in spheres of radius R. The normalization of the present power spectrum is
often specified by the value of σ8 ≡ σ(R = 8h−1Mpc). For the top-hat, the smoothed perturbation field is
denoted δR or δM , where the mass M is related to the comoving radius R by M = 4πρmR3/3, in terms of
the current mean density of matter ρm. The variance 〈δM 〉2 is

σ2(M) = σ2(R) =

∫ ∞

0

dk

2π2
k2P (k)

[

3j1(kR)

kR

]2

, (17)

where j1(x) = (sinx − x cosx)/x2. The function σ(M) plays a crucial role in estimates of the abundance of
collapsed objects, as we describe later.

Different physical processes contributed to the perturbation growth. In the absence of other influences,
gravitational forces due to density perturbations imprinted by inflation would have driven parallel pertur-
bation growth in the dark matter, baryons and photons. However, since the photon sound speed is of order
the speed of light, the radiation pressure produced sound waves on a scale of order the cosmic horizon and
suppressed sub-horizon perturbations in the photon density. The baryonic pressure similarly suppressed
perturbations in the gas below the (much smaller) so-called baryonic Jeans scale. Since the formation of
hydrogen at recombination had decoupled the cosmic gas from its mechanical drag on the CMB, the baryons
subsequently began to fall into the pre-existing gravitational potential wells of the dark matter.

Spatial fluctuations developed in the gas temperature as well as in the gas density. Both the baryons
and the dark matter were affected on small scales by the temperature fluctuations through the gas pressure.
Compton heating due to scattering of the residual free electrons (constituting a fraction ∼ 10−4) with the
CMB photons remained effective, keeping the gas temperature fluctuations tied to the photon temperature
fluctuations, even for a time after recombination. The growth of linear perturbations can be calculated with
the standard CMBFAST code (http://www.cmbfast.org), after a modification to account for the fact that
the speed of sound of the gas also fluctuates spatially.

The magnitude of the fluctuations in the CDM and baryon densities, and in the baryon and photon
temperatures, is shown in Figure 1, in terms of the dimensionless combination [k3P (k)/(2π2)]1/2, where
P (k) is the corresponding power spectrum of fluctuations in terms of the comoving wavenumber k of each
Fourier mode. After recombination, two main drivers affect the baryon density and temperature fluctuations,
namely, the thermalization with the CMB and the gravitational force that attracts the baryons to the dark
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matter potential wells. As shown in the figure, the density perturbations in all species grow together on
scales where gravity is unopposed, outside the horizon (i.e., at k < 0.01 Mpc−1 at z ∼ 1000). At z = 1200
the perturbations in the baryon-photon fluid oscillate as acoustic waves on scales of order the sound horizon
(k ∼ 0.01 Mpc−1), while smaller-scale perturbations in both the photons and baryons are damped by photon
diffusion and the drag of the diffusing photons on the baryons. On sufficiently small scales the power spectra
of baryon density and temperature roughly assume the shape of the dark matter fluctuations (except for the
gas-pressure cutoff at the very smallest scales), due to the effect of gravitational attraction on the baryon
density and of the resulting adiabatic expansion on the gas temperature. After the mechanical coupling of
the baryons to the photons ends at z ∼ 1000, the baryon density perturbations gradually grow towards the
dark matter perturbations because of gravity. Similarly, after the thermal coupling ends at z ∼ 200, the
baryon temperature fluctuations are driven by adiabatic expansion towards a value of 2/3 of the density
fluctuations. As the figure shows, by z = 200 the baryon infall into the dark matter potentials is well
advanced and adiabatic expansion is becoming increasingly important in setting the baryon temperature.

6.2 21-cm absorption or emission

6.2.1 Atomic physics

The fundamental quantity of radiative transfer is the brightness (or specific intensity) Iν of a ray emerging
from a cloud at frequency ν, or its angle-averaged form Jν =

∫

IνdΩ/4π. This conventionally expresses the
energy carried by rays traveling along a given direction, per unit area, frequency, solid angle, and time; it
thus normally has dimensions ergs s−1 cm−2 sr−1 Hz−1 However, for many applications of radiative transfer
in an expanding universe, the units cm−2 s−1 Hz−1 sr−1 are more convenient, because photon number is
conserved during the expansion but energy is not.

For convenience, we will quantify Iν by the equivalent brightness temperature, Tb(ν), required of a black-
body radiator (with spectrum Bν) such that Iν = Bν(Tb). Throughout the range of frequencies and temper-
atures relevant to the 21 cm line, the Rayleigh-Jeans formula is an excellent approximation to the Planck
curve, so that Tb(ν) ≈ Iν c2/2kBν2, where is c is the speed of light and kB is Boltzmann’s constant.

