\relax \@writefile{toc}{\contentsline {chapter}{Preface}{\fontsize {8.75}{11pt}\selectfont \sffamily vii}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{1.\kern .5em }Introduction}{\fontsize {8.75}{11pt}\selectfont \sffamily 1}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {1.1}\hspace *{-1em}Preliminary Remarks}{\fontsize {8.75}{11pt}\selectfont \sffamily 1}} \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces Image of the Universe when it first became transparent, 400 thousand years after the Big Bang, taken over five years by the {\it Wilkinson Microwave Anisotropy Probe} (WMAP) satellite (http://map.gsfc.nasa.gov/). Slight density inhomogeneities at the level of one part in $\sim 10^5$ in the otherwise uniform early Universe imprinted hot and cold spots in the temperature map of the cosmic microwave background on the sky. The fluctuations are shown in units of $\mu $K, with the unperturbed temperature being 2.73 K. The same primordial inhomogeneities seeded the large-scale structure in the present-day Universe. The existence of background anisotropies was predicted in a number of theoretical papers three decades before the technology for taking this image became available.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 2}} \newlabel{WM}{{1.1}{2}} \@writefile{toc}{\contentsline {section}{\numberline {1.2}\hspace *{-1em}Standard Cosmological Model}{\fontsize {8.75}{11pt}\selectfont \sffamily 3}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}\hspace *{-1em}Cosmic Perspective}{\fontsize {8.75}{11pt}\selectfont \sffamily 3}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.2}\hspace *{-1em}Origin of Structure}{\fontsize {8.75}{11pt}\selectfont \sffamily 5}} \@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces {\it Top:} Schematic illustration of the growth of perturbations to collapsed halos through gravitational instability. Once the overdense regions exceed a threshold density contrast above unity, they turn around and collapse to form halos. The material that makes the halos originated in the voids that separate them. {\it Middle:} A simple model for the collapse of a spherical region. The dynamical fate of a rocket which is launched from the surface of the Earth depends on the sign of its energy per unit mass, $E={1\over 2} v^2 - GM_\oplus /r$. The behavior of a spherical shell of matter on the boundary of an overdense region (embedded in a homogeneous and isotropic Universe) can be analyzed in a similar fashion. {\it Bottom:} A collapsing region may end up as a galaxy, like NGC 4414, shown here (image credit: NASA and ESA). The halo gas cools and condenses to a compact disk surrounded by an extended dark matter halo. }}{\fontsize {8.75}{11pt}\selectfont \sffamily 7}} \newlabel{pert}{{1.2}{7}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.3}\hspace *{-1em}Geometry of Space}{\fontsize {8.75}{11pt}\selectfont \sffamily 8}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.4}\hspace *{-1em}Observing our Past: Cosmic Archaeology}{\fontsize {8.75}{11pt}\selectfont \sffamily 9}} \@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces Cosmic archaeology of the observable volume of the Universe, in comoving coordinates (which factor out the cosmic expansion). The outermost observable boundary ($z=\infty $) marks the comoving distance that light has traveled since the Big Bang. Future observatories aim to map most of the observable volume of our Universe, and improve dramatically the statistical information we have about the density fluctuations within it. Existing data on the CMB probes mainly a very thin shell at the hydrogen recombination epoch ($z\sim 10^3$, beyond which the Universe is opaque), and current large-scale galaxy surveys map only a small region near us at the center of the diagram. The formation epoch of the first galaxies that culminated with hydrogen reionization at a redshift $z\sim 10$ is shaded grey. Note that the comoving volume out to any of these redshifts scales as the distance cubed.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 11}} \newlabel{arch}{{1.3}{11}} \@writefile{toc}{\contentsline {section}{\numberline {1.3}\hspace *{-1em}Milestones in Cosmic Evolution}{\fontsize {8.75}{11pt}\selectfont \sffamily 12}} \newlabel{motion}{{1.4}{12}} \newlabel{energy}{{1.5}{13}} \newlabel{Esign}{{1.6}{13}} \@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Following inflation, the Universe went through several other milestones which left a detectable record. These include baryogenesis (which resulted in the observed asymmetry between matter and anti-matter), the electroweak phase transition (during which the symmetry between electromagnetic and weak interactions was broken), the QCD phase transition (during which protons and neutrons nucleated out of a soup of quarks and gluons), the dark matter decoupling epoch (during which the dark matter decoupled thermally from the cosmic plasma), neutrino decoupling, electron-positron annihilation, light-element nucleosynthesis (during which helium, deuterium and lithium were synthesized), and hydrogen recombination. The cosmic time and CMB temperature of the various milestones are marked. Wavy lines and question marks indicate milestones with uncertain properties. The signatures that the same milestones left in the Universe are used to constrain its parameters.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 15}} \newlabel{milestone}{{1.4}{15}} \@writefile{toc}{\contentsline {section}{\numberline {1.4}\hspace *{-1em}Most Matter is Dark}{\fontsize {8.75}{11pt}\selectfont \sffamily 16}} \newlabel{CDM}{{1.4}{16}} \@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces Mass budgets of different components in the present day Universe and in the infant Universe when the first galaxies formed (redshifts $z=10$--50). The CMB radiation (not shown) makes up a fraction $\sim 0.03\%$ of the budget today, but was dominant at redshifts $z>3,300$. The cosmological constant (vacuum) contribution was negligible at high redshifts ($z\gg 1$).