We will be almost exclusively interested in the brightness temperature of the HI 21 cm line, which
has rest frequency ν0 = 1420.4057 MHz. Because of the cosmological redshift, the emergent brightness
T ′

b(ν0) measured in a cloud’s comoving frame at redshift z creates an apparent brightness at the Earth of
Tb(ν) = T ′

b(ν0)/(1+z), where the observed frequency is ν = ν0/(1+z). Similarly, the brightness temperature
of the CMB in a comoving frame at redshift z scales from the presently observed value of Tγ(0) = 2.73 K to
T ′

γ(z) = 2.73 (1 + z) K.
The radiative transfer equation for a spectral line reads,

dIν

ds
=

φ(ν)hν

4π
[n1A10 − (n0B01 − n1B10) Iν ] , (18)

where ds is a line element, φ(ν) is the line profile function normalized by
∫

φ(ν)dν = 1 (with an amplitude
of order the inverse of the frequency width of the line), subscripts 0 and 1 denote the lower and upper levels,
n0,1 denotes the number density of atoms at the different levels, and A and B are the Einstein coefficients for
the transition between these levels. We can then make use of the standard relations: B10 = (g0/g1)B01 and
B01 = (g1/g0)A10Π/Iν , where g is the spin degeneracy factor of each state and Π is the photon occupation
number. For the 21cm transition, A10 = 2.85 × 10−15s−1 and g1/g0 = 3.

In the Rayleigh-Jeans limit, the equation of radiative transfer along a line of sight through a cloud of
uniform excitation temperature TS implies that the emergent brightness at frequency ν is

T ′
b(ν) = Tex(1 − e−τν ) + T ′

R(ν)e−τν (19)

where the optical depth τν ≡
∫

ds αν is the integral of the absorption coefficient αν (which is obtained from
the right-hand-side of Eq. 18) along the ray through the cloud, and T ′

R is the brightness of the background
radiation field incident on the cloud along the ray.

The relative populations of hydrogen atoms in the two spin states define the so-called spin temperature,
TS , through the relation

n1

n0
= 3 e−T⋆/TS (20)

where T⋆ ≡ E10/kB = 0.068 K is the equivalent temperature of the transition energy. Because all astrophys-
ical applications have TS ≫ T∗, approximately three of four atoms find themselves in the excited state. As
a result, the absorption coefficient must include a correction for stimulated emission (and hence it depends
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on TS as well). Moreover, in the regime of interest, T⋆ is also much smaller than the spin temperature TS ,
and so all related exponentials can be expanded to leading order.

The optical depth of a cloud of hydrogen is then:

τν =

∫

ds σ01 (1 − e−E10/kBTS )φ(ν)n0 (21)

≈ σ01

(

hν

kBTS

) (

NHI

4

)

φ(ν), (22)

where

σ01 ≡ 3c2A10

8πν2
, (23)

NHI is the column density of HI (here the factor 1/4 accounts for the fraction of HI atoms in the hyperfine
singlet state). The second factor in equation (21) accounts for stimulated emission.

In general, the line shape φ(ν) includes natural, thermal, and pressure broadening, as well as bulk motion
(which increases the effective Doppler spread). The most important application is to IGM gas expanding
uniformly with the Hubble flow. Then the velocity broadening of a region of linear dimension s will be
∆V ∼ sH(z) so that φ(ν) ∼ c/[sH(z)ν]. The column density along such a segment depends on the neutral
fraction xHI of hydrogen, so NHI = xHInH(z) s. A more exact calculation yields, with equation (21), an
expression for the 21 cm optical depth of the diffuse IGM,

τν0
=

3

32π

hc3A10

kBTSν2
0

xHInH

(1 + z) (dv‖/dr‖)
(24)

≈ 0.0092 (1 + δ) (1 + z)3/2 xHI

TS

[

H(z)/(1 + z)

dv‖/dr‖

]

, (25)

where in the second equality TS is in degrees Kelvin. Here the factor (1 + δ) is the fractional overdensity of
baryons and dv‖/dr‖ is the gradient of the proper velocity along the line of sight, including both the Hubble
expansion and the peculiar velocity. In the second line, we have substituted the velocity H(z)/(1 + z)
appropriate for the uniform Hubble expansion at high redshifts.

The most important application of equation (19) is observing high-redshift hydrogen clouds against the
CMB. Thus we hope to measure

δTb(ν) =
TS − Tγ(z)

1 + z
(1 − e−τν0 ) ≈ TS − Tγ(z)

1 + z
τν0

(26)

≈ 9 xHI(1 + δ) (1 + z)1/2

[

1 − Tγ(z)

TS

] [

H(z)/(1 + z)

dv‖/dr‖

]

mK. (27)

Note that δTb saturates if TS ≫ Tγ , but it can become arbitrarily large (and negative) if TS ≪ Tγ . The
observability of the 21 cm transition therefore hinges on the spin temperature.