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 17}} \newlabel{budget}{{1.5}{17}} \@writefile{lot}{\contentsline {table}{\numberline {1.1}{\ignorespaces Standard set of cosmological parameters (defined and adopted throughout the book). Based on Komatsu,E., et al. {\it Astrophys. J. Suppl.} {\bf 180}, 330 (2009).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 19}} \newlabel{TableI}{{1.1}{19}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{2.\kern .5em }From Recombination to the First Galaxies}{\fontsize {8.75}{11pt}\selectfont \sffamily 21}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {2.1}\hspace *{-1em}Growth of Linear Perturbations}{\fontsize {8.75}{11pt}\selectfont \sffamily 21}} \newlabel{sec2.2}{{2.1}{21}} \newlabel{pec1}{{2.3}{22}} \newlabel{pec2}{{2.4}{22}} \newlabel{eqsigM}{{2.7}{24}} \@writefile{toc}{\contentsline {section}{\numberline {2.2}\hspace *{-1em}Thermal History During the Dark Ages: Compton Cooling on the CMB}{\fontsize {8.75}{11pt}\selectfont \sffamily 24}} \newlabel{gas_cooling}{{2.2}{24}} \@writefile{lof}{\contentsline {figure}{\numberline {2.1}{\ignorespaces The root-mean-square amplitude of linearly-extrapolated density fluctuations $\sigma $ as a function of mass $M$ (in solar masses $M_\odot $, within a spherical top-hat filter) at different redshifts $z$. Halos form in regions that exceed the background density by a factor of order unity. This threshold is only surpassed by rare (many-$\sigma $) peaks for high masses at high redshifts. When discussing the abundance of halos, we will factor out the linear growth of perturbations and use the function $\sigma (M)$ at $z=0$. The comoving radius of an unperturbed sphere containing a mass $M$ is $R=1.85\nobreakspace {}{\rm Mpc}(M/10^{12}M_\odot )^{1/3}$.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 25}} \newlabel{sigM}{{2.1}{25}} \newlabel{Compton}{{2.11}{26}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{3.\kern .5em }Nonlinear Structure}{\fontsize {8.75}{11pt}\selectfont \sffamily 27}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {3.1}\hspace *{-1em}Cosmological Jeans Mass}{\fontsize {8.75}{11pt}\selectfont \sffamily 27}} \newlabel{Je}{{3.1}{27}} \newlabel{dm}{{3.5}{29}} \newlabel{b}{{3.6}{29}} \newlabel{eq:m_j}{{3.10}{29}} \@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Thermal history of the baryons, left over from the big bang, before the first galaxies formed. The residual fraction of free electrons couple the gas temperture $T_{\rm gas}$ to the cosmic microwave background temperature [$T_\gamma \propto (1+z)$] until a redshift $z\sim 200$. Subsequently the gas temperature cools adiabatically at a faster rate [$T_{\rm gas}\propto (1+z)^2$]. Also shown is the spin temperature of the 21cm transition of hydrogen $T_{\rm s}$ which interpolates between the gas and radiation temperature and will be discussed in Chapter 10\hbox {}.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 30}} \newlabel{filtering}{{3.12}{30}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}\hspace *{-1em}Spherical Collapse}{\fontsize {8.75}{11pt}\selectfont \sffamily 31}} \newlabel{eom}{{3.14}{31}} \newlabel{eq:6}{{3.15}{32}} \newlabel{eq:7}{{3.16}{32}} \newlabel{eq:8}{{3.17}{32}} \newlabel{eq:9}{{3.18}{32}} \newlabel{eq:10}{{3.19}{32}} \newlabel{eq:11}{{3.20}{32}} \newlabel{eq:2}{{3.21}{32}} \newlabel{eq:3}{{3.22}{32}} \newlabel{eq:4}{{3.23}{32}} \newlabel{eq:12}{{3.24}{33}} \newlabel{eq:13}{{3.25}{33}} \newlabel{eq:14}{{3.26}{33}} \@writefile{toc}{\contentsline {section}{\numberline {3.2}\hspace *{-1em}Halo Properties}{\fontsize {8.75}{11pt}\selectfont \sffamily 33}} \newlabel{deltac}{{3.27}{34}} \newlabel{rvir}{{3.28}{35}} \newlabel{Vceqn}{{3.29}{35}} \newlabel{tvir}{{3.30}{35}} \newlabel{Ebind}{{3.31}{35}} \newlabel{NFW}{{3.32}{35}} \@writefile{toc}{\contentsline {section}{\numberline {3.3}\hspace *{-1em}Abundance of Dark Matter Halos}{\fontsize {8.75}{11pt}\selectfont \sffamily 36}} \newlabel{Halos}{{3.3}{36}} \newlabel{PS1}{{3.34}{36}} \newlabel{PSerfc}{{3.35}{36}} \newlabel{eq:ST}{{3.37}{37}} \@writefile{toc}{\contentsline {subsection}{\numberline {3.3.1}\hspace *{-1em}The Excursion-Set (Extended Press-Schechter) Formalism}{\fontsize {8.75}{11pt}\selectfont \sffamily 37}} \newlabel{Excursion}{{3.3.1}{37}} \@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces {\it Top:} The mass fraction incorporated into halos per logarithmic bin of halo mass $(M^2dn/dM)/\rho _m$, as a function of $M$ at different redshifts $z$. Here $\rho _m=\Omega _m\rho _c$ is the present-day matter density, and $n(M)dM$ is the comoving density of halos with masses between $M$ and $M+dM$. The halo mass distribution was calculated based on an improved version of the Press-Schechter formalism for ellipsoidal collapse [Sheth, R. K., \& Tormen, G. {\it Mon. Not. R. Astron. Soc.} {\bf 329}, 61 (2002)] that fits better numerical simulations. {\it Bottom:} Number density of halos per logarithmic bin of halo mass, $Mdn/dM$ (in units of comoving Mpc$^{-3}$), at various redshifts. }}{\fontsize {8.75}{11pt}\selectfont \sffamily 38}} \newlabel{ST}{{3.2}{38}} \newlabel{eq:15}{{3.38}{39}} \newlabel{eq:16}{{3.39}{39}} \newlabel{eq:17}{{3.40}{40}} \newlabel{eq:18}{{3.41}{40}} \newlabel{eq:19}{{3.42}{40}} \newlabel{eq:20}{{3.43}{40}} \@writefile{toc}{\contentsline {section}{\numberline {3.4}\hspace *{-1em}Nonlinear Clustering: the Halo Model}{\fontsize {8.75}{11pt}\selectfont \sffamily 41}} \@writefile{toc}{\contentsline {section}{\numberline {3.5}\hspace *{-1em}Numerical Simulations of Structure Formation}{\fontsize {8.75}{11pt}\selectfont \sffamily 41}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{4.