Three competing processes determine TS : (1) absorption of CMB photons (as well as stimulated emission);
(2) collisions with other hydrogen atoms, free electrons, and protons; and (3) scattering of UV photons. We
let C10 and P10 be the de-excitation rates (per atom) from collisions and UV scattering, respectively, with
C01 and P01 be the corresponding excitation rates. The equilibrium spin temperature is then determined by

n1 (C10 + P10 + A10 + B10ICMB) = n0 (C01 + P01 + B01ICMB) , (28)

where B01 and B10 are the appropriate Einstein coefficients and ICMB is the energy flux of CMB photons.
With the Rayleigh-Jeans approximation, equation (28) can be rewritten as

T−1
S =

T−1
γ + xcT

−1
K + xαT−1

c

1 + xc + xα
, (29)

where xc and xα are coupling coefficients for collisions and UV scattering, respectively, and TK is the gas
kinetic temperature. Here we have used detailed balance through the relation

C01

C10
=

g1

g0
e−T⋆/TK ≈ 3

(

1 − T⋆

TK

)

. (30)

We have then defined the effective color temperature of the UV radiation field Tc via

P01

P10
≡ 3

(

1 − T⋆

Tc

)

. (31)
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Figure 2: Level diagram illustrating the Wouthuysen-Field effect. We show the hyperfine splittings of the
1S and 2P levels of neutral hydrogen. The solid lines label transitions that mix the ground state hyperfine
levels, while the dashed lines label complementary transitions that do not participate in mixing.

Collisional excitation and de-excitation of the hyperfine levels dominate in dense gas. The coupling
coefficient for species i is

xi
c ≡ Ci

10

A10

T⋆

Tγ
=

ni κi
10

A10

T⋆

Tγ
, (32)

where κi
10 is the rate coefficient for spin de-excitation in collisions with that species (with units of cm3 s−1).

The total xc is the sum over all i, including hydrogen-hydrogen, hydrogen-electron, and hydrogen-proton
collisions. All of these rate coefficients can be computed quite precisely (to < 10% error) using the relevant
quantum mechanical scattering cross sections; hydrogen-hydrogen collisions generally dominate unless the
ionized fraction is larger than a few percent.

The second coupling mechanism is scattering of Lyman-series photons through the IGM, the so-called
“Wouthuysen-Field effect.”1 It is illustrated in Figure 2, where we have drawn the hyperfine sublevels of
the 1S and 2P states of HI. Suppose a hydrogen atom in the hyperfine singlet state absorbs a Lyα photon.
The electric dipole selection rules allow ∆F = 0, 1 except that F = 0 → 0 is prohibited (here F is the total
angular momentum of the atom). Thus the atom will jump to either of the central 2P states. However, these
rules allow this state to decay to the 1S1/2 triplet level.2 Thus atoms can change hyperfine states through
the absorption and spontaneous re-emission of a Lyα photon. This is analogous to the well-known “Raman
scattering” process, which often determines the level populations of metastable atomic states, except that
in this case the atom undergoes a real (rather than virtual) transition to the 2P state.

We will provide a relatively simple and intuitive treatment of this process; more detailed calculations
require consideration of the line structure. The Wouthuysen-Field coupling must depend on the total rate
(per atom) at which Lyα photons are scattered within the gas,

Pα = 4πχα

∫

dν Jν(ν)φα(ν), (33)

where σν ≡ χαφα(ν) is the local absorption cross section, χα ≡ (π e2/me c)fα, fα = 0.4162 is the oscillator
strength of the Lyα transition, φα(ν) is the Lyα absorption profile, and Jν is the angle-averaged specific

1As a guide to the English-speaking reader, “Wouthuysen” is pronounced as roughly “Vowt-how-sen,” although in reality

the “uy” construction is a diphthong with no precise counterpart in English.
2Here we use the notation F LJ , where L and J are the orbital and total angular momentum of the electron.
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intensity of the background radiation field (by number, not energy). In the simplest approximation, we take
Jν to be constant across the line.

Our goal is to relate this total scattering rate Pα to the indirect de-excitation rate P10. We first label
the 1S and 2P hyperfine levels a–f, in order of increasing energy, and let Aij and Bij be the spontaneous
emission and absorption coefficients for transitions between these levels. We write the background flux at
the frequency corresponding to the i → j transition as Jij . Then

P01 ∝ BadJad
Adb

Ada + Adb
+ BaeJae

Aeb

Aea + Aeb
. (34)

The first term contains the probability for an a→d transition (BadJad), together with the probability for
the subsequent decay to terminate in state b; the second term is the same for transitions to and from state
e. Next we need to relate the individual Aij to Aα = 6.25 × 108 Hz, the total Lyα spontaneous emission
rate (averaged over all the hyperfine sublevels). This can be accomplished using a sum rule stating that the
sum of decay intensities (giAij) for transitions from a given nFJ to all the n′J ′ levels (summed over F ′) is
proportional to 2F + 1; the relative strengths of the permitted transitions are then (1, 1, 2, 2, 1, 5), where
we have ordered the lines (bc, ad, bd, ae, be, bf) and the two letters represent the initial and final states.
With our assumption that the background radiation field is constant across the individual hyperfine lines,
we then find P10 = (4/27)Pα.

The coupling coefficient xα may then be written

xα =
4Pα

27A10

T⋆

Tγ
= Sα

Jν

Jc
ν

, (35)

where in the second equality we have again taken Jν to be constant around the line and set the fiducial
constant Jc

ν ≡ 1.165 × 10−10[(1 + z)/20] cm−2 s−1 Hz−1 sr−1. A more detailed calculation shows that the
spectrum is typically suppressed near line center; the correction factor Sα accounts for these complications.
As we will see below, strong Wouthuysen-Field coupling is relatively easy to achieve in practice.

The Lyα coupling efficiency also depends on the effective temperature Tc of the UV radiation field,
defined in equation (31) and determined by the shape of the photon spectrum at the Lyα resonance. That
the effective temperature of the radiation field must matter is easy to see: the energy defect between
the different hyperfine splittings of the Lyα transition implies that the mixing process is sensitive to the
gradient of the background spectrum near the Lyα resonance. More precisely, the procedure described near
equation (34) lets us write

P01

P10
=

g1

g0

nad + nae

nbd + nbe
≈ 3

(

1 + ν0
d lnnν

dν

)

, (36)

where nν = c2 Jν/2ν2 is the photon occupation number. Thus by comparison to equation (31), we have
(neglecting stimulated emission)

h

kBTc
= −d lnnν

dν
. (37)

Simple arguments show that Tc ≈ TK : all boil down to the observation that, so long as the medium is
extremely optically thick, the enormous number of Lyα scatterings must bring the Lyα profile to a blackbody
of temperature TK near the line center. This condition is easily fulfilled in the high-redshift IGM, where the
mean Lyα optical depth experienced by a photon that redshifts across the entire resonance is

τGP =
χα nHI(z) c

H(z)να
≈ 3 × 105 x̄HI

(

1 + z

7

)3/2

. (38)

The many atomic recoils during this scattering tilt the spectrum to the red and establish this equilibrium.
In the limit Tc → TK (a reasonable approximation in most situations of interest), equation (29) may be
written as

1 − Tγ

TS
=

xc + xα

1 + xc + xα

(

1 − Tγ

TK

)

. (39)

Finally, we note that photons absorbed into higher Lyman-series transitions can also mix the hyperfine
levels. However, they typically scatter only a few times before cascading to lower-energy lines; about one-
third end up as Lyα photons, which then scatter just as above.

6.2.2 The 21 cm background

Note: much of the introductory physics will actually be included in earlier sections (in somewhat more detail),
but is collected here for convenience as an excerpt.
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Now that we have reviewed the underlying physics of the 21 cm transition, we will consider how the
average 21 cm background from the high-z IGM evolves through time. We begin by examining the cosmic
dark ages, when the physics is rather simple. The first step is to compute how TK evolves with time. Energy
conservation in the expanding IGM demands

dTK

dt
= −2H(z)TK +

2

3

∑

i

ǫi

kBn
, (40)

where the first term on the right hand side is the pdV work from expansion and ǫi is the energy injected
into the gas per second per unit (physical) volume through process i. Before the first nonlinear objects
appear, the only relevant heating mechanism is Compton scattering between CMB photons and residual free
electrons in the IGM. The heating rate from this process can be calculated from the drag force exerted by
the isotropic CMB radiation field on a thermal distribution of free electrons,

2

3

ǫcomp

kBn
=

x̄i

1 + fHe + x̄i

(Tγ − TK)

tγ
, (41)

where tγ ≡ (3mec)/(8σT uγ) is the Compton cooling time, uγ ∝ T 4
γ is the energy density of the CMB, fHe is

the helium fraction (by number), and σT is the Thomson cross section. The first factor on the right hand side
accounts for the distribution of the energy over all free particles. Compton heating drives TK → Tγ when uγ

and x̄i are large; thus at sufficiently high redshifts the gas can cool no faster than the CMB, TK ∝ (1 + z).
Eventually, however, the gas does thermally decouple from the CMB. The recombination rate is ṅe =