\kern .5em }The Intergalactic Medium}{\fontsize {8.75}{11pt}\selectfont \sffamily 43}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {4.1}\hspace *{-1em}The Lyman-$\alpha $ Forest}{\fontsize {8.75}{11pt}\selectfont \sffamily 43}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.1.1}\hspace *{-1em}The Ionizing Background}{\fontsize {8.75}{11pt}\selectfont \sffamily 43}} \@writefile{toc}{\contentsline {section}{\numberline {4.2}\hspace *{-1em}Metal-Line Systems}{\fontsize {8.75}{11pt}\selectfont \sffamily 43}} \@writefile{toc}{\contentsline {section}{\numberline {4.3}\hspace *{-1em}Theoretical Models}{\fontsize {8.75}{11pt}\selectfont \sffamily 43}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.1}\hspace *{-1em}Numerical Simulations}{\fontsize {8.75}{11pt}\selectfont \sffamily 43}} \@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}\hspace *{-1em}Semi-Analytic Models}{\fontsize {8.75}{11pt}\selectfont \sffamily 43}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{5.\kern .5em }The First Stars}{\fontsize {8.75}{11pt}\selectfont \sffamily 45}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {5.1}\hspace *{-1em}Chemistry and Cooling of Primordial Gas}{\fontsize {8.75}{11pt}\selectfont \sffamily 45}} \newlabel{gas_cooling}{{5.1}{45}} \@writefile{lof}{\contentsline {figure}{\numberline {5.1}{\ignorespaces Cooling rates as a function of temperature for a primordial gas composed of atomic hydrogen and helium, as well as molecular hydrogen, in the absence of any external radiation. We assume a hydrogen number density $n_H=0.045\ {\rm cm}^{-3}$, corresponding to the mean density of virialized halos at $z=10$. The plotted quantity $\Lambda /n_H^2$ is roughly independent of density (unless $n_H >10\ {\rm cm}^{-3}$), where $\Lambda $ is the volume cooling rate (in erg/sec/cm$^3$). The solid line shows the cooling curve for an atomic gas, with the characteristic peaks due to collisional excitation of hydrogen and helium. The dashed line shows the additional contribution of molecular cooling, assuming a molecular abundance equal to $1\%$ of $n_H$.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 46}} \newlabel{cooling}{{5.1}{46}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1.1}\hspace *{-1em}Chemistry}{\fontsize {8.75}{11pt}\selectfont \sffamily 47}} \newlabel{sec3.3}{{5.1.1}{47}} \newlabel{equ:H2paths}{{5.1}{47}} \@writefile{lof}{\contentsline {figure}{\numberline {5.2}{\ignorespaces Stages in the reionization of hydrogen in the intergalactic medium. }}{\fontsize {8.75}{11pt}\selectfont \sffamily 48}} \newlabel{fig1d}{{5.2}{48}} \@writefile{lot}{\contentsline {table}{\numberline {5.1}{\ignorespaces Important reaction rates for Hydrogen species as functions of temperature $T$ in K [with $T_\xi \equiv (T/10^\xi {\rm K})$]. For a comprehensive list of additional relevant reactions, see Haiman, Z., Rees, M. J., \& Loeb, A. {\it Astrophys. J.} {\bf 467}, 522 (1996); Haiman, Z., Thoul, A. A., \& Loeb, A., {\it Astrophys. J.} {\bf 464}, 523 (1996); and Abel, T. Anninos, P., Zhang, Y., \& Norman, M. L. {\it Astrophys. J.} {\bf 508}, 518 (1997).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 49}} \newlabel{tabH2}{{5.1}{49}} \@writefile{toc}{\contentsline {section}{\numberline {5.2}\hspace *{-1em}Formation of the First Metal-Free Stars}{\fontsize {8.75}{11pt}\selectfont \sffamily 49}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2.1}\hspace *{-1em}Sheets, Filaments, and Only Then, Galaxies}{\fontsize {8.75}{11pt}\selectfont \sffamily 49}} \@writefile{lof}{\contentsline {figure}{\numberline {5.3}{\ignorespaces The average spectrum during the initial phase of the reionization epoch (arbitrary units). The upper panel shows that absorption by neutral hydrogen and helium suppresses the flux above 13.6eV up to the keV range. The lower panel shows a close-up of the sawtooth modulation due to line absorption below 13.6 eV. A constant comoving density of sources was assumed, with each source emitting a power-law continuum, which would result in the spectrum shown by the dashed lines if absorption were not taken into account. Figure credit: Haiman, Z., Rees, M. J., \& Loeb, A. {\it Astrophys. J.} {\bf 476}, 458 (1997).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 50}} \newlabel{fig3a}{{5.3}{50}} \@writefile{lot}{\contentsline {table}{\numberline {5.2}{\ignorespaces Reaction rates for Deuterium species as functions of temperature $T$ in K [with $T_\xi \equiv (T/10^\xi {\rm K})$].}}{\fontsize {8.75}{11pt}\selectfont \sffamily 50}} \newlabel{tabD}{{5.2}{50}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2.2}\hspace *{-1em}Metal-free Stars}{\fontsize {8.75}{11pt}\selectfont \sffamily 51}} \newlabel{First}{{5.2.2}{51}} \@writefile{lof}{\contentsline {figure}{\numberline {5.4}{\ignorespaces The large-scale distributions of dark matter (left) and gas (right) in the IGM show a network of filaments and sheets, known as the ``cosmic web''. Overall, the gas follows the dark matter on large scales but is more smoothly distributed on small scales owing to its pressure. The snapshots show the projected density contrast in a 7 Mpc thick slice at zero redshift from a numerical simulation of a box measuring $140$ comoving Mpc on a side. Figure credit: Trac, H., \& Pen, U.-L. {\it New Astron.} {\bf 9}, 443 (2004).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 52}} \newlabel{web}{{5.4}{52}} \@writefile{lof}{\contentsline {figure}{\numberline {5.5}{\ignorespaces Results from a numerical simulation of the formation of a metal-free star [Yoshida, N., Omukai, K., \& Hernquist, L. {\it Science} {\bf 321}, 669 (2008)] and its feedback on its environment [Bromm, V., Yoshida, N., Hernquist, L., \& McKee, C.\nobreakspace {}F.\ {\it Nature} {\bf 459}, 49 (2009)]. {\it Top:} Projected gas distribution around a primordial protostar. Shown is the gas density (shaded so that dark grey denotes the highest density) of a single object on different spatial scales: {\it (a)} the large-scale gas distribution around the cosmological mini-halo; {\it (b)} the self-gravitating, star-forming cloud; {\it (c)} the central part of the fully molecular core; and {\it (d)} the final protostar. {\it Bottom:} Radiative feedback around the first star involves ionized bubbles (light grey) and regions of high molecule abundance (medium grey). The large residual free electron fraction inside the relic ionized regions, left behind after the central star has died, rapidly catalyzes the reformation of molecules and a new generation of lower-mass stars. }}{\fontsize {8.75}{11pt}\selectfont \sffamily 54}} \newlabel{star}{{5.5}{54}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2.3}\hspace *{-1em}Properties of the First Stars}{\fontsize {8.75}{11pt}\selectfont \sffamily 57}} \newlabel{LE}{{5.5}{57}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2.4}\hspace *{-1em}Feedback (UV Illumination, Metal Enrichment, Remnants)}{\fontsize {8.75}{11pt}\selectfont \sffamily 59}} \@writefile{toc}{\contentsline {section}{\numberline {5.3}\hspace *{-1em}Later Generations of Stars}{\fontsize {8.75}{11pt}\selectfont \sffamily 59}} \@writefile{toc}{\contentsline {section}{\numberline {5.4}\hspace *{-1em}Global Parameters of High-Redshift Galaxies}{\fontsize {8.75}{11pt}\selectfont \sffamily 59}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.4.1}\hspace *{-1em}Minimum Mass}{\fontsize {8.75}{11pt}\selectfont \sffamily 59}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.4.2}\hspace *{-1em}Size Distribution}{\fontsize {8.75}{11pt}\selectfont \sffamily 59}} \@writefile{lof}{\contentsline {figure}{\numberline {5.6}{\ignorespaces Observed evolution of the mean half-light radius of galaxies across the redshift range $210$. Figure credit: Barkana, R., \& Loeb, A. {\it Astrophys. J.} {\bf 531}, 613 (2000). }}{\fontsize {8.75}{11pt}\selectfont \sffamily 61}} \newlabel{figsize}{{5.7}{61}} \@writefile{toc}{\contentsline {section}{\numberline {5.5}\hspace *{-1em}Gamma-Ray Bursts: The Brightest Explosions}{\fontsize {8.75}{11pt}\selectfont \sffamily 62}} \newlabel{GRBs}{{5.5}{62}} \@writefile{lof}{\contentsline {figure}{\numberline {5.8}{\ignorespaces Illustration of a long-duration gamma-ray burst in the popular ``collapsar'' model. The collapse of the core of a massive star (which lost its hydrogen envelope) to a black hole generates two opposite jets moving out at a speed close to the speed of light. The jets drill a hole in the star and shine brightly towards an observer who happens to be located within the collimation cones of the jets. The jets emanating from a single massive star are so bright that they can be seen across the Universe out to the epoch when the first stars formed. Figure credit: NASA E/PO.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 64}} \newlabel{grb}{{5.8}{64}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{6.\kern .5em }Supermassive Black holes}{\fontsize {8.75}{11pt}\selectfont \sffamily 65}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {6.1}\hspace *{-1em}Basic Principles of Astrophysical Black Holes}{\fontsize {8.75}{11pt}\selectfont \sffamily 65}} \newlabel{bhs}{{6.1}{65}} \newlabel{Schwarzscild}{{6.1}{65}} \newlabel{Sch}{{6.2}{65}} \@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces The left panel shows the radius of the black hole horizon $r_{\rm Hor}$ (dashed line) and the {\it Innermost Circular Stable Orbit (ISCO)} around it $r_{\rm ISCO}$ (solid line), in units of the Schwarzschild radius $r_{\rm Sch}$ (see equation 6.2\hbox {}), as functions of the black hole spin parameter $a$. The limiting value of $a=1$ ($a=-1$) corresponds to a corotating (counter-rotating) orbit around a maximally-spinning black hole. The binding energy of a test particle at the ISCO determines the radiative efficiency $\epsilon $ of a thin accretion disk around the black hole, shown on the right panel. }}{\fontsize {8.75}{11pt}\selectfont \sffamily 67}} \newlabel{ISCO}{{6.1}{67}} \@writefile{toc}{\contentsline {section}{\numberline {6.2}\hspace *{-1em}Accretion of Gas onto Black Holes}{\fontsize {8.75}{11pt}\selectfont \sffamily 68}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.1}\hspace *{-1em}Bondi Accretion}{\fontsize {8.75}{11pt}\selectfont \sffamily 68}} \newlabel{Mdot}{{6.7}{68}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.2}\hspace *{-1em}Thin Disk Accretion}{\fontsize {8.75}{11pt}\selectfont \sffamily 69}} \newlabel{fphi}{{6.9}{70}} \newlabel{fluxdisk}{{6.11}{70}} \newlabel{lumidisk}{{6.12}{70}} \newlabel{e:gas/radb1}{{6.20}{72}} \newlabel{e:gas/radb0}{{6.21}{72}} \newlabel{e:es/ff}{{6.22}{72}} \newlabel{e:Sigma_inb1}{{6.23}{72}} \newlabel{e:Sigma_inb0}{{6.24}{72}} \newlabel{e:H_in}{{6.25}{72}} \newlabel{e:Sigma_middle}{{6.26}{72}} \newlabel{e:H_middle}{{6.27}{72}} \newlabel{e:Sigma_out}{{6.28}{72}} \newlabel{e:H_out}{{6.29}{72}} \newlabel{e:Temperature_definition}{{6.30}{72}} \@writefile{toc}{\contentsline {subsection}{\numberline {6.2.3}\hspace *{-1em}Radiatively Inefficient Accretion Flows}{\fontsize {8.75}{11pt}\selectfont \sffamily 73}} \@writefile{lof}{\contentsline {figure}{\numberline {6.2}{\ignorespaces Simulated image of an accretion flow around a black hole spinning at half its maximum rate, from a viewing angle of $10^\circ $ relative to the rotation axis. The coordinate grid in the equatorial plane of the spiraling flow shows how strong lensing around the black hole bends the back of the apparent disk up. The left side of the image is brighter due its rotational motion towards the observer. The bright arcs are generated by gravitational lensing. A dark silhouette appears around the location of the black hole because the light emitted by gas behind it disappears into the horizon and cannot be seen by an observer on the other side. Recently, the technology for observing such an image from the supermassive black holes at the centers of the Milky Way and M87 galaxies has been demonstrated as feasible [Doeleman, S., et al. {\it Nature} {\bf 455}, 78 (2008)]. To obtain the required resolution of tens of micro-arcseconds, signals are being correlated over an array (interferometer) of observatories operating at a millimeter wavelength across the Earth. Figure credit: Broderick, A., \& Loeb, A. {\it Journal of Physics Conf. Ser.