−αBx̄2
i n

2
b , where αB ∝ T−0.7

K is the case-B recombination coefficient. The fractional change in x̄i per Hubble
time is therefore

1

H(z)ne

dne

dt
≈ 100x̄i(1 + z)0.8 Ωbh

2

√
Ω0h2

, (42)

where we have assumed that TK ∝ (1 + z) (i.e., coupling to the CMB is still strong). Freeze-out occurs
when this is of order unity; at later times x̄i remains roughly constant because the recombination time then
exceeds the expansion timescale. Detailed numerical calculations yield x̄i = 3.1 × 10−4 after freeze-out;
inserting this into equation (41), we find

1

H(z)TK

dTK

dt
∼ 10−7

Ωbh2
(Tγ/TK − 1) (1 + z)5/2. (43)

Thus thermal decoupling occurs when

1 + zdec ≈ 150 (Ωbh
2/0.023)2/5. (44)

Figure 3a shows a more detailed calculation. Compton heating begins to become inefficient at z ∼ 300
and is negligible by z ∼ 150. Past this point, TK ∝ (1 + z)2, as expected for an adiabatically expanding
non-relativistic gas.

We must next determine the spin temperature. Barring any exotic processes xα = 0 during this epoch.
But at sufficiently high redshifts, the Universe was dense enough for collisions with neutral atoms to be
efficient in the mean density IGM. The effectiveness of collisional coupling can be computed exactly for
any given temperature history from the rate coefficients described earlier; a convenient estimate of their
importance is the critical overdensity, δcoll, at which xc = 1:

1 + δcoll = 1.06

[

κ10(88 K)

κ10(TK)

] (

0.023

Ωbh2

) (

70

1 + z

)2

, (45)

where we have inserted the expected temperature at 1 + z = 70. Thus, in the standard history, for redshifts
z < 70, TS → Tγ ; by z ∼ 30 the IGM essentially becomes invisible (see Figure 3b) The signal peaks (in
absorption) at z ∼ 80, where TK is small but collisional coupling still efficient. Because of the simple physics
involved in Figure 3, the 21 cm line offers a sensitive probe of the dark ages, at least in principle.

Figure 3b also shows that the z<30 Universe would remain invisible without luminous sources. The
properties of the first galaxies will therefore determine the observability of the 21 cm background during this
later era. There are two principal components to this: the thermal evolution – which is likely dominated
by X-ray heating – and the UV background, which makes the 21 cm line visible against the CMB. Other
heating channels, especially shocks, may also contribute but are more difficult to quantify.

Because they have relatively long mean free paths, X-rays from galaxies and quasars are likely to be

the most important heating agent for the low-density IGM. In particular, photons with E > 1.5x̄
1/3
HI [(1 +

z)/10]1/2 keV have mean free paths exceeding the Hubble length. Given our enormous uncertainties about
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Figure 3: (a): IGM temperature evolution if only adiabatic cooling and Compton heating are involved. The
spin temperature TS includes only collisional coupling. (b): Differential brightness temperature against the
CMB for TS shown in panel a.

the nature of high-redshift objects it is of course impossible to describe the high-redshift X-ray background
with any confidence. The most conservative assumption is that the local correlation between the star
formation rate (SFR) and the X-ray luminosity (from 0.2–10 keV) can be extrapolated to high redshift; then

LX = 3.4 × 1040fX

(

SFR

1 M⊙ yr−1

)

erg s−1, (46)

where fX is an unknown renormalization factor at high redshift. Note that the numerical factor depends on
the photon energy range assumed to contribute to IGM heating; soft photons probably carry most of the
energy, but they do not penetrate far into the IGM.

We can only speculate as to the accuracy of this correlation at higher redshifts. Certainly the scaling is
appropriate so long as stars dominate, but fX will likely evolve with redshift. The X-ray emission has two
major sources. The first is inverse-Compton scattering off of relativistic electrons accelerated in supernovae.
In the nearby Universe, only powerful starbursts have strong enough radiation fields for this to be significant;
however, at high-redshifts it probably plays an increasingly important role because uγ ∝ (1+ z)4. Assuming
that ∼ 5% of the supernova energy is released in this form, with ∼ 1051 ergs in supernovae per 100 M⊙ in
star formation, yields fX ∼ 0.5.

The second class of sources, which dominate in locally observed galaxies, are high-mass X-ray binaries,
in which material from a massive main sequence star accretes onto a compact neighbor. Such systems are
born as soon as the first massive stars die, only a few million years after star formation commences. So they
certainly ought to exist in high-redshift galaxies, although their abundance depends on the metallicity and
stellar initial mass function, and it could be especially large if very massive Population III stars dominate.