} {\bf 54}, 448 (2006); {\it Astrophys. J.} {\bf 697} 1164 (2009). }}{\fontsize {8.75}{11pt}\selectfont \sffamily 74}} \newlabel{bh}{{6.2}{74}} \@writefile{toc}{\contentsline {section}{\numberline {6.3}\hspace *{-1em}The First Black Holes and Quasars}{\fontsize {8.75}{11pt}\selectfont \sffamily 75}} \newlabel{sec:bh}{{6.3}{75}} \@writefile{lof}{\contentsline {figure}{\numberline {6.3}{\ignorespaces Multi-wavelength images of the highly collimated jet emanating from the supermassive black hole at the center of the giant elliptical galaxy M87. The X-ray image (top) was obtained with the Chandra X-ray satellite, the radio image (bottom left) was obtained with the Very Large Array (VLA), and the optical image (bottom right) was obtained with the Hubble Space Telescope (HST). }}{\fontsize {8.75}{11pt}\selectfont \sffamily 76}} \newlabel{m87}{{6.3}{76}} \newlabel{LEdd}{{6.33}{77}} \newlabel{LE}{{6.34}{78}} \newlabel{oscs}{{6.35}{78}} \newlabel{tE}{{6.38}{78}} \@writefile{lof}{\contentsline {figure}{\numberline {6.4}{\ignorespaces Numerical simulation of the collapse of an early dwarf galaxy with a virial temperature just above the cooling threshold of atomic hydrogen and no H$_2$. The image shows a snapshot of the gas density distribution 500 million years after the Big Bang, indicating the formation of two compact objects near the center of the galaxy with masses of $2.2\times 10^{6}M_{\odot }$ and $3.1\times 10^{6}M_{\odot }$, respectively, and radii $<1$ pc. Sub-fragmentation into lower mass clumps is inhibited because hydrogen atoms cannot cool the gas significantly below its initial temperature. These circumstances lead to the formation of supermassive stars that inevitably collapse to make massive seeds of supermassive black holes. The simulated box size is 200 pc on a side. Figure credit: Bromm, V. \& Loeb, A. {\it Astrophys. J.} {\bf 596}, 34 (2003). }}{\fontsize {8.75}{11pt}\selectfont \sffamily 80}} \newlabel{bl}{{6.4}{80}} \@writefile{toc}{\contentsline {section}{\numberline {6.4}\hspace *{-1em}Black Hole Binaries}{\fontsize {8.75}{11pt}\selectfont \sffamily 81}} \newlabel{tga}{{6.42}{83}} \newlabel{vgw}{{6.44}{83}} \newlabel{pgw}{{6.45}{83}} \newlabel{agw}{{6.46}{83}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{7.\kern .5em }The Reionization of Cosmic Hydrogen by the First Galaxies}{\fontsize {8.75}{11pt}\selectfont \sffamily 85}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {7.1}\hspace *{-1em}Ionization Scars by the First Stars}{\fontsize {8.75}{11pt}\selectfont \sffamily 85}} \@writefile{toc}{\contentsline {section}{\numberline {7.2}\hspace *{-1em}Propagation of Ionization Fronts}{\fontsize {8.75}{11pt}\selectfont \sffamily 86}} \newlabel{front}{{7.3}{87}} \newlabel{clump}{{7.4}{87}} \newlabel{HIIreg}{{7.5}{87}} \newlabel{HIIsoln}{{7.7}{88}} \newlabel{Fgen}{{7.8}{88}} \newlabel{foft}{{7.10}{88}} \newlabel{Fnt}{{7.11}{88}} \newlabel{nion}{{7.12}{88}} \newlabel{rmax}{{7.13}{88}} \newlabel{Vev2}{{7.14}{89}} \newlabel{ngnb}{{7.15}{90}} \newlabel{QIIeqn}{{7.16}{90}} \newlabel{scat1}{{7.18}{91}} \newlabel{scatter}{{7.19}{91}} \newlabel{barrier}{{7.20}{92}} \@writefile{toc}{\contentsline {section}{\numberline {7.3}\hspace *{-1em}Swiss Cheese Topology}{\fontsize {8.75}{11pt}\selectfont \sffamily 92}} \@writefile{lof}{\contentsline {figure}{\numberline {7.1}{\ignorespaces Snapshots from a numerical simulation illustrating the spatial structure of cosmic reionization in a slice of 140 comoving Mpc on a side. The simulation describes the dynamics of the dark matter and gas as well as the radiative transfer of ionizing radiation from galaxies. The first four panels (reading across from top left to bottom left) show the evolution of the ionized hydrogen density $\rho _{\rm HII}$ normalized by the mean proton density in the IGM $\delimiter "426830A \rho _{\rm H}\delimiter "526930B =0.76\Omega _b\mathaccentV {bar}016{\rho }$ when the simulation volume is 25\%, 50\%, 75\%, and 100\% ionized, respectively. Large-scale overdense regions form large concentrations of galaxies whose ionizing photons produce joint ionized bubbles. At the same time, galaxies are rare within large-scale voids in which the IGM is mostly neutral at early times. The bottom middle panel shows the temperature at the end of reionization while the bottom right panel shows the redshift at which different gas elements are reionized. Higher-density regions tracing the large-scale structure are generally reionized earlier than lower density regions far from sources. At the end of reionization, regions that were last to get ionized and heated are still typically hotter because they have not yet had time to cool through the cosmic expansion. The resulting inhomogeneities in the temperature of the IGM introduce spatial variations in the cosmological Jeans mass, which in turn modulate the distribution of small galaxies (Babich, D., \& Loeb, A. {\it Astrophys. J.} {\bf 640}, 1 (2006)) and the Lyman-$\alpha $ forest (Cen, R., McDonald, P., Trac, H., \& Loeb, A. {\it Astrophys. J.}, submitted (2009)) at lower redshifts. {Figure credit:} Trac, H., Cen, R., \& Loeb, A. {\it Astrophys. J.} {\bf 689}, L81 (2009). }}{\fontsize {8.75}{11pt}\selectfont \sffamily 94}} \newlabel{rei}{{7.1}{94}} \@writefile{toc}{\contentsline {section}{\numberline {7.4}\hspace *{-1em}Reionization History}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {section}{\numberline {7.5}\hspace *{-1em}Global Ionization History}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {section}{\numberline {7.6}\hspace *{-1em}Statistical Description of Size Distribution and Topology of Ionized Regions}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {section}{\numberline {7.7}\hspace *{-1em}Radiative Transfer}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {section}{\numberline {7.8}\hspace *{-1em}Recombination of Ionized Regions}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {section}{\numberline {7.9}\hspace *{-1em}The Sources of Reionization}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.9.1}\hspace *{-1em}Massive Stars}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.9.2}\hspace *{-1em}Quasars}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {subsection}{\numberline {7.9.3}\hspace *{-1em}Exotic Reionization Scenarios}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {section}{\numberline {7.10}\hspace *{-1em}Helium Reionization}{\fontsize {8.75}{11pt}\selectfont \sffamily 95}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{8.\kern .5em }Feedback in the Early Universe}{\fontsize {8.75}{11pt}\selectfont \sffamily 97}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {8.1}\hspace *{-1em}Radiative Feedback}{\fontsize {8.75}{11pt}\selectfont \sffamily 97}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.1.1}\hspace *{-1em}Heating of the Intergalactic Medium: Mini-halos and the Clumping Factor}{\fontsize {8.75}{11pt}\selectfont \sffamily 97}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.1.2}\hspace *{-1em}Photo-Heating and the Suppression of Low-Mass Galaxies}{\fontsize {8.75}{11pt}\selectfont \sffamily 97}} \@writefile{toc}{\contentsline {subsection}{\numberline {8.1.3}\hspace *{-1em}Recombination Radiation}{\fontsize {8.75}{11pt}\selectfont \sffamily 98}} \@writefile{toc}{\contentsline {section}{\numberline {8.2}\hspace *{-1em}Large-Scale Mechanical Feedback}{\fontsize {8.75}{11pt}\selectfont \sffamily 98}} \@writefile{toc}{\contentsline {section}{\numberline {8.3}\hspace *{-1em}Chemical Enrichment}{\fontsize {8.75}{11pt}\selectfont \sffamily 98}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{9.\kern .5em }The Lyman-$\alpha $ Line as a Probe of the Early Universe}{\fontsize {8.75}{11pt}\selectfont \sffamily 99}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {9.1}\hspace *{-1em}Hydrogen}{\fontsize {8.75}{11pt}\selectfont \sffamily 99}} \@writefile{toc}{\contentsline {section}{\numberline {9.2}\hspace *{-1em}The Lyman-$\alpha $ Transition}{\fontsize {8.75}{11pt}\selectfont \sffamily 99}} \@writefile{lof}{\contentsline {figure}{\numberline {9.1}{\ignorespaces Two important transitions of the Hydrogen atom. The 21-cm transition of hydrogen is between two slightly separated (hyperfine) states of the ground energy level (principal quantum number $n=1$). In the higher energy state, the spin of the electron (e) is aligned with that of the proton (p), and in the lower energy state the two are anti-aligned. A spin flip of the electron results in the emission of a photon with a wavelength of 21-cm (or a frequency of 1420 MHz). The second transition is between the $n=2$ and the $n=1$ levels, resulting in the emission of a Lyman-$\alpha $ photon of wavelength $\lambda _{\alpha }=1.216\times 10^{-5}$ cm (or a frequency of $2.468\times 10^{15}$ Hz).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 100}} \newlabel{atom}{{9.1}{100}} \@writefile{lof}{\contentsline {figure}{\numberline {9.2}{\ignorespaces Observed spectra (flux per unit wavelength) of 19 quasars with redshifts $5.745$ should be regarded as lower limits due to the missing contribution of low-luminosity galaxies below the detection threshold [Stark, D., et al. {\it Astrophys. J.} {\bf 659}, 84 (2007)]. Nevertheless, the data shows that less than a few percent of all present-day stars had formed at $z>5$, in the first 1.2 billion years after the Big Bang. A minimum density $\sim 1.7\times 10^6 f_{\rm esc}^{-1} {\rm M_\odot \nobreakspace {}Mpc^{-3}}$ of Population II stars (corresponding to $\Omega _\star \sim 1.25\times 10^{-5}f_{\rm esc}^{-1}$) is required to produce one ionizing photon per hydrogen atom in the Universe.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 133}} \newlabel{Sp}{{12.3}{133}} \@writefile{toc}{\contentsline {subsection}{\numberline {12.1.3}\hspace *{-1em}Observing the First Gamma-Ray Bursts}{\fontsize {8.75}{11pt}\selectfont \sffamily 134}} \@writefile{lof}{\contentsline {figure}{\numberline {12.4}{\ignorespaces Detectability of high-redshift GRB afterglows as a function of time since the GRB explosion as measured by the observer. The GRB afterglow flux (in Jy) is shown at the redshifted Lyman-$\alpha $ wavelength (solid curves). Also shown (dotted curves) is a crude estimate for the spectroscopic detection threshold of {\it JWST}, assuming an exposure time equal to 20\% of the time since the GRB explosion. Each set of curves spans a sequence of redshifts: $z=5, 7, 9, 11, 13, 15$, respectively (from top to bottom). Figure credit: Barkana, R., \& Loeb, A. {\it Astrophys. J.} {\bf 601}, 64 (2004). }}{\fontsize {8.75}{11pt}\selectfont \sffamily 135}} \newlabel{afterg}{{12.4}{135}} \@writefile{lof}{\contentsline {figure}{\numberline {12.5}{\ignorespaces Theoretically predicted rate of observable GRBs as a function of redshift (assuming that the GRB rate is proportional to the cosmic star formation rate at all redshifts). {\it Dotted lines:} Contribution to the observed GRB rate from Pop\nobreakspace {}I/II and Pop\nobreakspace {}III for the case of slow metal enrichment of the IGM. {\it Dashed lines:} Contribution to the GRB rate from Pop\nobreakspace {}I/II and Pop\nobreakspace {}III for the case of rapid metal enrichment of the IGM. {\it Filled circle:} GRB rate from Pop\nobreakspace {}III stars if these, in an extreme scenario, were responsible for reionizing the universe at $z\sim 17$. Figure credit: Bromm, V., \& Loeb, A. {\it Astrophys. J.