X-rays heat the IGM gas by first photoionizing a hydrogen or helium atom. The hot “primary” electron
then distributes its energy through three main channels: (1) collisional ionizations, producing more secondary
electrons, (2) collisional excitations of HeI (which produce photons capable of ionizing HI) and HI (which
produces a Lyα background), and (3) Coulomb collisions with free electrons. The relative cross sections of
these processes determine what fraction of the X-ray energy goes to heating (fX,h), ionization (fX,ion), and
excitation (fX,coll); clearly it depends on both x̄i and the input photon energy. A crude approximation to
these rates is:

fX,h ∼ (1 + 2x̄i)/3

fX,ion ∼ fX,coll ∼ (1 − x̄i)/3. (47)
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In highly ionized gas, collisions with free electrons dominate and fX,h → 1; in the opposite limit, the energy
is split roughly equally between these processes.

Finally, to relate the X-ray emissivity to the global SFR we will assume (again for simplicity) that the
SFR is proportional to the rate at which gas collapses onto virialized halos, dfcoll/dt (where fcoll is the
fraction of matter inside of star-forming halos). In that case, we can write

2

3

ǫX

kBnH(z)
= 103 K fX

(

f⋆

0.1

fX,h

0.2

dfcoll/dz

0.01

1 + z

10

)

, (48)

where f⋆ is the star formation efficiency. It is immediately obvious that X-ray heating is quite rapid.
Of course, even if equation (46) is accurate, there may be other contributions to the X-ray background.

Quasars are one obvious example, although their relevance is far from clear. The known population of bright
quasars, extrapolated to higher redshifts, causes negligible heating. But these bright quasars may be only the
tip of the iceberg: “miniquasars,” which are rapidly accreting intermediate-mass black holes that may form
from the remnants of Pop III stars, can strongly affect the thermal history. For example, if the “Magorrian
relation” between black hole and stellar mass holds at high redshifts, the equivalent normalization factor
would be fX ∼ 10.

With the thermal evolution in hand, we now turn to the spin temperature. Recall from equation (45)
that collisions are inefficient at z<30, so we must rely on the Wouthuysen-Field effect. Of course (as for
the X-ray background), we cannot yet predict the detailed evolution of Jα, because it depends on the star
formation history as well as any other radiation background (quasars, etc.). But we can make an educated
guess by assuming that it traces the star formation rate, which is again (roughly) proportional to the rate
at which matter collapses into galaxies. We therefore write the comoving emissivity at frequency ν as

ǫ(ν, z) = f⋆ n̄c
b ǫb(ν)

dfcoll

dt
, (49)

where n̄c
b is the comoving number density of baryons and ǫb(ν) is the number of photons produced in the

frequency interval ν ± dν/2 per baryon incorporated into stars. Here we are only interested in photons
between Lyα and the Lyman-limit. Although real spectra are rather complicated, a useful quantity is the
total number Nα of photons per baryon in this interval. For low-metallicity Pop II stars and very massive
Pop III stars, this is Nα = 9690 and Nα = 4800, respectively.

Although only Lyα photons efficiently couple to TS, higher Lyman-series photons contribute by cascading
to Lyα. The average background at να is

Jα(z) =

nmax
∑

n=2

J (n)
α (z)

=

nmax
∑

n=2

frec(n)

∫ zmax(n)

z

dz′
(1 + z)2

4π

c

H(z′)
ǫ(ν′

n, z′), (50)

where ν′
n is the frequency at redshift z′ that redshifts into the Lyn resonance at redshift z, zmax(n) is the

largest redshift from which a photon can redshift into the Lyn resonance, and frec(n) is the fraction of
Lyn photons that actually cascade through Lyα and induce strong coupling (frec ∼ 1/3 for higher-series
transitions). Once we know Jα, we can compute the coupling coefficient xα from equation (35).

In detail, we must also include other processes that produce Lyα photons. For example, collisional
excitation by X-rays can be important (see eq. 47). The coupling coefficient induced by these line photons
is

xX−ray
α ∼ 0.05 Sα fX

(

fX,coll

1/3

f⋆

0.1

dfcoll/dz

0.01

) (

1 + z

10

)3

. (51)

Here we have substituted the same emissivity as in equation (48); thus heating is accompanied by a small,
though far from negligible, Lyα background. This process is particularly important near star-forming galax-
ies, where most soft X-rays are absorbed.