} {\bf 642}, 382 (2006).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 136}} \newlabel{BL07}{{12.5}{136}} \@writefile{toc}{\contentsline {subsection}{\numberline {12.1.4}\hspace *{-1em}Future Telescopes}{\fontsize {8.75}{11pt}\selectfont \sffamily 136}} \newlabel{tel}{{12.1.4}{136}} \@writefile{lof}{\contentsline {figure}{\numberline {12.6}{\ignorespaces A full scale model of the {James Webb Space Telescope} (JWST), the successor to the {Hubble Space Telescope} (http://www.jwst.nasa.gov/). JWST includes a primary mirror 6.5 meters in diameter, and offers instrument sensitivity across the infrared wavelength range of 0.6--28$\mu $m which will allow detection of the first galaxies. The size of the Sun shield (the large flat screen in the image) is 22 meters$\times $10 meters (72 ft$\times $29 ft). The telescope will orbit 1.5 million kilometers from Earth at the Lagrange L2 point.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 137}} \newlabel{jwst}{{12.6}{137}} \@writefile{toc}{\contentsline {section}{\numberline {12.2}\hspace *{-1em}Mass Function of Stars}{\fontsize {8.75}{11pt}\selectfont \sffamily 138}} \@writefile{lof}{\contentsline {figure}{\numberline {12.7}{\ignorespaces Artist's conception of the designs for three future giant telescopes that will be able to probe the first generation of galaxies from the ground: the {European Extremely Large Telescope} (EELT, top), the {Giant Magellan Telescope} (GMT, middle), and the {Thirty Meter Telescope} (TMT, bottom). Images credits: the European Southern Observatory (ESO), the GMT Partnership, and the TMT Observatory Corporation.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 139}} \newlabel{gmt}{{12.7}{139}} \@writefile{lof}{\contentsline {figure}{\numberline {12.8}{\ignorespaces {\it Upper panel:} The derived power-law index, $\Gamma $, of the IMF in nearby star forming regions, clusters and associations of stars within the Milky Way galaxy, as a function of sampled stellar mass (points are placed in the center of log\nobreakspace {}m range used to derive each index, with the dashed lines indicating the full range of masses sampled). The colored solid lines represent three analytical IMFs. {\it Bottom panel:} The present-day IMF in a sample of young star-forming regions, open clusters spanning a large age range, and old globular clusters. The dashed lines represent power-law fits to the data. The arrows show the characteristic mass of each fit, with the dotted line indicating the mean characteristic mass of the clusters in each panel, and the shaded region showing the standard deviation of the characteristic masses in that panel. The observations are consistent with a single underlying IMF. Figure credit: Bastian, N., Covey, K. R., \& Meyer, M. R., {\it Ann. Rev. Astr. \& Astrophys.} {\bf 48} (2010).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 140}} \newlabel{IMF3}{{12.8}{140}} \@writefile{lof}{\contentsline {figure}{\numberline {12.9}{\ignorespaces Comparison of the observed flux per unit frequency from a galaxy at a redshift $z_{s}=10$ for a Salpeter IMF ({\it dotted line}; Tumlinson, J., \& Shull, M. J. {\it Astrophys. J.} {\bf 528}, L65 (2000)) and a purely massive IMF ({\it solid line}; Bromm, V. Kudritzki, R. P. \& Loeb, A. {\it Astrophys. J.} {\bf 552}, 464 (2001)). The flux in units of $\unhbox \voidb@x \hbox {nJy}$ per $10^{6}M_{\odot }$ of stars is plotted as a function of observed wavelength in $\mu $m. The cutoff below an observed wavelength of $1216\unhbox \voidb@x \hbox {\tmspace +\thinmuskip {.1667em}\r A\tmspace +\thinmuskip {.1667em}} (1+z_{s})=1.34\mu $m is due to hydrogen Lyman-$\alpha $ absorption in the IGM (the so-called Gunn-Peterson effect; see \S {GPT}). For the same total stellar mass, the observable flux is larger by an order of magnitude for stars biased towards having masses $>100M_\odot $. }}{\fontsize {8.75}{11pt}\selectfont \sffamily 141}} \newlabel{IMF2}{{12.9}{141}} \@writefile{toc}{\contentsline {section}{\numberline {12.3}\hspace *{-1em}Galaxy Evolution}{\fontsize {8.75}{11pt}\selectfont \sffamily 142}} \@writefile{toc}{\contentsline {section}{\numberline {12.4}\hspace *{-1em}Methods for Identifying High-Reshift Galaxies}{\fontsize {8.75}{11pt}\selectfont \sffamily 142}} \@writefile{toc}{\contentsline {section}{\numberline {12.5}\hspace *{-1em}Luminosity Function}{\fontsize {8.75}{11pt}\selectfont \sffamily 143}} \@writefile{lof}{\contentsline {figure}{\numberline {12.10}{\ignorespaces {\it Top panel:} The $i^\prime $ and $z^\prime $ bands of HST (shaded regions) on top of the generic spectrum from a galaxy at a redshift $z=6$ (solid line). The Lyman-$\alpha $ wavelength at various redshifts is also shown. {\it Bottom panel:} Models of the color-redshift tracks for different types of galaxies with non-evolving stellar populations. The bump at $z\sim 1$--2 arises when the Balmer break or the 4000\r A\nobreakspace {}break redshift beyond the $i^\prime $-filter. Synthetic models indicate that that the Balmer break takes $\sim 10^8$ years to establish, providing a measure of the galaxy age. Figure credit: Bunker, A. et al., preprint arXiv:0909.1565, (2009).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 144}} \newlabel{IMF}{{12.10}{144}} \@writefile{lof}{\contentsline {figure}{\numberline {12.11}{\ignorespaces The Lyman-$\alpha $ emission line of a typical $i^\prime $-dropout galaxy SBM03\# at $z=5.83$. Figure credit: Stanway, E., et al. {\it Astrophys. J.