The next step is of course reionization itself. For a very simple model, we will make the usual assumption
that ionizing photons are produced inside of galaxies, so that their production rate can be associated with
the star formation rate in a similar way to the Lyα radiation background and our X-ray heating model (see
eqs. 48 and 49). In the most basic approximation, we simply assign a fixed average ionizing efficiency across
all galaxies, so that

x̄i = ζfcoll/(1 + n̄rec), (52)

where n̄rec is the mean number of recombinations per ionized hydrogen atom and the ionizing efficiency is

ζ = AHef⋆fescNion. (53)
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In this expression, fesc is the fraction of ionizing photons that escape their host galaxy into the IGM, Nion is
the mean number of ionizing photons produced per stellar baryon, and AHe = 4/(4− 3Yp) = 1.22, where Yp

is the mass fraction of helium, is a correction factor to convert the number of ionizing photons per baryon
in stars to the fraction of ionized hydrogen.3

We can use local measurements of f⋆, fesc, and Nion to guide our choices for these parameters, though
the extrapolation to high redshifts is always difficult. Efficiencies f⋆ ∼ 10% are reasonable for the local
Universe, but so little gas has collapsed by z = 6 that this does not directly constrain the high-redshift
value. Appropriate values for Pop III stars are even more uncertain. To the extent that each halo can
form only a single very massive (> 100 M⊙) star that enriches the entire halo, f⋆ ∼ (Ωm/Ωb)M⋆/Mh<10−3.
The UV escape fraction is small in nearby star-forming galaxies (including the Milky Way), with many
upper limits fesc < 6% and only a few positive detections (at comparable levels). Theoretically the problem
is equally difficult, because it depends on the spatial distribution of hot stars and absorbing gas in the
ISM. Some studies suggest that the escape fraction in high-redshift galaxies could be much higher than the
detected values (generally because higher specific star formation rates allow supernovae to blow transparent
windows through the ISM), but others predict that it will remain small. Nion depends only on the stellar
initial mass function and metallicity. Convenient approximations are Nion ≈ 4000 for Z = 0.05 Z⊙ Pop II
stars with a Scalo IMF and Nion ≈ 40, 000 for very massive Pop III stars. Note that the latter assumes that
all Pop III stars are massive; metal-free stars with a normal Salpeter IMF are only ∼ 1.6 times more efficient
than their Pop II counterparts.

The most basic information contained in the 21 cm background is the sequence in which these various
backgrounds become important, and this information can be quantified simply with a few critical points.
There are five such points in the 21 cm history that divide the signal into several distinct epochs. The first
is zdec, when Compton heating becomes inefficient and TK < Tγ for the first time (eq. 44). This marks the
earliest epoch for which 21 cm observations are possible even in principle. The second transition is when
the density falls below δcoll (see eq. 45), at which point TS → Tγ and the IGM signal vanishes. These two
points are well-specified by atomic physics processes.

The remaining transition points are determined by luminous sources, so their timing is much more
uncertain. These are the redshift zh at which the IGM is heated above Tγ , the redshift zc at which xα = 1
so that the Wouthuysen-Field mechanism couples TS and TK , and the redshift of reionization zr. We first
ask whether Lyα coupling precedes the other two transitions. The net X-ray heat input ∆Tc at zc is

∆Tc

Tγ
∼ 0.08fX

(

fX,h

0.2

fcoll

∆fcoll

9690

Nα

1

Sα

0.023

Ωbh2

) (

20

1 + z

)3

, (54)

where ∆fcoll ∼ fcoll is the effective collapse fraction appearing in the integrals of equation (50). Note that ∆Tc

is independent of f⋆ because both the coupling and heating rates are proportional to the star formation rate.
Interestingly, for our fiducial (Pop II) parameters zc precedes zh. This could create a significant absorption
epoch whose properties offer a meaningful probe of the first sources. For example, very massive Pop III stars
have a smaller Nα, and an early miniquasar population could completely eliminate the absorption epoch.

A similar estimate of the ionization fraction x̄i,c at zc yields

x̄i,c ∼ 0.05

(

fesc

1 + n̄rec

Nion

Nα

fcoll

∆fcoll

1

Sα

0.023

Ωbh2

)(

20

1 + z

)2

. (55)

For Pop II stars, Nion/Nα ≈ 0.4; thus even in the worst case of fesc = 1 and n̄rec = 0 coupling would become
efficient during the initial stages of reionization. However, very massive Pop III stars have much harder
spectra, with Nion/Nα ≈ 7. In principle, it is therefore possible for Pop III stars to reionize the universe
before zc, although that would require extremely unusual parameters. Such histories cannot be ruled out at
present, but we regard them as exceedingly unlikely. Histories with x̄i,c ≪ 1 are much more plausible, at
least given our theoretical prejudices about high-redshift sources.

Finally, we ask whether the IGM will appear in absorption or emission during reionization. Combining
equations (48) and (52), we have

∆T

Tγ
∼

( x̄i

0.025

)

(

fX
fX,h

fesc

4800

Nion

10

1 + z

)

(1 + n̄rec) (56)

for the heat input ∆T as a function of x̄i. Thus, provided fX > 1, the IGM will be much warmer than
the CMB during the bulk of reionization. This is convenient in that δTb becomes independent of TS when
TS ≫ Tγ , so it is easier to isolate the effects of the ionization field. Significant absorption during reionization

3Here we have assumed that helium is singly ionized along with hydrogen, because their ionization potentials are relatively

close.
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Figure 4: Global IGM histories for Pop II stars. The solid curves take our fiducial parameters without feed-
back. The dot-dashed curve takes fX = 0.2. The short- and long-dashed curves include strong photoheating
feedback. (a): Thermal properties. (b): Ionized fraction. (c): Differential brightness temperature against
the CMB. In this panel, the two dotted lines show δTb without including shock heating.

becomes more plausible for very massive Pop III stars, because they have much larger ionizing efficiencies
(although their remnants may also induce correspondingly large X-ray heating).

We will now use some representative models to illustrate these qualitative features in a more concrete
fashion. We begin with a fiducial set of Pop II parameters. We ignore feedback (of all kinds) and take mmin

to correspond to Tvir = 104 K, f⋆ = 0.1, fesc = 0.1, fX = 1, Nion = 4000, and Nα = 9690. (Thus ζ = 40
for this model.) Figure 4a shows the resulting temperature history. The dotted curve is Tγ , the thin solid
curve is TK , and the thick solid curve is TS . As expected from equation (54), in this case we do indeed find
that zc > zh; specifically, zc ≈ 18 and zh ≈ 14. Clearly Lyα coupling is extremely efficient for normal stars.
The solid curve in Figure 4b shows the corresponding ionization history. It increases smoothly and rapidly
over a redshift interval of ∆z ∼ 5, ending at zr ∼ 7. That is of course purely a function of our choice for ζ,
but other values do not strongly affect the width.

Figure 4c shows the corresponding 21 cm brightness temperature decrement δTb relative to the CMB.
Here we have also labeled the corresponding (observed) frequency ν for convenience. The signal clearly
has interesting structure. At the highest frequencies, reionization causes a steady decline in the signal,
with |dδ̄T b/dν| ∼ 1 mK MHz−1. In this model, recombinations are relatively inefficient; the only way to
significantly increase the gradient during reionization would be with some positive feedback mechanism.
However, as illustrated by the dashed curves, it is relatively easy to slow reionization. These curves use two
models for photoheating feedback in which the minimum virial temperature for galaxy formation increases
to Th = 2 × 105 K in photoheated regions.

Figure 4c contains an even more striking feature at higher redshifts. At z ∼ 30, the IGM is nearly
invisible even though TK ≪ Tγ (see Fig. 3). However, as the first galaxies form, the Wouthuysen-Field effect
drives TS → TK . Because zc > zh, this produces a relatively strong absorption signal (δTb ≈ −80 mK) over
the range z ∼ 21–14 (or ν ∼ 70–95 MHz). However, the IGM still heats up well before reionization begins
in earnest, making δ̄T b nearly independent of TS throughout reionization.

Figure 5 shows similar histories for very massive Pop III stars. The solid curves take mmin to correspond
to Tvir = 104 K, f⋆ = 0.01, fesc = 0.1, fX = 1, Nion = 30, 000, and Nα = 4800, yielding ζ = 30. Although the
thermal history is qualitatively similar to the Pop II case, it has zc ∼ 13 and zh ∼ 11. Thus the absorption
epoch is somewhat narrower, and it is also weaker because Pop III stars produce relatively few Lyα photons.
As a result, TS does not approach TK until the IGM is already hot. Thus, if very massive Pop III stars
dominate, the absorption epoch will be considerably weaker, with gradients about half as large as the Pop
II case. Moreover, zh is relatively close to zr, so TS does not saturate until after reionization begins. It may
therefore be somewhat difficult to separate TS and xi at the beginning of reionization.

Obviously, measuring this background could offer strong constraints on high-redshift star formation. The
other curves in Figures 4–5 illustrate the range of features we expect. However, they all share one crucial
property: zc occurs long before reionization, so we can safely expect some signal from the high-redshift IGM.
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Figure 5: Global IGM histories for very massive Pop III stars. Panels are the same as in Fig. 4. The solid
curve takes our fiducial Pop III parameters. The long-dashed lines take fesc = 1, the short-dashed lines take
fX = 5, and the dot-dashed line (shown only in c) assumes fesc = 1 and fX = 5.
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