} {\bf 607}, 704 (2004). }}{\fontsize {8.75}{11pt}\selectfont \sffamily 145}} \newlabel{IMF4}{{12.11}{145}} \newlabel{Schech}{{12.6}{146}} \newlabel{sfr_model}{{12.7}{146}} \newlabel{lya_model}{{12.8}{147}} \@writefile{toc}{\contentsline {section}{\numberline {12.6}\hspace *{-1em}History of the Star Formation Rate Density}{\fontsize {8.75}{11pt}\selectfont \sffamily 147}} \@writefile{toc}{\contentsline {section}{\numberline {12.7}\hspace *{-1em}Galaxy Searches and the Ionizing Photon Budget During Reionization}{\fontsize {8.75}{11pt}\selectfont \sffamily 148}} \@writefile{lof}{\contentsline {figure}{\numberline {12.12}{\ignorespaces The star formation rate density as functions of redshift (lower horizontal axis) and cosmic time (upper axis), for galaxies brighter than -18.3 AB magnitude (corresponding to $0.07L_\star $ at $z=3$). The conversion from observed UV luminosity to star formation rate assumed a Salpeter IMF for the stars. The upper curves includes dust correction based on estimated spectral slopes of the observed UV continuum. Figure credit: Bouwens, R., et al., preprint http://arxiv.org/pdf/0912.4263v2 (2009).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 149}} \newlabel{CSFR}{{12.12}{149}} \newlabel{pre}{{12.17}{150}} \newlabel{presec}{{12.18}{150}} \newlabel{post}{{12.19}{150}} \newlabel{postsec}{{12.20}{150}} \@writefile{toc}{\contentsline {section}{\numberline {12.8}\hspace *{-1em}Biased Clustering of High-Redshift Galaxies}{\fontsize {8.75}{11pt}\selectfont \sffamily 151}} \newlabel{biasPS}{{12.22}{151}} \newlabel{bias}{{12.24}{151}} \newlabel{eq:var}{{12.25}{152}} \newlabel{eq:cosvar}{{12.26}{152}} \newlabel{eq:window}{{12.27}{152}} \@writefile{lof}{\contentsline {figure}{\numberline {12.13}{\ignorespaces The theoretically predicted contributions to the total variance (equation 12.25\hbox {}; solid lines) in LBG dropout surveys as a sum of cosmic variance (dashed lines) and Poisson shot noise (dotted lines) contributions (i.e. the first and second terms, respectively, on the right-hand-side of equation 12.25\hbox {}). The top and bottom panels show results for surveys extending from z=6-8 and z=8-10, respectively. Thin lines assume a luminosity threshold of $z_{850,{\rm AB}}$=29, while for thick ones, the cut is at $z_{850,{\rm AB}}$=27. Figure credit: Munoz, J., Trac, H., \& Loeb, A. {\it Mon. Not. R. Astron. Soc.}, in press (2010).}}{\fontsize {8.75}{11pt}\selectfont \sffamily 153}} \newlabel{fig:sigfov}{{12.13}{153}} \newlabel{eq:skew}{{12.28}{154}} \@writefile{toc}{\contentsline {section}{\numberline {12.9}\hspace *{-1em}Molecules, Dust and the Interstellar Medium}{\fontsize {8.75}{11pt}\selectfont \sffamily 154}} \@writefile{lof}{\contentsline {figure}{\numberline {12.14}{\ignorespaces {\bf Upper panel:} predicted relative contributions to the fractional variance in the number counts of galaxies as a function of UV luminosity at an emission wavelength of 1500\r A, z-band AB magnitude, or host halo mass in counts of LBGs within a dropout survey spanning the redshift interval $z=6$--$8$ with a $3.4'\times 3.4'$ field-of-view (matching HUDF and approximately that of JWST). Solid lines show the total variance, while long-dashed and dotted lines show the contributions from sample variance and Poisson noise, respectively. Upper curves show the results from numerical simulations, while lower curves were calculated analytically based on linear perturbation theory. Vertical lines brackett the region where the variance is higher than expected due to the skewness of the full count probability distribution but is not Poisson-dominated. {\bf Lower panel:} the skewness of the full galaxy count probability distribution calculated from a numerical simulation based on equation\nobreakspace {}(12.28\hbox {}). Figure credit: Munoz, J., Trac, H., \& Loeb, A. {\it Mon. Not. R. Astron. Soc.}, in press (2010). }}{\fontsize {8.75}{11pt}\selectfont \sffamily 155}} \newlabel{fig:var6-8}{{12.14}{155}} \@writefile{toc}{\contentsline {chapter}{Chapter\nobreakspace {}{13.\kern .5em }Other Observational Probes of the First Galaxies}{\fontsize {8.75}{11pt}\selectfont \sffamily 157}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {section}{\numberline {13.1}\hspace *{-1em}The Cosmic Microwave Background}{\fontsize {8.75}{11pt}\selectfont \sffamily 157}} \@writefile{toc}{\contentsline {section}{\numberline {13.2}\hspace *{-1em}The Infrared Background}{\fontsize {8.75}{11pt}\selectfont \sffamily 157}} \@writefile{toc}{\contentsline {section}{\numberline {13.3}\hspace *{-1em}Low-Redshift Signatures}{\fontsize {8.75}{11pt}\selectfont \sffamily 157}} \@writefile{toc}{\contentsline {subsection}{\numberline {13.3.1}\hspace *{-1em}Clues from the IGM (Thermal History, Metal Enrichment)}{\fontsize {8.75}{11pt}\selectfont \sffamily 157}} \@writefile{toc}{\contentsline {subsection}{\numberline {13.3.2}\hspace *{-1em}The Fossil Record of the Local Group}{\fontsize {8.75}{11pt}\selectfont \sffamily 157}} \@writefile{toc}{\contentsline {chapter}{Appendix\nobreakspace {}\numberline {A.}}{\fontsize {8.75}{11pt}\selectfont \sffamily 159}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {chapter}{Appendix\nobreakspace {}\numberline {B.}Recommended Further Reading}{\fontsize {8.75}{11pt}\selectfont \sffamily 163}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \@writefile{toc}{\contentsline {chapter}{Appendix\nobreakspace {}\numberline {C.}Useful Numbers}{\fontsize {8.75}{11pt}\selectfont \sffamily 165}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{TableII}{{C}{166}} \@writefile{toc}{\contentsline {chapter}{Appendix\nobreakspace {}\numberline {D.}Glossary}{\fontsize {8.75}{11pt}\selectfont \sffamily 167}} \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }}