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Preface

This book captures the latest exciting developments concerning one of
the most fascinating unsolved mysteries about our origins:how did the first
stars and galaxies form?This era, known as theCosmic Dawnbecause
these sources were the first to illuminate our Universe, assumes central im-
portance in our understanding of the history of the Universe. Most research
on this question has been theoretical so far. But the next decade or two
will bring about a new generation of large telescopes with unprecedented
sensitivity that promise to supply a flood of data about the infant Universe
during its first billion years after the Big Bang. Among the new observa-
tories are the James Webb Space Telescope (JWST) – the successor to the
Hubble Space Telescope, and three extremely large telescopes on the ground
(ranging from 24 to 42 meters in diameter), as well as severalnew arrays
of dipole antennae operating at low radio frequencies. The fresh data on
the first galaxies and the diffuse gas in between them will test existing the-
oretical ideas about the formation and radiative effects ofthe first galaxies,
and might even reveal new physics that has not yet been anticipated. This
emerging interface between theory and observation will constitute an ideal
opportunity for students considering a research career in astrophysics or cos-
mology. With this in mind, the book is intended to provide a self-contained
introduction to research on the first galaxies at a technicallevel appropriate
for a graduate student.

The book is organized into three parts that largely build upon each other.
The first part,Fundamentals of Structure Formation, includes chapters on
basic cosmology, linear perturbation theory, nonlinear structure formation,
and the intergalactic medium. This provides a broad introduction to studies
of cosmological structure and galaxy formation with applications well be-
yond the first galaxies themselves. The first three chapters provide a crucial
introduction to the rest of the book; the fourth (on the intergalactic medium)
is not essential for many of the later chapters but is important for under-
standing the reionization process as well as many of the mostimportant
observational probes of the Cosmic Dawn.

The second part,The First Structures, focuses on the physics driving the
formation of these objects, as well as the physics that determines their in-
fluence on subsequent generations of objects. We review the formation of
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the first stars and black holes, the importance of stellar feedback, the ba-
sic principles of galaxy evolution, and the epoch of reionization. Many of
the principles contained here also have wide application toother areas of
extragalactic astrophysics, though we focus on their application to the first
galaxies. The first two chapters in this part build upon each other, but the
others can be approached largely independently.

The third part,Observations of the Cosmic Dawn, describes several di-
rections in which we hope to observe the most distant galaxies in the com-
ing decades. This part begins with a discussion of galaxy surveys and then
moves on to two unique probes of this era: the Lyman-α and 21 cm lines of
neutral hydrogen. It concludes with brief discussions of several other tech-
niques. The chapters in this section are largely independent of each other
and may be read in any order.

We have also included several appendices. Appendix A and Appendix B
provide useful lists of primary sources for further reading. Throughout the
text, we reference seminal papers as well as some recent calculations with
endnotes; these are collected in Appendix A. In Appendix B, we list useful
overviews in the form of books and review papers. In AppendixC, we
include fundamental constants and conversion factors. Finally, in Appendix
D we summarize the cosmological parameters assumed in this book (see
also§1.4).

Note that, both for the sake of brevity and because the current cosmo-
logical measurements are reasonably secure, most of the equations do not
explicitly state their dependence on such factors as the baryon density, Hub-
ble constant, or cold dark matter density. Inserting these dependencies is
a useful exercise, and we encourage the interested readers to check their
understanding in this way.

Various introductory sections of this book are based on an undergraduate-
level book, entitled “How Did the First Stars and Galaxies Form?” by one
of us (A.L.), which followed a cosmology class that he had taught over
the past two decades in the Astronomy and Physics departments at Harvard
University. Other parts relate to overviews that both of us wrote over the
past decade in the form of review articles. Where necessary,selected refer-
ences are given to advanced papers and other review articlesin the scientific
literature.

The writing of this book was made possible thanks to the help we re-
ceived from many individuals. First and foremost, we are grateful to our
families for their support and patience during the lengthy writing period of
the book. Needless to say, the content of this book echoes many papers
and scientific discussions we had over the years with our students, postdocs,
and senior collaborators, including Dan Babich, Rennan Barkana, Jon Bit-
tner, Laura Blecha, Judd Bowman, Frank Briggs, Avery Broderick, Volker
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Bromm, Chris Carilli, Renyue Cen, Benedetta Ciardi, T.J. Cox, Mark Dijk-
stra, Daniel Eisenstein, Claude-André Faucher-Giguère, Richard Ellis, Idan
Ginsburg, Zoltan Haiman, Lars Hernquist, Jackie Hewitt, Loren Hoffman,
Bence Kocsis, Girish Kulkarni, Adam Lidz, Andrei Mesinger,Matt Mc-
Quinn, Joey Muñoz, Ramesh Narayan, Peng Oh, Ryan O’Leary, Rosalba
Perna, Tony Pan, Ue-Li Pen, Jonathan Pritchard, Fred Rasio,Martin Rees,
Doug Rubin, George Rybicki, Athena Stacy, Dan Stark, Yue Shen, Nick
Stone, Anne Thoul, Hy Trac, Eli Visbal, Stuart Wyithe and Matias Zaldar-
riaga. We did not attempt to provide a comprehensive reference list of the
related literature, since such a list would be out of date within a few years
in this rapidly evolving frontier. Instead we focused pedagogically on the
underlying physical principles that will remain relevant in the future, and
referred the reader to representative papers, review articles, and books for
further reading. We thank Nina Zonnevylle and Uma Mirani fortheir as-
sistance in obtaining permissions for the figures of the book, Fred Davies,
Lauren Holzbauer, Joey Muñoz and Ramesh Narayan for their help with
several figures, and Natalie Mashian, Doug Rubin, and AnjaliTripathi for
their comments on the finished manuscript. Finally, it has been a delightful
experience for us to work with our book editor, Ingrid Gnerlich, at Princeton
University Press.

–A. L. & S. F.
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Fundamentals of Structure Formation





Chapter One

Introduction and Cosmological Background

1.1 PRELIMINARY REMARKS

On large scales, the Universe is observed to be expanding. Asit expands,
galaxies separate from one another, and the density of matter (averaged over
a large volume of space) falls. If we imagine playing the cosmic movie in
reverse and tracing this evolution backwards in time, we would infer that
there must have been an instant when the density of matter wasinfinite.
This moment in time is the “Big Bang”, before which we cannot reliably
extrapolate our history. But even before we get all the way back to the Big
Bang, there must have been a time when stars like our Sun and galaxies like
our Milky Way did not exist, because the Universe was denser than they are.
If so, how and when did the first stars and galaxies form?

Primitive versions of this question were considered by humans for thou-
sands of years, long before it was realized that the Universeexpands. Reli-
gious and philosophical texts attempted to provide a sketchof the big picture
from which people could derive the answer. In retrospect, these attempts ap-
pear heroic in view of the scarcity of scientific data about the Universe prior
to the twentieth century. To appreciate the progress made over the past cen-
tury, consider, for example, the biblical story of Genesis.The opening chap-
ter of the Bible asserts the following sequence of events: first, the Universe
was created, then light was separated from darkness, water was separated
from the sky, continents were separated from water, vegetation appeared
spontaneously, stars formed, life emerged, and finally humans appeared on
the scene. Instead, the modern scientific order of events begins with the Big
Bang, followed by an early period in which light (radiation)dominated and
then a longer period dominated by matter, leading to the appearance of stars,
planets, life on Earth, and eventually humans. Interestingly, the starting and
end points of both versions are the same.

Cosmology is by now a mature empirical science. We are privileged to
live in a time when the story of genesis (how the Universe started and devel-
oped) can be critically explored by direct observations. Because of the finite
time it takes light to travel to us from distant sources, we can see images of
the Universe when it was younger by looking deep into space through pow-
erful telescopes.
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Figure 1.1 Image of the Universe when it first became transparent, 400,000 years after the
Big Bang, taken over five years by theWilkinson Microwave Anisotropy Probe
(WMAP) satellite (seeColor Plate 1for a color version of this figure). Slight
density inhomogeneities at the level of one part in∼ 105 in the otherwise uni-
form early Universe imprinted hot and cold spots in the temperature map of the
cosmic microwave background on the sky. The fluctuations areshown in units
of µK, with the unperturbed temperature being 2.73 K. The same primordial in-
homogeneities seeded the large-scale structure in the present-day Universe. The
existence of background anisotropies was predicted in a number of theoretical
papers three decades before the technology for taking this image became avail-
able. Figure credit: WMAP/NASA, http://map.gsfc.nasa.gov/
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Existing data sets include an image of the Universe when it was 400,000
years old (in the form of the cosmic microwave background in Figure 1.1),
as well as images of individual galaxies when the Universe was older than a
billion years. But there is a serious challenge: in between these two epochs
was a period when the Universe was dark, stars had not yet formed, and the
cosmic microwave background no longer traced the distribution of matter.
And this is precisely the most interesting period, when the primordial soup
evolved into the rich zoo of objects we now see.How can astronomers see
this dark yet crucial time?

The situation is similar to having a photo album of a person that begins
with the first ultra-sound image of him or her as an unborn babyand then
skips to some additional photos of his or her years as teenager and adult.
The late photos do not simply show a scaled up version of the first image.
We are currently searching for the missing pages of the cosmic photo album
that will tell us how the Universe evolved during its infancyto eventually
make galaxies like our own Milky Way.

The observers are moving ahead along several fronts. The first involves
the construction of large infrared telescopes on the groundand in space that
will provide us with new (although rather expensive!) photos of galaxies
in the Universe at intermediate ages. Current plans includeground-based
telescopes which are 24–42 meters in diameter, and NASA’s successor to
the Hubble Space Telescope, the James Webb Space Telescope.In addition,
several observational groups around the globe are constructing radio arrays
that will be capable of mapping the three-dimensional distribution of cosmic
hydrogen left over from the Big Bang in the infant Universe. These arrays
are aiming to detect the long-wavelength (redshifted 21-cm) radio emission
from hydrogen atoms. Coincidentally, this long wavelength(or low fre-
quency) overlaps with the band used for radio and televisionbroadcasting,
and so these telescopes include arrays of regular radio antennas that one
can find in electronics stores. These antennas will reveal how the clumpy
distribution of neutral hydrogen evolved with cosmic time.By the time the
Universe was a few hundreds of millions of years old, the hydrogen distri-
bution had been punched with holes like swiss cheese. These holes were
created by the ultraviolet radiation from the first galaxiesand black holes,
which ionized the cosmic hydrogen in their vicinity.

Theoretical research has focused in recent years on predicting the signals
expected from the above instruments and on providing motivation for these
ambitious observational projects.

All of these predictions are generated in the context of the modern cosmo-
logical paradigm, which turns the Big Bang model into a quantitative tool
for understanding our Universe. In the remainder of this chapter, we will
briefly describe the essential aspects of this paradigm for understanding the
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formation of the first galaxies in the Universe.

1.2 STANDARD COSMOLOGICAL MODEL

1.2.1 Cosmic Perspective

In 1915 Einstein formulated the general theory of relativity. He was inspired
by the fact that all objects follow the same trajectories under the influence
of gravity (the so-called “equivalence principle,” which by now has been
tested to better than one part in a trillion), and realized that this would be a
natural result if space-time is curved under the influence ofmatter. He wrote
down an equation describing how the distribution of matter (on one side of
his equation) determines the curvature of space-time (on the other side of
his equation). He then applied his equation to describe the global dynamics
of the Universe.

Back in 1915 there were no computers available, and Einstein’s equa-
tions for the Universe were particularly difficult to solve in the most general
case. It was therefore necessary for Einstein to alleviate this difficulty by
considering the simplest possible Universe, one that is homogeneous and
isotropic. Homogeneity means uniform conditions everywhere (at any given
time), and isotropy means the same conditions in all directions when look-
ing out from one vantage point. The combination of these two simplifying
assumptions is known as thecosmological principle.

The universe can be homogeneous but not isotropic: for example, the ex-
pansion rate could vary with direction. It can also be isotropic and not homo-
geneous: for example, we could be at the center of a spherically-symmetric
mass distribution. But if it is isotropic aroundeverypoint, then it must also
be homogeneous.

Under the simplifying assumptions associated with the cosmological prin-
ciple, Einstein and his contemporaries were able to solve the equations.
They were looking for their “lost keys” (solutions) under a convenient “lamp-
post” (simplifying assumptions), but the real Universe is not bound by any
contract to be the simplest that we can imagine. In fact, it istruly remarkable
in the first place that we dare describe the conditions acrossvast regions of
space based on the blueprint of the laws of physics that describe the con-
ditions here on Earth. Our daily life teaches us too often that we fail to
appreciate complexity, and that an elegant model for reality is often too ide-
alized for describing the truth (along the lines of approximating a cow as a
spherical object).

Back in 1915 Einstein had the wrong notion of the Universe; atthe time
people associated the Universe with the Milky Way galaxy andregarded
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all the “spiral nebulae,” which we now know are distant galaxies, as con-
stituents of our own Milky Way galaxy. Because the Milky Way is not
expanding, Einstein attempted to reproduce a static universe with his equa-
tions. This turned out to be possible after adding a cosmological constant,
whose negative gravity would exactly counteract that of matter. However,
later Einstein realized that this solution is unstable: a slight enhancement
in density would make the density grow even further. As it turns out, there
are no stable static solutions to Einstein’s equations for ahomogeneous and
isotropic Universe. The Universe must either be expanding or contracting.
Less than a decade later, Edwin Hubble discovered that the nebulae previ-
ously considered to be constituents of the Milky Way galaxy are receding
away from us at a speedv that is proportional to their distanceR, namely
v = H0R with H0 a spatial constant (which could evolve with time), com-
monly termed theHubble constant.i Hubble’s data indicated that the Uni-
verse is expanding. (Hubble also resolved individual bright stars in these
nebulae, unambiguously determining their nature and theirvast distances
from the Milky Way.)

Einstein was remarkably successful in asserting the cosmological princi-
ple. As it turns out, our latest data indicates that the real Universe is homo-
geneous and isotropic on the largest observable scales to within one part in a
hundred thousand. In particular, isotropy is well established for the distribu-
tion of faint radio sources, optical galaxies, the X-ray background, and most
importantly the CMB. The constraints on homogeneity are less strict, but a
cosmological model in which the Universe is isotropic and significantly in-
homogeneous in spherical shells around our special location is also excluded
based on surveys of galaxies and quasars. Fortuitously, Einstein’s simplify-
ing assumptions turned out to be extremely accurate in describing reality:
the keys were indeed lying next to the lamppost. Our Universe happens to
be the simplest we could have imagined, for which Einstein’sequations can
be easily solved.

Why was the Universe prepared to be in this special state?Cosmologists
were able to go one step further and demonstrate that an earlyphase transi-
tion, calledcosmic inflation – during which the expansion of the Universe
accelerated exponentially, could have naturally producedthe conditions pos-
tulated by the cosmological principle (although other explanations may also
create such conditions). One is left to wonder whether the existence of in-
flation is just a fortunate consequence of the fundamental laws of nature, or

iThe redshift data examined by Hubble was mostly collected byVesto Slipher a decade
earlier and only partly by Hubble’s assistant, Milton L. Humason. The linear local relation
between redshift and distance (based on Hubble and Humason’s data) was first formulated
by Georges Lemâitre in 1927, two years prior to the observational paper written by Hubble
and Humason.
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whether perhaps the special conditions of the specific region of space-time
we inhabit were selected out of many random possibilities elsewhere by the
prerequisite that they allow our existence. The opinions ofcosmologists on
this question are split.

1.2.2 Origin of Structure

Hubble’s discovery of the expansion of the Universe has immediate impli-
cations for the past and future of the Universe. If we reversein our mind
the expansion history back in time, we realize that the Universe must have
been denser in its past. In fact, there must have been a point in time where
the matter density was infinite, at the moment of the so-called Big Bang.
Indeed we do detect relics from a hotter denser phase of the Universe in the
form of light elements (such as deuterium, helium and lithium) as well as
the Cosmic Microwave Background (CMB). At early times, thisradiation
coupled extremely well to the cosmic gas and obtained a spectrum known as
a blackbody, a form predicted a century ago to characterize matter and ra-
diation in equilibrium. The CMB provides the best example ofa blackbody
spectrum we have.

To get a rough estimate of when the Big Bang occurred, we may simply
divide the distance of all galaxies by their recession velocity. This gives
a unique answer,∼ R/v ∼ 1/H0, which is independent of distance.ii The
latest measurements of the Hubble constant give a value ofH0 ≈ 70 km s−1

Mpc−1 implying a current age for the Universe1/H0 of 14 billion years (or
5 × 1017 seconds).

The second implication concerns our future. A fortunate feature of a
spherically-symmetric Universe is that when considering asphere of mat-
ter in it, we are allowed to ignore the gravitational influence of everything
outside this sphere. If we empty the sphere and consider a test particle on
the boundary of an empty void embedded in a uniform Universe,the par-
ticle will experience no net gravitational acceleration. This result, known
asBirkhoff ’s theorem, is reminiscent of Newton’s “iron sphere theorem.” It
allows us to solve the equations of motion for matter on the boundary of the
sphere through a local analysis without worrying about the rest of the Uni-
verse. Therefore, if the sphere has exactly the same conditions as the rest of
the Universe, we may deduce the global expansion history of the Universe
by examining its behavior. If the sphere is slightly denser than the mean,

ii Although this is an approximate estimate, it turns out to be within a few percent of the
true age of our Universe owing to a coincidence. The cosmic expansion at first decelerated
and then accelerated, with the two almost canceling each other out at the present-time, giving
the same age as if the expansion were at a constant speed (as would be strictly true only in
an empty Universe).
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we will infer how its density contrast will evolve relative to the background
Universe.

For the moment, let us ignore the energy density of the vacuum(which is
always a good approximation at sufficiently early cosmic times, when mat-
ter was denser). Then the equation describing the motion of aspherical shell
of matter is identical to the equation of motion of a rocket launched from the
surface of the Earth. The rocket will escape to infinity if itskinetic energy
exceeds its gravitational binding energy, making its totalenergy positive.
However, if its total energy is negative, the rocket will reach a maximum
height and then fall back. In order to deduce the future evolution of the Uni-
verse, we need to examine the energy of a spherical shell of matter relative
to the origin. With a uniform densityρ, a spherical shell of radiusR would
have a total massM = ρ×

(

4πR3/3
)

enclosed within it. Its energy per unit
mass is the sum of the kinetic energy due to its expansion speed v = HR,
1
2v

2, and its potential gravitational energy,−GM/R (whereG is Newton’s
constant), namelyE = v2/2 −GM/R. By substituting the above relations
for v andM , it can be easily shown thatE = 1

2v
2(1−Ω), whereΩ = ρ/ρc

andρc = 3H2/8πG is defined as thecritical density. We therefore find that
there are three possible scenarios for the cosmic expansion. The Universe
has either:(i) Ω > 1, making it gravitationally bound withE < 0 – such a
“closed Universe” will turn-around and end up collapsing towards a “big
crunch”; (ii) Ω < 1, making it gravitationally unbound withE > 0 – such
an “open Universe” will expand forever; or the borderline case(iii) Ω = 1,
making the Universe marginally bound or “flat” withE = 0.

Einstein’s equations relate the geometry of space to its matter content
through the value ofΩ: an open Universe has a geometry of a saddle with a
negative spatial curvature, a closed Universe has the geometry of a spherical
globe with a positive curvature, and a flat Universe has a flat geometry with
no curvature. Our observable section of the Universe appears to be flat.

Now we are at a position to understand how objects, like the Milky Way
galaxy, have formed out of small density inhomogeneities that get amplified
by gravity.

Let us consider for simplicity the background of a marginally bound (flat)
Universe which is dominated by matter. In such a background,only a slight
enhancement in density is required for exceeding the critical densityρc.
Because of Birkhoff’s theorem, a spherical region that is denser than the
mean will behave as if it is part of a closed Universe and increase its den-
sity contrast with time, while an underdense spherical region will behave as
if it is part of an open Universe and appear more vacant with time relative
to the background, as illustrated in Figure 1.2. Starting with slight density
enhancements that bring them above the critical valueρc, the overdense re-
gions will initially expand, reach a maximum radius, and then collapse upon
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Early times
Mean

 Density

Intermediate 
times

Late times

Collapse
threshold

void voidHalo Halo

− − − − − − − − − − − − − − − − − − − − − − − − −

− − − − − − − − − − − − − − − − − − − − − − − − −

Figure 1.2 Top: Schematic illustration of the growth of perturbations to collapsed halos
through gravitational instability. The overdense regionsinitially expand, reach a
maximum size and then turn around and collapse to form gravitationally-bound
halos if their density exceeds a critical threshold (see§3.1). The material that
makes the halos originated in the voids that separate them.Middle: A simple
model for the collapse of a spherical region. The dynamical fate of a rocket which
is launched from the surface of the Earth depends on the sign of its energy per
unit mass,E = 1

2
v2 − GM⊕/r. The behavior of a spherical shell of matter on

the boundary of an overdense region (embedded in a homogeneous and isotropic
Universe) can be analyzed in a similar fashion.Bottom:A collapsing region may
end up as a galaxy, like NGC 4414, shown here (image credit: NASA and ESA).
The halo gas cools and condenses to a compact disk surroundedby an extended
dark matter halo.
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themselves (like the trajectory of a rocket launched straight up, away from
the center of the Earth). An initially slightly inhomogeneous Universe will
end up clumpy, with collapsed objects forming out of overdense regions.
The material to make the objects is drained out of the intervening under-
dense regions, which end up as voids.

The Universe we live in started with primordial density perturbations of
a fractional amplitude∼ 10−5 when the cosmic microwave background
last scattered. The overdensities were amplified at late times (once matter
dominated the cosmic mass budget) up to values close to unityand collapsed
to make objects, first on small scales. We have not yet seen thefirst small
galaxies that started the process that eventually led to theformation of big
galaxies like the Milky Way. The search for the first galaxiesis a search for
our origins and the main subject of this book.

Beyond its uniformity, the early Universe was simple in one additional
way: the process ofBig Bang nucleosynthesisproduced the first atomic
nuclei, but these were mostly hydrogen and helium (with∼ 93% of those
atoms in the form of hydrogen). On the other hand, life as we know it
on planet Earth requires water. The water molecule includesoxygen, an
element that was not made in the Big Bang and did not exist until the first
stars had formed. Therefore our form of life could not have existed in the
first hundred million years after the Big Bang, before the first stars had
formed. There is also no guarantee that life will persist in the distant future.

1.2.3 Geometry of Space

The history and fate of our Universe are thus tied inexorablyto its contents
– be it matter, dark energy, or something even more exotic. However, mea-
suring the average density of the Universe is extraordinarily difficult. On the
other hand, Einstein’s equations show that the contents of the Universe are
also tied to its geometry – so measuring the latter would indirectly constrain
its components.

How can we tell the difference between the flat surface of a book and the
curved surface of a balloon?A simple way would be to draw a triangle
of straight lines between three points on those surfaces andmeasure the
sum of the three angles of the triangle. The Greek mathematician Euclid
demonstrated that the sum of these angles must be 180 degrees(orπ radians)
on a flat surface. Twenty-one centuries later, the German mathematician
Bernhard Riemann extended the field of geometry to curved spaces, which
played an important role in the development of Einstein’s general theory
of relativity. For a triangle drawn on a positively curved surface, like that
of a balloon, the sum of the angles is larger than 180 degrees.(This can be
easily figured out by examining a globe and noticing that any line connecting
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one of the poles to the equator opens an angle of 90 degrees relative to the
equator. Adding the third angle in any triangle stretched between the pole
and the equator would surely result in a total of more than 180degrees.)
According to Einstein’s equations, the geometry of the Universe is dictated
by its matter content; in particular, the Universe is flat only if the total Ω
equals unity.Is it possible to draw a triangle across the entire Universe and
measure its geometry?

Remarkably, the answer isyes. At the end of the twentieth century cos-
mologists were able to perform this experiment by adopting asimple yard-
stick provided by the early Universe. The familiar experience of dropping
a stone in the middle of a pond results in a circular wave crestthat propa-
gates outwards. Similarly, perturbing the smooth Universeat a single point
at the Big Bang would have resulted in a spherical sound wave propagating
out from that point. The wave would have traveled at the speedof sound,
which was of order the speed of lightc (or more precisely,c/

√
3) early

on when radiation dominated the cosmic mass budget. At any given time,
all the points extending to the distance traveled by the waveare affected
by the original pointlike perturbation. The conditions outside this “sound
horizon” will remain uncorrelated with the central point, because acoustic
information has not been able to reach them at that time. The temperature
fluctuations of the CMB trace the simple sum of many such pointlike per-
turbations that were generated in the Big Bang. The patternsthey delineate
would therefore show a characteristic correlation scale, corresponding to the
sound horizon at the time when the CMB was produced, 400,000 years after
the Big Bang. By measuring the apparent angular scale of this“standard
ruler” on the sky, known as the acoustic peak in the CMB, and comparing it
to theory, experimental cosmologists inferred from the simple geometry of
triangles that the Universe is flat (or at least very close to it).

The inferred flatness may be a natural consequence of the early period
of vast expansion, known as cosmic inflation, during which any initial cur-
vature was flattened. Indeed a small patch of a fixed size (representing our
current observable region in the cosmological context) on the surface of a
vastly inflated balloon would appear nearly flat. The sum of the angles on
a non-expanding triangle placed on this patch would get arbitrarily close to
180 degrees as the balloon inflates.

Even though we now know that our Universe is very close to being flat,
this only constrains the cumulative energy density in the Universe: it tells us
very little about how that energy is distributed amongst thedifferent com-
ponents, such as baryons, other forms of matter, and dark energy. We must
probe our Universe in other ways to learn about this distribution.
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1.2.4 Observing our Past: Cosmic Archaeology

Our Universe is the simplest possible on two counts: it satisfies the cosmo-
logical principle, and it has a flat geometry. The mathematical description
of an expanding, homogeneous, and isotropic Universe with aflat geom-
etry is straightforward. We can imagine filling up space withclocks that
are all synchronized. At any given snapshot in time the physical condi-
tions (density, temperature) are the same everywhere. But as time goes on,
the spatial separation between the clocks will increase. The stretching of
space can be described by a time-dependent scale factor,a(t). A separa-
tion measured at timet1 as r(t1) will appear at timet2 to have a length
r(t2) = r(t1)[a(t2)/a(t1)].

A natural question to ask is whether our human bodies or even the so-
lar system, are also expanding as the Universe expands. The answer is no,
because these systems are held together by forces whose strength far ex-
ceeds the cosmic force. The mean density of the Universe today, ρ̄, is 29
orders of magnitude smaller than the density of our body. Notonly are the
electromagnetic forces that keep the atoms in our body together far greater
than gravity, but even the gravitational self-force of our body on itself over-
whelms the cosmic influence. Only on very large scales does the cosmic
gravitational force dominate the scene. This also implies that we cannot ob-
serve the cosmic expansion with a local laboratory experiment; in order to
notice the expansion we need to observe sources which are spread over the
vast scales of millions of light years.

The space-time of an expanding, homogeneous and isotropic,flat Uni-
verse can be described very simply. Because the cosmological principle,
we can establish a unique time coordinate throughout space by distribut-
ing clocks which are all synchronized throughout the Universe, so that each
clock would measure the same timet since the Big Bang. The space-time
(4–dimensional) line elementds, commonly defined to vanish for a photon,
is described by the Friedmann-Robertson-Walker (FRW) metric,

ds2 = c2dt2 − dℓ2, (1.1)

wherec is the speed of light anddℓ is the spatial line-element. The cosmic
expansion can be incorporated through a scale factora(t) which multiplies
the fixed(x, y, z) coordinates tagging the clocks which are themselves “co-
moving” with the cosmic expansion. For a flat space,

dℓ2 = a(t)2(dx2 + dy2 + dz2) = a2(t)(dr2 + r2dΩ), (1.2)

wheredΩ = dθ2 + sin2 θdφ2 with (r, θ, φ) being the spherical coordinates
centered on the observer, and(x, y, z) = (r cos θ, r sin θ cosφ, r sin θ sinφ)
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A source located at a separationR = a(t)r from us would move at a
velocity v = dR/dt = ȧr = (ȧ/a)R, where ȧ = da/dt. Herer is a
time-independent tag, denoting the present-day distance of the source (when
a(t) ≡ 1). DefiningH = ȧ/a which is constant in space, we recover the
Hubble expansion lawv = HR.

Edwin Hubble measured the expansion of the Universe using the Doppler
effect. We are all familiar with the same effect for sound waves: when a
moving car sounds its horn, the pitch (frequency) we hear is different if
the car is approaching us or receding away. Similarly, the wavelength of
light depends on the velocity of the source relative to us. Asthe Universe
expands, a light source will move away from us and its Dopplereffect will
change with time. The Doppler formula for a nearby source of light (with a
recession speed much smaller than the speed of light) gives

∆ν

ν
≈ −∆v

c
= −

(

ȧ

a

)(

R

c

)

= −(ȧ∆t)

a
= −∆a

a
, (1.3)

with the solution,ν ∝ a−1. Correspondingly, the wavelength scales as
λ = (c/ν) ∝ a. We could have anticipated this outcome since a wavelength
can be used as a measure of distance and should therefore be stretched
as the Universe expands. This holds also for the de Broglie wavelength
λdB = (h/p) ∝ a, characterizing the quantum-mechanical wavefunction of
a massive particle with momentump (whereh is Planck’s constant). Conse-
quently, the kinetic energy of a non-relativistic particlescales as(p2/2mp) ∝
a−2, and so in the absence of heat exchange with other systems thetemper-
ature of a gas of non-relativistic protons and electrons would cool faster
(∝ a−2) than the CMB temperature (hν ∝ a−1) as the Universe expands
anda increases. The redshiftz is defined through the factor(1 + z) by
which the photon wavelength was stretched (or its frequencyreduced) be-
tween its emission and observation times. If we definea = 1 today, then
a = 1/(1 + z) at earlier times. Higher redshifts correspond to a higher re-
cession speed of the source relative to us (ultimately approaching the speed
of light when the redshift goes to infinity), which in turn implies a larger
distance (ultimately approaching our horizon, which is thedistance traveled
by light since the Big Bang) and an earlier emission time of the source in
order for the photons to reach us today.

We see high-redshift sources as they looked at early cosmic times. Ob-
servational cosmology is like archaeology – the deeper we look into space
the more ancient the clues about our history are (see Figure 1.3).iii But there

iii Cosmology and archaeology share another similarity: both are observational, rather
thanexperimental, sciences. As such, we are forced to interpret the complicated physics of
actual systems rather than design elegant experiments thatcan answer targeted questions.
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is a limit to how far back we can see: we can image the Universe only if it is
transparent. Earlier than 400,000 years after the Big Bang,the cosmic gas
was sufficiently hot to be fully ionized, and the Universe wasopaque due to
scattering by the dense fog of free electrons that filled it. Thus, telescopes
cannot be used to image the infant Universe at earlier times (at redshifts
> 103). The earliest possible image of the Universe can be seen in the cos-
mic microwave background, the thermal radiation left over from the tran-
sition to transparency (Figure 1.1). The first galaxies are believed to have
formed long after that.

The expansion history of the Universe is captured by the scale factora(t).
We can write a simple equation for the evolution ofa(t) based on the be-
havior of a small region of space. For that purpose we need to incorporate
the fact that in Einstein’s theory of gravity, not only does mass densityρ
gravitate but pressurep does too. In a homogeneous and isotropic Universe,
the quantityρgrav = (ρ+ 3p/c2) plays the role of the gravitating mass den-
sity ρ of Newtonian gravity. There are several examples to consider. For a
radiation fluid,iv prad/c

2 = 1
3ρrad, implying thatρgrav = 2ρrad.

On the other hand, if the vacuum has a nonzero energy density that is
constant in space and time, the so-calledcosmological constant, then the
pressure of the vacuum is negative because by opening up a newvolume
increment∆V onegainsan energyρvacc

2∆V – instead of losing it, as is
the case for normal fluids that expand into more space. In thermodynamics,
pressure is derived from the deficit in energy per unit of new volume, which
in this case givespvac/c

2 = −ρvac. This in turn leads to another reversal
of signs,ρgrav = (ρvac + 3pvac/c

2) = −2ρvac, which may be interpreted
as repulsive gravity! This surprising result gives rise to the phenomenon
of accelerated cosmic expansion, which characterized the early period of
cosmic inflation as well as the latest six billions years of cosmic history.

As the Universe expands and the scale factor increases, the matter mass
density declines inversely with volume,ρmatter ∝ a−3, whereas the radia-
tion energy density (which includes the CMB and three species of relativis-
tic neutrinos) decreases asρradc

2 ∝ a−4, because not only is the density of
photons diluted asa−3, but the energy per photonhν = hc/λ (whereh is
Planck’s constant) declines asa−1. Todayρmatter is larger thanρrad (assum-
ing massless neutrinos) by a factor of∼ 3, 300, but at(1 + z) ∼ 3, 300 the
two were equal, and at even higher redshifts the radiation dominated. Since

Although simplified models can be built in the laboratory (oreven inside computers), the
primary challenge of cosmology is figuring out how to extractuseful information from real
and complex systems that cannot be artificially altered.

ivThe momentum of each photon is1
c

of its energy. The pressure is defined as the
momentum flux along one dimension out of three, and is therefore given by1

3
ρradc2, where

ρrad is the equivalent mass density of the radiation.
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Figure 1.3 Cosmic archaeology of the observable volume of the Universe, in comoving co-
ordinates (which factor out the cosmic expansion). The outermost observable
boundary (z = ∞) marks the comoving distance that light has traveled since the
Big Bang. Future observatories aim to map most of the observable volume of our
Universe, and improve dramatically the statistical information we have about the
density fluctuations within it. Existing data on the CMB probes mainly a very
thin shell at the hydrogen recombination epoch (z ∼ 103, beyond which the Uni-
verse is opaque), and current large-scale galaxy surveys map only a small region
near us at the center of the diagram. The formation epoch of the first galaxies
that culminated with hydrogen reionization at a redshiftz ∼ 10 is shaded dark
gray. Note that the comoving volume out to any of these redshifts scales as the
distance cubed.
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a stable vacuum does not get diluted with cosmic expansion, the present-day
ρvac remained a constant and dominated overρmatter andρrad only at late
times (whereas the unstable “false vacuum” that dominated during inflation
has decayed when inflation ended).

In this book, we will primarily be concerned with the “cosmicdawn,” or
the era in which the first galaxies formed atz ∼ 6–30. At these early times,
the cosmological constant is very small compared to the matter densities
and can generally be ignored.

1.3 MILESTONES IN COSMIC EVOLUTION

The gravitating mass,Mgrav = ρgravV , enclosed by a spherical shell of
radiusa(t) and volumeV = 4π

3 a
3, induces an acceleration

d2a

dt2
= −GMgrav

a2
. (1.4)

Sinceρgrav = ρ + 3p/c2, we need to know how pressure evolves with the
expansion factora(t). This is obtained from the thermodynamic relation
mentioned above between the change in the internal energyd(ρc2V ) and the
pdV work done by the pressure,d(ρc2V ) = −pdV . This relation implies
−3paȧ/c2 = a2ρ̇+3ρaȧ, where a dot denotes a time derivative. Multiplying
equation (1.4) bẏa and making use of this relation yields our familiar result

E =
1

2
ȧ2 − GM

a
, (1.5)

whereE is a constant of integration andM ≡ ρV . As discussed before,
the spherical shell will expand forever (being gravitationally unbound) if
E ≥ 0, but will eventually collapse (being gravitationally bound) if E < 0.
Making use of the Hubble parameter,H = ȧ/a, equation (1.5) can be re-
written as

E

ȧ2/2
= 1 − Ω, (1.6)

whereΩ = ρ/ρc, with

ρc =
3H2

8πG
= 9.2 × 10−30 g

cm3

(

H

70 km s−1Mpc−1

)2

. (1.7)

With Ωm, ΩΛ, andΩr denoting the present contributions toΩ from matter
(including cold dark matter as well as a contributionΩb from ordinary mat-
ter of protons and neutrons, or “baryons”),vacuum density(cosmological
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constant), andradiation, respectively, a flat universe withE = 0 satisfies

H(t)

H0
=

[

Ωm

a3
+ ΩΛ +

Ωr

a4

]1/2

, (1.8)

where we defineH0 andΩ0 = (Ωm + ΩΛ + Ωr) = 1 to be the present-day
values ofH andΩ, respectively.

In the particularly simple case of a flat Universe, we find thatif matter
dominates (i.e.,Ω0 = 1) thena ∝ t2/3, if radiation dominates thena ∝ t1/2,
and if the vacuum density dominates thena ∝ exp{Hvact} with Hvac =
(8πGρvac/3)

1/2 being a constant. After inflation ended, the mass density of
our Universeρ was at first dominated by radiation at redshiftsz > 3, 300,
then it became dominated by matter at0.3 < z < 3, 300, and finally was
dominated by the vacuum atz < 0.3. The vacuum started to dominate
ρgrav already atz < 0.7 or six billion years ago. Figure 1.6 illustrates the
mass budget in the present-day Universe and during the epochwhen the first
galaxies had formed.

The above results fora(t) have two interesting implications. First, we can
figure out the relationship between the time since the Big Bang and redshift
sincea = (1 + z)−1. For example, during the matter-dominated era (1 <
z < 103, with the low-z end set by the condition[1 + z] ≫ [ΩΛ/Ωm]1/3),

t ≈ 2

3H0Ωm
1/2(1 + z)3/2

=
0.95 × 109 years

[(1 + z)/7]3/2
. (1.9)

In this same regime, whereΩm ≈ 1, H ≈ 2/(3t) anda = (1 + z)−1 ≈
(3H0

√
Ωm/2)

2/3t2/3.
Second, we note the remarkable exponential expansion for a vacuum

dominated phase. This accelerated expansion serves an important purpose
in explaining a few puzzling features of our Universe. We already noticed
that our Universe was prepared in a very special initial state: nearly isotropic
and homogeneous, withΩ close to unity and a flat geometry. In fact, it took
the CMB photons nearly the entire age of the Universe to travel towards us.
Therefore, it should take them twice as long to bridge acrosstheir points of
origin on opposite sides of the sky.How is it possible then that the condi-
tions of the Universe (as reflected in the nearly uniform CMB temperature)
were prepared to be the same in regions that were never in causal contact
before?Such a degree of organization is highly unlikely to occur at random.
If we receive our clothes ironed out and folded neatly, we know that there
must have a been a process that caused it. Cosmologists have identified an
analogous “ironing process” in the form ofcosmic inflation. This process is
associated with an early period during which the Universe was dominated
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temporarily by the mass density of an elevated vacuum state,and experi-
enced exponential expansion by at least∼ 60 e-folds. This vast expansion
“ironed out” any initial curvature of our environment, and generated a flat
geometry and nearly uniform conditions across a region far greater than our
current horizon. After the elevated vacuum state decayed, the Universe be-
came dominated by radiation.

The early epoch of inflation is important not just in producing the global
properties of the Universe but also in generating the inhomogeneities that
seeded the formation of galaxies within it. The vacuum energy density that
had driven inflation encountered quantum mechanical fluctuations. After
the perturbations were stretched beyond the horizon of the infant Universe
(which today would have occupied the size no bigger than a human hand),
they materialized as perturbations in the mass density of radiation and mat-
ter. The last perturbations to leave the horizon during inflation eventually
entered back after inflation ended (when the scale factor grew more slowly
than ct). It is tantalizing to contemplate the notion that galaxies, which
represent massive classical objects with∼ 1067 atoms in today’s Universe,
might have originated from sub-atomic quantum-mechanicalfluctuations at
early times.

After inflation, an unknown process, called “baryogenesis”or “leptoge-
nesis”, generated an excess of particles (baryons and leptons) over anti-
particles.v As the Universe cooled to a temperature of hundreds of MeV
(with 1MeV/kB = 1.1604×1010K), protons and neutrons condensed out of
the primordial quark-gluon plasma through the so-calledquantum chromo-
dynamics (QCD) phase transition. At about one second after the Big Bang,
the temperature declined to∼ 1 MeV, and the weakly interacting neutrinos
decoupled. Shortly afterwards the abundance of neutrons relative to pro-
tons froze and electrons and positrons annihilated. In the next few minutes,
nuclear fusion reactions produced light elements more massive than hydro-
gen, such as deuterium, helium, and lithium, in abundances that match those
observed today in regions where gas has not been processed subsequently
through stellar interiors. Although the transition to matter domination oc-
curred at a redshiftz ∼ 3, 300 the Universe remained hot enough for the
gas to be ionized, and electron-photon scattering effectively coupled ordi-
nary matter and radiation. Atz ∼ 1, 100 the temperature dipped below
∼ 3, 000 K, and free electrons recombined with protons to form neutral
hydrogen atoms. As soon as the dense fog of free electrons wasdepleted,
the Universe became transparent to the relic radiation, which is observed at
present as the CMB. These milestones of the thermal history are depicted in

vThe origin of the asymmetry in the cosmic abundance of matterover anti-matter is still
an unresolved puzzle.
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Figure 1.4 Following inflation, the Universe went through several other milestones that left
a detectable record. These include baryogenesis (which resulted in the observed
asymmetry between matter and anti-matter), the electroweak phase transition
(during which the symmetry between electromagnetic and weak interactions was
broken), the QCD phase transition (during which protons andneutrons nucleated
out of a soup of quarks and gluons), the dark matter decoupling epoch (during
which the dark matter decoupled thermally from the cosmic plasma), neutrino
decoupling, electron-positron annihilation, light-element nucleosynthesis (dur-
ing which helium, deuterium and lithium were synthesized),and hydrogen re-
combination. The cosmic time and CMB temperature of the various milestones
are marked. Wavy lines and question marks indicate milestones with uncertain
properties. The signatures that the same milestones left inthe Universe are used
to constrain its parameters.
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Figure 1.4.
The Big Bang is the only known event in our past history where particles

interacted with center-of-mass energies approaching the so-called “Planck
scale”vi [(hc5/G)1/2 ∼ 1019 GeV], at which quantum mechanics and grav-
ity are expected to be unified. Unfortunately, the exponential expansion of
the Universe during inflation erased memory of earlier cosmic epochs, such
as the Planck time.

1.3.1 Luminosity and Angular-Diameter Distances

When we look at our image reflected off a mirror at a distance of1 meter, we
see the way we looked 6 nano-seconds ago, the time it took light to travel to
the mirror and back. If the mirror is spaced1019 cm = 3 pc away, we will
see the way we looked twenty one years ago. Light propagates at a finite
speed, so by observing distant regions, we are able to see howthe Universe
looked like in the past, a light travel time ago (see Figure 1.3). The statistical
homogeneity of the Universe on large scales guarantees thatwhat we see far
away is a fair statistical representation of the conditionsthat were present in
our region of the Universe a long time ago.

This fortunate situation makes cosmology an empirical science. We do
not need to guess how the Universe evolved. By using telescopes we can
simply see the way distant regions appeared at earlier cosmic times. Since
a greater distance means a fainter flux from a source of a fixed luminosity,
the observation of the earliest sources of light requires the development of
sensitive instruments, and poses technological challenges to observers.

How faint will the earliest galaxies appear to our telescopes? In an ex-
panding Universe there is some ambiguity as to which “distance” is most
relevant. For example, the framework we have described above – in which
the clocks are synchronized relative to the Big Bang – is not appropriate for
observations, because light has a finite speed, so that a signal emitted from
one clock at timetA would be observed by another clock at a timetB > tA.
Which of these times should we use to compute the scale factorin a distance
formula? Moreover, themethodof observation influences the choice of the
relevant distance, because the photons themselves evolve as they travel.

To answer these questions, we can easily express the flux observed from
a galaxy of luminosityL at a redshiftz. The observed flux (energy per unit
time per unit telescope area) is obtained by spreading the energy emitted
from the source per unit time,L, over the surface area of a sphere whose

viThe Planck energy scale is obtained by equating the quantum-mechanical wavelength
of a relativistic particle with energyE, namelyhc/E, to its “black hole” radius∼ GE/c4,
and solving forE.
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Figure 1.5 The solid line (corresponding to the label on the left-hand side) shows log10 of
the conversion factor between the luminosity of a source andits observed flux,
4πd2

L (in Gpc2), as a function of redshift,z. The dashed-dotted line (labeled
on the right) gives the angleθ (in arcseconds) occupied by a galaxy of a 1 kpc
diameter as a function of redshift.
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radius equals the effective distance of the source,

f =
L

4πd2
L

, (1.10)

wheredL is defined as theluminosity distancein cosmology. For a flat Uni-
verse, the comoving distance of a galaxy which emitted its photons at a time
tem and is observed at timetobs is obtained by summing over infinitesimal
distance elements along the path length of a photon,cdt, each expanded by
a factor(1 + z) to the present time (corresponding to settingds2 = 0 in
equation 1.1 for a photon trajectory):

rem =

∫ tobs

tem

cdt

a(t)
=

c

H0

∫ z

0

dz′
√

Ωm(1 + z′)3 + ΩΛ

, (1.11)

wherea = (1 + z)−1. Theangular diameter distancedA, corresponding to
the angular diameterθ = D/dA occupied by a galaxy of sizeD, must take
into account the fact that we were closer to that galaxyvii by a factor(1 + z)
when the photons started their journey at a redshiftz, so it is simply given
by dA = rem/(1 + z). But to finddL we must take account of additional
redshift factors.

If a galaxy has an intrinsic luminosityL, then it would emit an energy
Ldtem over a time intervaldtem. This energy is redshifted by a factor of
(1 + z) and is observed over a longer time intervaldtobs = dtem(1 + z)
after being spread over a sphere of surface area4πr2em. Thus, the observed
flux would be

f =
Ldtem/(1 + z)

4πr2emdtobs
=

L

4πr2em(1 + z)2
, (1.12)

implying that

dL = rem(1 + z) = dA(1 + z)2. (1.13)

Unfortunately, for a flat universe with a cosmological constant, these dis-
tance integrals cannot be expressed analytically. However, a convenient
numerical approximation, valid to0.4% relative error in the range0.2 ≤
Ωm ≤ 1 (whereΩm is the total matter density) is1

dL =
c

H0
a−1 [η(1,Ωm) − η(a,Ωm)] , (1.14)

vii In a flat Universe, photons travel along straight lines. The angle at which a photon is
seen is not modified by the cosmic expansion, since the Universe expands at the same rate
both parallel and perpendicular to the line of sight.
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where

η(a,Ωm) = 2
√

s3 + 1

[

1

a4
− 0.1540

s

a3
+ 0.4304

s2

a2
+ 0.19097

s3

a
+ 0.066941s4

]−1/8

(1.15)
ands3 = 1/Ωm − 1.

The area dilution factor4πd2
L is plotted as a function of redshift in the

solid curve of Figure 1.5. If the observed flux is only measured over a
narrow band of frequencies, one needs to take account of the additional
conversion factor of(1 + z) = (dνem/dνobs) between the emitted fre-
quency intervaldνem and its observed valuedνobs. This yields the relation
(df/dνobs) = (1 + z) × (dL/dνem)/(4πd2

L).
In practice, observed brightnesses are often expressed using theAB mag-

nitudesystem. The conversion from flux density to AB magnitude is

AB = −2.5 log10

[

df

dνobs

]

− 48.6, (1.16)

where the flux density is expressed in units erg s−1 cm−2 Hz−1.

1.4 MOST MATTER IS DARK

Surprisingly, most of the matter in the Universe is not the same ordinary
matter that we are made of (see Figure 1.6). If it were ordinary matter
(which also makes stars and diffuse gas), it would have interacted with light,
thereby revealing its existence to observations through telescopes. Instead,
observations of many different astrophysical environments require the ex-
istence of some mysterious dark component of matter which only reveals
itself through its gravitational influence and leaves no other clue about its
nature. Cosmologists are like detectives who find evidence for some un-
known criminal in a crime scene and are anxious to find his/heridentity.
The evidence for dark matter is clear and indisputable, assuming that the
laws of gravity are not modified (although a small minority ofscientists are
exploring this alternative).

Without dark matter we would have never existed by now. This is be-
cause ordinary matter is coupled to the CMB radiation that filled up the
Universe early on. The diffusion of photons on small scales smoothed out
perturbations in this primordial radiation fluid. The smoothing length was
stretched to a scale as large as hundreds of millions of lightyears in the
present-day Universe. This is a huge scale by local standards, since galaxies
– like the Milky Way – were assembled out of matter in regions ahundred
times smaller than that. Because ordinary matter was coupled strongly to
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the radiation in the early dense phase of the Universe, it also was smoothed
on small scales. If there was nothing else in addition to the radiation and
ordinary matter, then this smoothing process would have hada devastating
effect on the prospects for life in our Universe. Galaxies like the Milky Way
would have never formed by the present time since there wouldhave been
no density perturbations on the relevant small scales to seed their formation.
The existence of dark matter not coupled to the radiation came to the rescue
by keeping memory of the initial seeds of density perturbations on small
scales. In our neighborhood, these seed perturbations led eventually to the
formation of the Milky Way galaxy inside of which the Sun was made as
one out of tens of billions of stars, and the Earth was born outof the debris
left over from the formation process of the Sun. This sequence of events
would have never occurred without the dark matter.

We do not know what the dark matter is made of, but from the goodmatch
obtained between observations of large-scale structure and the equations de-
scribing a pressureless fluid (see equations 2.3-2.4), we infer that it is likely
made of particles with small random velocities. It is therefore called “cold
dark matter” (CDM). The popular view is that CDM is composed of parti-
cles which possess weak interactions with ordinary matter,similarly to the
elusive neutrinos we know to exist. The abundance of such particles would
naturally “freeze-out” at a temperatureT > 1 MeV, when the Hubble ex-
pansion rate is comparable to the annihilation rate of the CDM particles.
Interestingly, such a decoupling temperature, together with a weak inter-
action cross-section and particle masses ofmc2 > 100 GeV (as expected
for the lightest, and hence stable, supersymmetric particle in simple exten-
sions of the standard model of particle physics), naturallyleads through a
Boltzmann suppression factor∼ exp{−mc2/kBT} to Ωm ∼ 1. The hope
is that CDM particles, owing to their weak but non-vanishingcoupling to
ordinary matter, will nevertheless be produced in small quantities through
collisions of energetic particles in future laboratory experiments such as the
Large Hadron Collider (LHC). Other experiments are attempting to detect
directly the astrophysical CDM particles in the Milky Way halo. A posi-
tive result from any of these experiments will be equivalentto our detective
friend being successful in finding a DNA sample of the previously uniden-
tified criminal.

The most popular candidate for the cold dark matter (CDM) particle is
a Weakly Interacting Massive Particle (WIMP). The lightestsupersymmet-
ric particle (LSP) could be a WIMP. The CDM particle mass depends on
free parameters in the particle physics model; the LSP hypothesis will be
tested at the Large Hadron Collider or in direct detection experiments. The
properties of the CDM particles affect their response to theprimordial in-
homogeneities on small scales. The particle cross-sectionfor scattering off
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Figure 1.6 Mass budgets of different components in the present day Universe and in the
infant Universe when the first galaxies formed (redshiftsz = 10–50). The CMB
radiation (not shown) makes up a fraction∼ 0.03% of the budget today, but
was dominant at redshiftsz > 3, 300. The cosmological constant (vacuum)
contribution was negligible at high redshifts (z ≫ 1).

standard model particles sets the epoch of their thermal decoupling from the
cosmic plasma.

In addition to dark matter, the observed acceleration in thecurrent ex-
pansion rate of the Universe implies that the vacuum contributes∼ 72%
of the cosmic mass density at present. If the vacuum density will behave
as a cosmological constant, it will dominate even more in thefuture (since
ρm/ρv ∝ a−3). The exponential future expansion will carry all galaxies
outside the local group out of our horizon within∼ 1011 years,2 and stretch
the characteristic wavelength of the cosmic microwave background to be
larger than the horizon in∼ 1012 years.3

The dark ingredients of the Universe can only be probed indirectly through
a variety of luminous tracers. The distribution and nature of the dark matter
are constrained by detailed X-ray and optical observationsof galaxies and
galaxy clusters. The evolution of the dark energy with cosmic time will be
constrained over the coming decade by surveys of Type Ia supernovae, as
well as surveys of X-ray clusters, up to a redshift of two.

According to the standard cosmological model, the CDM behaves as a
collection of collisionless particles that started out at the epoch of matter
domination with negligible thermal velocities, and later evolved exclusively
under gravitational forces. The model explains how both individual galaxies
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and the large-scale patterns in their distribution originated from the small,
initial density fluctuations. On the largest scales, observations of the present
galaxy distribution have indeed found the same statisticalpatterns as seen
in the CMB, enhanced as expected by billions of years of gravitational evo-
lution. On smaller scales, the model describes how regions that were denser
than average collapsed due to their enhanced gravity and eventually formed
gravitationally-bound halos, first on small spatial scalesand later on larger
ones. In this hierarchical model of galaxy formation, the small galaxies
formed first and then merged, or accreted gas, to form larger galaxies. At
each snapshot of this cosmic evolution, the abundance of collapsed halos,
whose masses are dominated by dark matter, can be computed from the ini-
tial conditions. The common understanding of galaxy formation is based
on the notion that stars formed out of the gas that cooled and subsequently
condensed to high densities in the cores of some of these halos.

Gravity thus explains how some gas is pulled into the deep potential wells
within dark matter halos and forms galaxies. One might naively expect that
the gas outside halos would remain mostly undisturbed. However, observa-
tions show that it has not remained neutral (i.e., in atomic form), but was
largely ionized by the UV radiation emitted by the galaxies.The diffuse
gas pervading the space outside and between galaxies is referred to as the
intergalactic medium (IGM). For the first hundreds of millions of years after
cosmological recombination (when protons and electrons combined to make
neutral hydrogen), the so-called cosmic “dark ages,” the universe was filled
with diffuse atomic hydrogen. As soon as galaxies formed, they started to
ionize diffuse hydrogen in their vicinity. Within less thana billion years,
most of the IGM was reionized.

The initial conditions of the Universe can be summarized on asingle sheet
of paper. The small number of parameters that provide an accurate statisti-
cal description of these initial conditions are summarizedin Table 1.1 (see
also Appendix D). However, thousands of books in libraries throughout the
world cannot summarize the complexities of galaxies, stars, planets, life,
and intelligent life, in the present-day Universe. If we feed the simple ini-
tial cosmic conditions into a gigantic computer simulationincorporating the
known laws of physics, we should be able to reproduce all the complexity
that emerged out of the simple early universe. Hence, all theinformation
associated with this later complexity was encapsulated in those simple ini-
tial conditions. Below we follow the process through which late time com-
plexity appeared and established an irreversible arrow to the flow of cosmic
time.viii

viii In previous decades, astronomers used to associate the simplicity of the early Universe
with the fact that the data about it was scarce. Although thiswas true at the infancy of
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Table 1.1 Standard set of cosmological parameters (defined and adopted throughout the
book). Based on Komatsu, E., et al.Astrophys. J. Suppl.180, 330 (2009).

ΩΛ Ωm Ωb h ns σ8

0.72 0.28 0.05 0.7 1 0.82

The basic question that cosmology attempts to answer is:What is the
composition of the Universe and what initial conditions generated the
observed structures in it? The first galaxies were shaped, more than any
other class of astrophysical objects, by the pristine initial conditions and
basic constituents of the Universe. Studying the formationprocess of the
first galaxies could reveal unique evidence for new physics that was so far
veiled in older galaxies by complex astrophysical processes.

observational cosmology, it is not true any more. With much richer data in our hands, the
initial simplicity is now interpreted as an outcome of inflation.



Chapter Two

Linear Growth of Cosmological Perturbations

After cosmological recombination, the Universe entered the “dark ages”
during which the relic CMB light from the Big Bang gradually faded away.
During this “pregnancy” period (which lasted hundreds of millions of years),
the seeds of small density fluctuations planted by inflation in the matter dis-
tribution grew up until they eventually collapsed to make the first galaxies.
Here we will describe the first stages of that process and introduce the meth-
ods conventionally used to describe these fluctuations.

2.1 GROWTH OF LINEAR PERTURBATIONS

As discussed earlier, small perturbations in density grow due to the unstable
nature of gravity. Overdense regions behave as if they reside in a closed Uni-
verse. Their evolution ends in a “big crunch”, which resultsin the formation
of gravitationally bound objects like the Milky Way galaxy.

Equation (1.6) explains the formation of galaxies out of seed density fluc-
tuations in the early Universe, at a time when the mean matterdensity was
very close to the critical value andΩm ≈ 1. Given that the mean cosmic
density was close to the threshold for collapse, a sphericalregion which was
only slightly denser than the mean behaved as if it was part ofan Ω > 1
universe, and therefore eventually collapsed to make a bound object, like a
galaxy. The material from which objects are made originatedin the under-
dense regions (voids) that separate these objects (and which behaved as part
of anΩ < 1 Universe), as illustrated in Figure 1.2.

Observations of the CMB show that at the time of hydrogen recombina-
tion the Universe was extremely uniform, with spatial fluctuations in the
energy density and gravitational potential of roughly one part in105. These
small fluctuations grew over time during the matter dominated era as a result
of gravitational instability, and eventually led to the formation of galaxies
and larger-scale structures, as observed today.

In describing the gravitational growth of perturbations inthe matter-dominated
era (z ≪ 3, 300), we may consider small perturbations of a fractional ampli-
tude|δ| ≪ 1 on top of the uniform background densityρ̄ of cold dark matter.
The three fundamental equations describing conservation of mass and mo-
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mentum along with the gravitational potential can then be expanded to lead-
ing order in the perturbation amplitude. We distinguish between physical
(or proper) and comoving coordinates (the latter expandingwith the back-
ground Universe). Using vector notation, the fixed coordinater corresponds
to a comoving positionx = r/a. We describe the cosmological expansion
in terms of an ideal pressureless fluid of particles, each of which is at fixed
x, expanding with the Hubble flowv = H(t)r, wherev = dr/dt.

Onto this uniform expansion we impose small fractional density pertur-
bations

δ(r) =
ρ(r)

ρ̄
− 1 (2.1)

where the mean fluid mass density isρ̄, with a corresponding peculiar ve-
locity which describes the deviation from the Hubble flowu ≡ v−Hr. The
fluid is then described by the continuity and Euler equations. In comoving
coordinates, where the bulk velocity vanishes, we have

∂δ

∂t
+

1

a
∇ · [(1 + δ)u] = 0 (2.2)

∂u

∂t
+Hu +

1

a
(u · ∇)u=−1

a
∇φ− 1

aρ̄
∇(δp). (2.3)

The gravitational potentialφ is given by the Newtonian Poisson equation,
in terms of the density perturbation:

∇2φ = 4πGρ̄a2δ . (2.4)

The pressurep depends on the species under consideration. For cold dark
matter, it vanishes; for an ideal gas of baryons at a fixed temperature, the
pressure perturbation is(δp) = c2sδρ̄. The sound speed for a monatomic gas
that obeys the ideal gas equation of statep = nkTe and undergoes Hubble
expansion is

c2s =
dp/da

dρ/da
=
kBTe

µmH

(

1 − 1

3

d log Te

d log a

)

, (2.5)

whereTe is the gas kinetic temperature andµ the mean molecular weight.
(For primordial neutral gas including a mass fractionYp = 0.24 of helium,
µ = 1.22.) In this section we will adopt this expression for the soundspeed,
though we note that it assumes that the temperature traces the density field
(see§2.2.1 below for a more exact treatment).

This fluid description is valid for describing the evolutionof collisionless
cold dark matter particles until different particle streams cross. The crossing
typically occurs only after perturbations have grown to become non-linear
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with |δ| > 1, and at that point the individual particle trajectories must in
general be followed.

The combination of the above equations yields, to leading order inδ,

∂2δ

∂t2
+ 2H

∂δ

∂t
= 4πGρ̄δ − c2sk

2

a2
δ, (2.6)

where the last term is the pressure force and vanishes for cold dark matter.
This linear equation has in general two independent solutions, only one of
which grows in time. Starting with random initial conditions, this “growing
mode” comes to dominate the density evolution. Thus, until it becomes non-
linear, the density perturbation maintains its shape in comoving coordinates
and grows in amplitude in proportion to a growth factorD(t). The growth
factor in a flat (matter-dominated) Universe atz < 103 is given by4

D(t) ∝
(

ΩΛa
3 + Ωm

)1/2

a3/2

∫ a

0

a′3/2 da′

(ΩΛa′3 + Ωm)3/2
. (2.7)

In the matter-dominated regime of the redshift range1 < z < 103, the
growth factor is simply proportional to the scale factora(t). The normal-
ization is usually chosen to be relative to the perturbationamplitude at the
present day; we will discuss how to determine this factor below.

In a flat Universe with a cosmological constant, this integral cannot be
written in closed form without special functions. However,an approxima-
tion accurate to∼ 2% in the rangeΩ0 > 0.1 is D(z) = D(z)/(1 + z)
with5

D(z) =
5Ω0(z)

2

[

Ω0(z)
4/7 − ΩΛ(z) + (1 + Ω0(z)/2)(1 + ΩΛ/70)

]−1
,

(2.8)
where (ifΩm + ΩΛ = 1)

Ωm(z) =
Ω0(1 + z)3

Ω0(1 + z)3 + ΩΛ,0
, (2.9)

ΩΛ(z) =
ΩΛ,0

Ω0(1 + z)3 + ΩΛ,0
, (2.10)

(2.11)

andΩΛ,0 is the present-day energy density in a cosmological constant scaled
to the critical density. HereD(z) is normalized to equal unity in a matter-
dominated Universe. At the high redshifts of most interest to us, this is a
reasonable approximation.

Interestingly, in this matter-dominated regime the gravitational potential
φ ∝ δ/a does not grow in comoving coordinates. This implies that the
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potential depth of fluctuations remains frozen in amplitudeas fossil relics
from the inflationary epoch during which they were generated. Nonlinear
collapse only changes the potential depth by a factor of order unity, but even
inside collapsed objects its rough magnitude remains as testimony to the in-
flationary conditions. This explains why the characteristic potential depth
of collapsed objects such as galaxy clusters (φ/c2 ∼ 10−5) is of the same
order as the potential fluctuations probed by the fractionalvariations in the
CMB temperature across the sky. At low redshiftsz < 1 and in the future,
the cosmological constant dominates (Ωm ≪ ΩΛ) and the density fluctua-
tions freeze in amplitude [D(t) → constant] as their growth is suppressed
by the accelerated expansion of space.

It is usually convenient to express the density field as a sum over a com-
plete set of periodic Fourier modes, each having a sinusoidal (wave-like) de-
pendence on space with a comoving wavelengthλ = 2π/k and wavenumber
k. Mathematically, we writei

δk =

∫

d3x δ(x)eik·x (2.12)

δ(x) =

∫

d3k

(2π)3
δke

−ik·x, (2.13)

with x being the comoving spatial coordinate. The characteristicamplitude
of eachk-mode defines the typical value ofδ on the spatial scaleλ. It is
straightforward to show that equation (2.6) applies to eachFourier mode
individually, so the factorD(t) also describes their growth (in the linear
regime), and the evolution of the density field in Fourier space is easy to
follow. In particular, note that different spatial scales evolve independently
in the linear regime.

It is also useful to consider the velocity fieldu. To linear order, the con-
tinuity equation (2.2) becomes∇ · u = −a(dδ/dt), or in Fourier space

−ik · uk = − a

D

dD

dt
δk, (2.14)

where we have assumed thatδk is a pure growing mode. This has the solu-
tion

uk = −iaHf(Ω)

k
δkk̂, (2.15)

wheref(Ω) = (a/D)(dD/da) ≈ Ω0.6
m to a very good approximation (note

that it is almost independent ofΩΛ). Interestingly, peculiar velocity per-
turbations grow proportionally to density fluctuations, and their growing

iNote that cosmologists typically absorb the volume factorsin the Fourier transform
into δk, which has units of volume.
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modes are parallel to the wavevector. Note also thatuk ∝ δk/k, which
implies that peculiar velocities on a given scale are sourced by gravitational
fluctuations onlarger scales than those of the density field.

2.1.1 The Power Spectrum of Density Fluctuations

The initial perturbation amplitude varies with spatial scale; typically, large-
scale regions have a smaller perturbation amplitude than small-scale re-
gions. The statistical properties of the perturbations as afunction of spatial
scale can be best captured by its Fourier transform in comoving wavenum-
bers. This approach has the convenient property that the spatial scales are
fixed in time, rather than evolve as the perturbation expands or collapses.

Because we cannot observe how particular regions mature andgrow over
time, we are typically concerned not with the amplitude of individual den-
sity perturbations or modes but with the properties of theirstatistical ensem-
ble. Most often, two complementary statistical measures are used. The first
is thecorrelation function,

ξ(x) = 〈δ(x)δ(0)〉 , (2.16)

where the angular brackets represent averaging over the entire statistical en-
semble of points separated by a comoving distancex, and where we made
use of the translational invariance of statistical averages in centering our
coordinate system on the second point. The correlation function expresses
the degree to which a particular overdensity is more likely to be surrounded
by other overdense regions. Note that for an isotropic distribution of per-
turbations,ξ is a function only of the magnitude of the spatial separation,
x = |x|.

The second is thepower spectrum,

P (k) = 〈δkδ∗k′〉 = (2π)3δD(k − k′)P (k), (2.17)

which has units of volume. This is simply related to the variance of the
amplitude of waves on a given scale. Again, it is a function only of k = |k|
for an isotropic universe.

In fact, the correlation function and power spectrum are intimately re-
lated. If we write the former using the Fourier transform ofδ(x), we obtain

ξ(x) =

〈
∫

d3k

(2π)3
δke

ik·x

∫

d3k′

(2π)3
δ∗k′

〉

(2.18)

=

∫

d3k

(2π)3

∫

d3k′

(2π)3
eik·x 〈δkδ∗k′〉 (2.19)

=

∫

d3k

(2π)3
eik·xP (k), (2.20)
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where in the first line we have used the fact thatδ(0) is real. Thusξ(r) and
P (k) are simply Fourier transforms of each other. Theoretical calculations
are generally simplest using the Fourier representation and power spectrum,
but the two approaches have different error properties so both are used reg-
ularly in the literature.

Inflation generates perturbations in which differentk-modes are statis-
tically independent, and each has a random phase constant inits sinusoid.
This makes the density field following inflation agaussian random field, and
its statistical properties are perfectly described by the power spectrum (see
§2.1.3 below). In other words, all higher-order moments and correlations
are simply functions of the power spectrum (or correlation function): no
additional parameters are needed to understand the distribution, at least un-
til nonlinear evolution becomes important (which does induce higher-order
correlations purely through gravitational instability).A very small amount
of primordial non-gaussianity can be accommodated by existing observa-
tions; the nonlinear phase of gravitational collapse generates more.

Moreover, in the standard cosmological model, inflation produces a very
simple primordial power-law spectrumP (k) ∝ kns with ns ≈ 1. Quan-
tum fluctuations during cosmic inflation naturally result ina nearly scale-
invariant spectrum because of the near constancy of the Hubble parameter
for a nearly steady vacuum density. This spectrum admits thespecial prop-
erty that gravitational potential fluctuations of all wavelengths have the same
amplitude at the time when they enter the horizon (namely, when their wave-
length matches the distance traveled by light during the ageof the Universe),
and so this spectrum is calledscale-invariant. This is easy to see: the mean
square amplitude of mass fluctuation within spheres of comoving radiusℓ is
(δM/M)2 ∝ k3P (k) for k ∼ 2π/ℓ. Therefore, the corresponding fluctu-
ation amplitude of the gravitational potential,∼ (GδM/ℓ) ∝ ℓ(1−ns)/2, is
independent of scale ifns = 1. This spectrum has the aesthetic appeal that
perturbations can always be small on the horizon scale. A different power-
law spectrum would lead to an overdensity of order unity across the horizon,
resulting in black hole formation, either in the Universe’sfuture or past.

However, the power spectrum becomes more complex as perturbations
grow at later times in a CDM universe. In particular, the modified final
power spectrum is characterized by a turnover at a scale of order the horizon
cH−1 at matter-radiation equality, and a small-scale asymptotic shape of
P (k) ∝ kns−4. The turnover results from the fact that density perturbations
experience almost no growth during the radiation dominatedera, because
the Jeans length at that time (∼ ct/

√
3; see the next chapter) is comparable

to the scale of the horizon inside of which growth is enabled by causality.
Therefore, modes on a spatial scale that entered the horizonduring the early
radiation-dominated era get trapped at their initial smalldensity contrast and
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so show a smaller amplitude relative to the power-law extrapolation of long
wavelength modes that entered the horizon during the matter-dominated era.

For a scale-invariant indexns ≈ 1, the small-scale fluctuations have the
same amplitude at horizon crossing, and with nearly no growth they have the
same amplitude on all sub-horizon mass scales at matter-radiation equality.
The associated constancy of the fluctuation amplitude on small mass scales
(in real space),δ2 ∝ P (k)k3 ∼ constant, implies a small-scale asymp-
totic slope forP (k) of ≈ −3. The resulting power-spectrum after matter-
radiation equality is often parameterized by atransfer functionthat accounts
for changes in the shape of the dark matter power spectrum up to this point.
It is defined so that

P (k, z) = T 2(k)
D2(z)

D2(zeq)
Ppri(k), (2.21)

wherePpri(k) is the primordial power spectrum. Note that the transfer func-
tion is time-independent (but scale-dependent) because itdescribes all the
evolution from inflation through the era of matter-radiation equality. The
growth factor, on the other hand, is scale-independent (buttime-dependent)
because dark matter perturbations do not have any scale-dependence dur-
ing the matter era. The transfer function is crudely described by the fitting
function6

T 2(k)Ppri(k) ∝ kns/(1 + αpk + βpk
2)2, (2.22)

with αp = 8(Ωmh
2)−1 Mpc andβp = 4.7(Ωmh

2)−2 Mpc2. This provides
a reasonable fit to the overall shape of the power spectrum, but small-scale
features and subtle modifications not captured by this simple formula are
extremely important as well. These include the effects of neutrinos with
finite mass (which wash out small-scale structure, thanks tothe relativistic
motions of these particles) and the influence of baryons, which we discuss
in detail next.7 Figure 2.1 shows the resulting matter power spectra and
transfer functions atz = 0, 5, 10, and 25, using our fiducial cosmological
parameters. Note the oscillatory features neark ∼ 0.1h Mpc−1, which are
calledbaryon acoustic oscillations, whose source we will discuss next.

2.1.2 Relative Streaming of Baryons and Cold Dark matter

Species that decouple at a particular time from the cosmic plasma (including
both the dark matter or the baryons) would show fossil evidence for acous-
tic oscillations in their power spectrum of inhomogeneities due to sound
waves in the radiation fluid to which they were coupled at early times. This
phenomenon can be understood as follows. Imagine a localized point-like
perturbation from inflation att = 0. The small perturbation in density or
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Figure 2.1 Left: The matter power spectrum in our fiducial cosmology atz = 0, 5, 10, and
25, from top to bottom.Right: The corresponding transfer function. Computed
using the publicly available code CAMB (http://camb.info).

pressure will send out a sound wave that will reach the sound horizon cst
at any later timet (see also the discussion in§1.2.3): in the radiation fluid,
wherecs ≈ c/

√
3, this sound horizon will be near the causal horizon as

well. The perturbation will therefore correlate with its surroundings up to
the sound horizon, and allk-modes with wavelengths equal to this scale
or its harmonics will be correlated. This results in a seriesof peaks in the
power-spectrum corresponding to the harmonics of this physical scale.

These peaks from radiation coupling to the dark matter sector are on very
small spatial scales (for weakly-interacting particles, they correspond to
mass scales of planets or smaller).8 The mass scales of the perturbations
that grow to become the first collapsed objects atz < 100 cross the horizon
in the radiation dominated era after the dark matter had already decoupled
from the cosmic plasma and so are largely unaffected by this streaming.

However, prior to cosmological recombination, the baryonsand the cos-
mic background radiation were tightly coupled and behaved as a single fluid,
separate from the dark matter. Because this is relatively late in the history of
star formation, the physical scales of these correlations are reasonably large:
∼ 150 comoving Mpc today. These large-scale features can be incorporated
into the transfer function and, because their locations canbe predicted from
first principles for a given cosmological model, act as “standard rulers” that
are useful in measuring the fundamental parameters or our Universe. The
induced correlations occur on such large scales that they donot themselves
appreciably affect structure formation at high redshifts.

However, a related effect is potentially very important.9 When the gas de-
coupled from the radiation atz ≈ 103, it was streaming relative to the dark
matter with a root-mean-square (rms) speed ofvbc ≈ 10−4c = 30 km s−1.
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This is much larger than the sound speed, so it has important implications
for the accretion of gas onto dark matter structures (see§3.2.2). Here we
will describe how these effects can be incorporated into linear perturbation
theory to describe gravitational instability.

Using the continuity equation for the baryons and cold dark matter sep-
arately, we can write the Fourier transform of the relative velocity between
the two species (to linear order) as

ubc(k) =
k

ik2
[θb(k) − θc(k)], (2.23)

whereθ ≡ a−1∇ · u. From equation (2.15), the power spectrum of this
relative velocity is then

∆2
vbc(k) =

k3

2π2
Ppri(k)

[

θb(k) − θc(k)

k

]2

, (2.24)

and the total variance is
〈

u2
bc(x)

〉

=
∫

(dk/k)∆2
vbc(k). Figure 2.2 shows

the variance of the velocity difference perturbations (in units of c) per ln k
as a function of the mode wavenumberk at z = 103. The power extends
to scales as large as the sound horizon at recombination,∼ 140 comoving
Mpc, but declines rapidly atk > 0.5 Mpc−1, indicating that the velocity of
the baryons relative to the dark matter was coherent over thephoton diffu-
sion (or Silk damping) scale of several comoving Mpc. This scale is larger
by two orders of magnitude than the size of the regions out of which the
first galaxies were assembled at later times. Therefore, in the rest-frame of
those galaxies, the background intergalactic baryons appeared to be moving
coherently as a wind. In the next chapter, we will examine whether this
wind had a significant effect on the assembly of baryons onto the earliest
galaxies.

In the presence of this relative motion between baryons and cold dark
matter, the perturbation analysis becomes somewhat more complex. The
simplest approach is to treat the two species as having a spatially constant
bulk velocityvbc that decays with redshift as1/a as the neutral gas falls into
the gravitational potential wells of the dark matter (see equation 2.23). The
assumption of a spatially constant background velocity is valid on scales
smaller than the coherence length of the velocity field (i.e.several comov-
ing Mpc). In the rest frame of the baryons, the analogs to equation (2.2)



38 CHAPTER 2

0.001 0.0050.010 0.0500.100 0.5001.000
0

2.´10-9

4.´10-9

6.´10-9

8.´10-9

k, Mpc-1

D
vb

c2

Figure 2.2 The variance of the velocity difference perturbations (in units ofc) between
baryons and dark matter perln k as a function of comoving wavenumberk at
z = 103. Figure credit: Tseliakhovich, D. & Hirata, C.,Phys. Rev.D82, 3520
(2010). Copyright 2010 by the American Physical Society.

and (2.3) are (note that we require equations for each variable separately)

∂δc
∂t

=
1

a
ubc · kδc − θc, (2.25)

∂θc

∂t
=

1

a
ubc · kθc −

3H2

2
(Ωcδc + Ωbδb) − 2Hθc (2.26)

∂δb
∂t

=−θb, (2.27)

∂θb

∂t
=−3H2

2
(Ωcδc + Ωbδb) − 2Hθc +

c2sk
2

a2
δb. (2.28)

The first terms on the left-hand side of the cold dark matter equations remain
here because the bulk velocity is large and so cannot be ignored during the
linearization of the basic fluid equations. When they are large compared to
the velocity divergence term, the relative streaming will have a significant
effect on structure formation. This occurs at a scale

kubc ∼
aH

〈

u2
bc

〉1/2
∼ 180

(

30 km s−1

〈

u2
bc(zrec)

〉1/2

)

(

1 + z

50

)−1/2

Mpc−1,

(2.29)
where we have scaled to the typical bulk velocity at recombination and
usedubc ∝ (1 + z)−1. The suppression scale is larger at higher red-
shift, which means that the acoustic feature will affect structure formation
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Figure 2.3 The isotropically averaged power spectrum of thematter distribution atz = 40
with and without the relative streaming motions (dashed andsolid lines, respec-
tively). Figure credit: Tseliakhovich, D. & Hirata, C.,Phys. Rev.D82, 3520
(2010). Copyright 2010 by the American Physical Society.

to some degree at even larger scales than this estimate shows(see also§3.2).
Note as well that the relative velocity term is much, much smaller than
the divergence term on scales larger than the coherence length, which has
k ∼ 1 Mpc−1, so this system of equations is reasonably accurate on large
scales as well.

Figure 2.3 shows the effect of these velocities on the total matter power
spectrum at high redshifts: because the baryons constitute∼ 18% of the
matter, the dark matter power spectrum changes significantly on the relevant
scales.

2.1.3 Normalizing the Power Spectrum

Although the shape of the power spectrum is well determined by linear
perturbation theory in an expanding universe, the overallamplitudeof the
power spectrum is not specified by current models of inflation, and is usu-
ally set by comparing to the observed CMB temperature fluctuations or to
measures of large-scale structure based on surveys of galaxies, clusters of
galaxies, or the intergalactic gas.

The most popular large-scale structure normalization is through the ob-
served mass fluctuation amplitude (at the present day) on 8h−1 Mpc, roughly
the scale of galaxy clusters. To relate this quantity to the power spec-
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trum, we must consider the statistical distribution of the smoothed den-
sity field. We define a window (or filter) functionW (r) normalized so
that

∫

d3rW (r) = 1, with the smoothed density perturbation field being
∫

d3rδ(x)W (r). The simplest observed quantity is to measure masses (rel-
ative to the mean) inside spheres of radiusR; in this case we use a “spheri-
cal top-hat” window (similar to a three-dimensional cookiecutter), in which
W = constant inside a sphere of radiusR andW = 0 outside.

The normalization of the present power spectrum atz = 0 is then spec-
ified by the variance of this density field when smoothed on theparticular
scale of8h−1Mpc, σ8 ≡ σ(R = 8h−1Mpc). For the top-hat filter, the
smoothed perturbation field is denoted byδR or δM , where the enclosed
massM is related to the comoving radiusR byM = 4πρmR

3/3, in terms
of the current mean density of matterρm. We then write the variance

〈

δ2M
〉

(relative to the mean) asii

σ2(M) =

〈

1

V

∫

d3xδ(x)W (x)
1

V

∫

d3x′δ(x′)W (x′)

〉

(2.30)

=
1

V 2

∫

d3x d3x′W (x)W (x′)ξ(|x − x′|) (2.31)

=

∫

d3k

(2π)3
P (k)

|Wk|2
V 2

, (2.32)

whereWk is the Fourier transform of the window function. For the usual
choice of a spherical top hat, this becomes

σ2(M) ≡ σ2(R) =

∫ ∞

0

dk

k
∆2(k)

[

3j1(kR)

kR

]2

, (2.33)

wherej1(x) = (sin x − x cos x)/x2 and∆2(k) = k3P (k)/2π2 is the so-
called dimensionless power spectrum.∆2 expresses the contribution, per
log wavenumber, of the power spectrum to the net variance.

While the normalization of the power spectrum only requiresσ8, we will
see in the next chapter that the functionσ(M) plays a major role in fixing
the abundance of collapsed objects. We therefore show it in Figure 2.4 as
a function of mass and redshift for our standard cosmological model. Note
thatσ2 ∝ δ2 ∝ D(t)2, so the time dependence is trivial (at least in linear
theory).

For modes with random phases, the probability for differentregions with
the same comoving sizeM to have a perturbation amplitude betweenδ and

ii Note thatσ2 can equally well be considered a function of spatial scaleR.
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Figure 2.4 The root-mean-square amplitude of linearly-extrapolated density fluctuationsσ
as a function of massM (in solar massesM⊙, within a spherical top-hat filter) at
different redshiftsz. Halos form in regions that exceed the background density
by a factor of order unity. This threshold is only surpassed by rare (many-σ)
peaks for high masses at high redshifts. When discussing theabundance of halos,
we will factor out the linear growth of perturbations and usethe functionσ(M)
at z = 0. The comoving radius of an unperturbed sphere containing a massM
is R = 1.85(M/1012M⊙)1/3 Mpc.

δ + dδ is Gaussian with a zero mean and a varianceσ2(M),

p(δ)dδ =
1√

2πσ2
e−δ2/2σ2

dδ. (2.34)

These so-called Gaussian perturbations are a key prediction of inflation;
they have the convenient property that the statistical distribution of densi-
ties is described entirely by the power spectrum (throughσ2).
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2.2 THE THERMAL HISTORY DURING THE DARK AGES

In addition to the density evolution, the second key “initial condition” for
galaxy formation is the temperature of the hydrogen and helium gas that
will collapse into the first galaxies. If it were isolated, the gas would simply
cool adiabatically with the overall expansion of the universe. In general, for
an ideal gas this cooling rate can be written as(γ−1)(ρ̇b/ρb)Te, whereρb is
the baryon density andγ = 5/3 is the adiabatic index of a mono-atomic gas.
For gas at the mean density, the factor(ρ̇b/ρb) = −3H due to the Hubble
expansion.

However, the gas is not thermally isolated: it may exchange energy with
the ambient radiation field. Although cosmological recombination atz ∼
1100 results in a nearly neutral universe, a small fraction∼ 10−4 of elec-
trons remain free until the era of the first galaxies. These free electrons
scatter off CMB photons and bring the gas closer to equilibrium with the
radiation field.

A free electron moving at a speedv ≪ c relative to the cosmic rest frame
would probe a Doppler shifted CMB temperature with a dipole pattern,

T (θ) = Tγ

(

1 +
v

c
cos θ

)

, (2.35)

whereθ is the angle relative to its direction of motion andTγ is the average
CMB temperature. Naturally, the radiation will exert a frictional force on
the electron opposite to its direction of motion. The CMB energy density
within a solid angledΩ = d cos θdφ (in spherical coordinates) would be
dǫ = aradT

4(θ)dΩ/4π (wherearad is the radiation constant). Since each
photon carries a momentum equal to its energy divided byc, the electron
will be slowed down along its direction of motion by a net momentum flux
c(dǫ/c) × cos θ. The product of this momentum flux and the Thomson
(Compton) cross-section of the electron (σT ) yields the net drag force acting
on the electron,

me
dv

dt
= −

∫

σT cos θdǫ = − 4

3c
σTaradT

4
γ v. (2.36)

The rate of energy loss by the electron is obtained by multiplying the drag
force byv, yielding

d

dt
E = − 8σT

3mec
aradT

4
γE, (2.37)

whereE = 1
2mev

2. For a thermal ensemble of electrons at a non-relativistic
temperatureT , the average energy is〈E〉 = 3

2kBTe. If the electrons reach
thermal equilibrium with the CMB, then the net rate of energyexchange
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must vanish. Therefore, there must be a stochastic heating term which bal-
ances the above cooling term whenT = Tγ . The origin of this heating term
is obvious. Electrons starting at rest will be pushed aroundby the fluctuat-
ing electric field of the CMB until the ensemble reaches an average kinetic
energy per electron of〈E〉 = 3

2kBTγ , at which point it stays in thermal
equilibrium with the radiation.

The temperature evolution of gas at the mean cosmic density,which cools
only through its coupling to the CMB and its adiabatic Hubbleexpansion
(with no radiative cooling due to atomic transitions or heating by galaxies),
is therefore described by the equation

dT̄e

dt
=

x

(1 + x)

[

Tγ − T̄e

tC(z)

]

− 2HT̄e, (2.38)

wheretC is the Compton cooling time,

tC ≡
(

8σT aradT
4
γ

3mec

)−1

= 1.2 × 108

(

1 + z

10

)−4

yr, (2.39)

andx is the fraction of all electrons which are free. For an electron-proton
gas,x = ne/(ne + nH) wherene andnH are the electron and hydrogen
densities, andTγ ∝ (1 + z). The second term on the right-hand-side of
equation (2.38),−2HTe, yields the adiabatic scalingTe ∝ (1 + z)2 in the
absence of energy exchange with the CMB.

The relative importance of these two heating and cooling mechanisms
therefore depends on the residual fraction of free electrons after cosmolog-
ical recombination. Ignoring helium for simplicity, the rate at which elec-
trons recombine is roughlyiii

dx

dt
= −αB(Te)x

2n̄H (2.40)

whereαB ∝ T−0.7
e is the case-B recombination coefficient.iv Using our

preferred cosmological parameters, the fractional changein x per Hubble
time is therefore

ṅe

Hne
≈ 7x(1 + z)0.8. (2.41)

iii At high redshifts, recombination is delayed by the large photon density and line emis-
sion. Detailed calculations atz ≫ 100 require tracking the complex network of recombina-
tion reactions.

ivThis ignores recombinations to the ground state, which generate a new ionizing pho-
ton and so do not change the net ionized fraction. See§9.2.1 for more discussion of the
recombination rate.
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Electrons “freeze-out” and cease to recombine effectivelywhen this fac-
tor becomes of order unity; after that point, the Hubble expansion time is
shorter than the recombination time. More precise numerical calculations
givex ≈ 3 × 10−4 atz ≈ 200, as shown in Figure 2.5.

Inserting this value into equation (2.38), we find that the small fraction of
residual electrons enforces thermal equilibrium between the gas and CMB
down toz ≈ 200, when Compton heating finally becomes inefficient. Fig-
ure 2.5 shows a more exact calculation: note how the gas and CMB temper-
atures begin to depart atz ∼ 200, and the gas begins to follow the expected
adiabatic evolutionTe ∝ (1 + z)2 atz ∼ 100.

Note, however, that Compton cooling can become important again if the
Universe is “reionized” by stars or quasars; oncex ≈ 1, the Compton cool-
ing time is still shorter than the age of the Universe (and hence significant
relative to adiabatic cooling) down to a redshiftz ∼ 6.

2.2.1 Fluctuations in the IGM Temperature

Equation (2.38) describes the evolution of the mean IGM temperature. How-
ever, two factors can induce inhomogeneities in this field. First, the CMB
temperature varies slightly across the Universe, so each electron will scatter
off a differentTγ . Second, the adiabatic expansion term depends on the lo-
cal density. In an overdense region, where gravity slows theexpansion (or
even causes contraction), the cooling is slower (and may turn into heating);
in an underdense region, the cooling accelerates. Thus, theIGM will be
seeded by small temperature fluctuations reflecting its density structure.

To describe these fluctuations, we writeδT as the fractional temperature
fluctuation andδγ as the photon density fluctuation and note that (for a
blackbody)δγ = 4δTγ , where the latter is the photon temperature fluctu-
ation. Then the analog of equation (2.38) is

dδT
dt

=
2

3

dδb
dt

+
xe(t)

tC(z)

[

δγ

(

T̄γ

T̄e
− 1

)

+
T̄γ

T̄e
(δTγ − δT )

]

. (2.42)

Here the first term describes adiabatic cooling due to expansion (allowing
for variations in the expansion rate) and the second accounts for variations
in the rate of energy exchange through Compton scattering (which can result
from variations in either the gas or photon temperatures); overbars denote
the mean values for the CMB and electron temperatures.

Meanwhile, the fluctuations in the baryon temperature influence the den-
sity evolution as well. Allowing arbitrary fluctuations in the temperature
field, rather than forcing them to trace the density fluctuations, changes
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Figure 2.5 Thermal and ionization history of the Universe before the first stars form (pan-
els a and b, respectively). In the top panel, the solid and dotted curves show
Te andTγ , respectively. Note how the ionized fractionx decreases rapidly af-
ter recombination atz ∼ 1100 and then “freezes-out” atz ∼ 300. Mean-
while, Compton scattering keepsTe ≈ Tγ until z ∼ 200, after which the de-
clining CMB energy density and small residual ionized fraction are no longer
sufficient to maintain thermal contact between the gas and CMB. At later times,
Te ∝ (1 + z)2 as appropriate for an adiabatically expanding non-relativistic
gas. These results were produced with the publicly available code RECFAST
(http://www.astro.ubc.ca/people/scott/recfast.html).
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equation (2.6) to read

∂2δ

∂t2
+ 2H

∂δ

∂t
=

3

2
H2 (Ωcδc + Ωbδb) −

k2

a2

kBT̄e

µmH
(δb + δT ). (2.43)

This, together with equations (2.42), (2.38), and (2.40) for the temperature
and ionized fraction evolution, provide a complete set of equations to trace
the density and temperature evolution, in the absence of relative streaming.
If streaming is included, the final term in equation (2.28) must be replaced
by the final term in equation (2.43).

Figure 2.6 shows the resulting power spectra forδc, δb, δT , andδTγ at
four different redshifts. Note how the photon perturbations are strongly sup-
pressed on small scales (below the sound horizon) thanks to their large pres-
sure. Near recombination, the baryonic perturbations are also suppressed on
these scales, especially in the temperature. After recombination, the baryons
fall into the dark matter potential wells, with their perturbations rapidly
growing, and temperature fluctuations also grow quickly thanks largely to
the variations in the adiabatic cooling rate. The turnover at very small scales
in the baryonic power spectrum is due to the finite pressure ofthe gas. The
baryon acoustic oscillations are also visible neark ∼ 0.01 Mpc−1.
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Figure 2.6 Power spectra for density and temperature fluctuations versus comoving
wavenumber at four different redshifts. The curves show theCDM density
(solid), baryon density (dotted), baryon temperature (short-dashed) and photon
temperature (long-dashed). These curves do not include therelative streaming
of the baryons and cold dark matter. Figure credit: Naoz, S. &Barkana, R.,
Mon. Not. R. Astron. Soc., 362, 1047 (2005). Copyright 2005 by the Royal
Astronomical Society.



Chapter Three

Nonlinear Structure and Halo Formation

In the last chapter, we have followed the evolution of structure in the linear
regime, when the perturbations are small. Of course, most ofthe objects we
study with telescopes are far outside of this regime, with typical densities
many thousands of times the cosmic mean. In this chapter, we will take the
next steps toward understanding these objects by studying the evolution of
perturbations in the nonlinear regime. We will focus for themost part on
analytic models that shed light on the physical processes involved.

The advent of computer technology has made numerical studies of non-
linear evolution almost routine, and many of today’s theoretical calculations
follow this path. The analytic approaches we will describe inform these cal-
culations, but the numerical simulations allow us to sharpen our conclusions
and predictions. We will discuss this synergy and describe “semi-analytic”
models that can be written analytically but whose ultimate justification lies
in their good agreement with numerical simulations. We willfinally de-
scribe the fundamental aspects of computational methods inthe last section
of the chapter.

3.1 SPHERICAL COLLAPSE

Existing cosmological data suggests that the dark matter is“cold,” that is,
its pressure is negligible during the gravitational growthof galaxies. This
makes the nonlinear evolution relatively simple, as it depends purely on the
gravitational force. We can therefore make some progress inunderstanding
galaxy formation by considering models for this gravitational growth that
are sufficiently simple to extend into the nonlinear regime.

For simplicity, let us consider an isolated, spherically symmetric density
or velocity perturbation of the smooth cosmological background and exam-
ine the dynamics of a test particle at a radiusr relative to the center of sym-
metry. Birkhoff’s theorem (see§1.2.2) implies that we may ignore the mass
outside this radius in computing the motion of our particle.The equation
of motion describing the system reduces to the usual Friedmann equation
for the evolution of the scale factor of a homogeneous Universe, but with
a density parameterΩ that now takes account of the additional mass inte-
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rior to the shell and its modified expansion velocity. In particular, despite
the arbitrary density and velocity profiles given to the perturbation, only the
total mass interior to the particle’s radius and the peculiar velocity at the
particle’s radius contribute to the effective value ofΩ. We may thus find
a solution to the particle’s motion which describes its departure from the
background Hubble flow and its subsequent collapse or expansion. This so-
lution holds until our particle crosses paths with one from adifferent radius,
which happens rather late for most initial conditions.

As with the Friedmann equation for a smooth Universe, it is possible to
reformulate the problem in a Newtonian form. At some early epoch corre-
sponding to a scale factorai ≪ 1, we consider a spherical patch of uniform
overdensityδi, making a so-called ‘top-hat’ perturbation. IfΩm is essen-
tially unity at this time and if the perturbation is a pure growing mode, then
the initial peculiar velocity is radially inward with magnitudeδiH(ti)r/3,
whereH(ti) is the Hubble constant at the initial time andr is the radius
from the center of the sphere. This can be easily derived frommass con-
servation (the continuity equation) in spherical symmetry. The collapse of a
spherical top-hat perturbation beginning at radiusri is described by

d2r

dt2
= H2

0ΩΛ r −
GM

r2
, (3.1)

wherer is the radius in a fixed (not comoving) coordinate frame,H0 is
the present-day Hubble constant, and the unperturbed Hubble flow veloc-
ity (to which the above-mentioned peculiar velocity shouldbe added) is
given by dr/dt = H(t)r. The total mass enclosed within radiusr is
M = (4π/3)r3i ρi(1 + δi), with ρi being the background density of the
Universe at timeti. We next define the dimensionless radiusx = ai(r/ri)
and rewrite equation (3.1) as

1

H2
0

d2x

dt2
= −Ωm

2x2
(1 + δi) + ΩΛx. (3.2)

Henceforth we will assume a flat universe withΩΛ = 1 − Ωm. Our initial
conditions for the integration of this orbit are

x(ti) = ai (3.3)

dx

dt
(ti) = H(ti)x(ti)

(

1 − δi
3

)

= H0ai

(

1 − δi
3

)

√

Ωm

a3
i

+ ΩΛ, (3.4)

whereH(ti) = H0[Ωm/a
3
i + (1 − Ωm)]1/2 is the Hubble parameter for a
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flat Universe at the initial timeti. Integrating equation (3.2) yields

1

H2
0

(

dx

dt

)2

=
Ωm

x
(1 + δi) + ΩΛx

2 +K, (3.5)

whereK is a constant of integration. Evaluating this at the initialtime and
dropping terms of orderai (with δi ∝ ai), we find

K = − 5δi
3ai

Ωm. (3.6)

If K is sufficiently negative, the particle will turn around and the sphere will
collapse to zero size at a time

H0tcoll = 2

∫ amax

0
da
(

Ωm/a+K + ΩΛa
2
)−1/2

, (3.7)

whereamax is the value ofa which sets the denominator of the integrand
to zero and we have used the fact thatδi ≪ 1. (The integral itself deter-
mines the total expansion time; the factor of two accounts for the time from
maximum expansion to collapse.) The analogy to a test particle escaping a
point mass in equation (3.1) is illuminating here: in that case the constant
K is simply proportional to the total energy per unit mass of the system,
which determines whether the particle escapes to infinity ornot. Here, a
large negativeK (enough to overcome the effective repulsive force from the
cosmological constant) implies the same recollapse.

It is easier to solve the equation of motion analytically forthe regime in
which the cosmological constant is negligible,ΩΛ = 0 andΩm = 1 (ad-
equate for describing redshifts1 < z < 103). There are three branches
of solutions: one in which the particle turns around and collapses, another
in which it reaches an infinite radius with some asymptotically positive ve-
locity, and a third intermediate case in which it reaches an infinite radius
but with a velocity that approaches zero. In fact, although we have cast
this problem as a test particle in an overdense or underdenseregion, we
could have developed exactly the same equations by carving out a spheri-
cal region from a truly uniform medium. Then the three possibilities would
simply correspond to closed, open, and flat Universes (withΩΛ = 0). The
three solutions may be written as:

r = A(1 − cos η)
t = B(η − sin η)

}

Closed (0 ≤ η ≤ 2π) (3.8)

r = Aη2/2
t = Bη3/6

}

Flat (0 ≤ η ≤ ∞) (3.9)
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Figure 3.1 Stages of the spherical collapse model. At first, the overdensity (in gray) ex-
pands, though its excess gravity quickly slows that expansion below that of the
Hubble flow. When the real fractional overdensity reaches9π2/16 ≈ 5.6 (corre-
sponding to alinearizedoverdensity of 1.06), the expansion stops atturnaround
and then begins to recollapse. When the overdensity reaches18π2 ≈ 178 (cor-
responding to alinearizedoverdensity of 1.69), the perturbationvirializes as a
collapsed dark matter halo.

r = A(cosh η − 1)
t = B(sinh η − η)

}

Open (0 ≤ η ≤ ∞) (3.10)

whereA3 = GMB2 applies in all cases even though the constants have dif-
ferent values in each one. All three solutions haver3 = 9GMt2/2 ast goes
to zero, which matches the linear theory expectation that the perturbation
amplitude get smaller as one goes back in time. In the closed case, the shell
turns around at timeπB and radius2A (when its density contrast relative
to the background of anΩm = 1 Universe is9π2/16 = 5.6), and collapses
to zero radius at time2πB. Interestingly, these collapse times are indepen-
dent of the initial distance from the origin: perturbationswith fixed initial
density contrast collapse homologously, with all shells turning around and
collapsing at the same time. Figure 3.1 illustrates the stages of this collapse
process.

This is the fully nonlinear solution for the simplified problem of collapse
of a purely spherical top hat perturbation. Of course, the real density dis-
tribution of the Universe is much more complicated. Although we cannot
describe analytically the full nonlinear evolution of density perturbations,
we can fully describe their linear evolution. A compromise is thento use
this linear evolution to identify regions (such as galaxies) where spherical
nonlinear evolution is not a bad approximation. It is therefore useful to
determine the mapping between thelinear density field described by pertur-
bation theory and thenonlineardensities in the spherical model.

To do this, we are faced with the problem of relating the spherical collapse
parametersA,B, andM to the linear theory density perturbationδ. This
exercise is straightforward for the case ofΩΛ = 0 andΩm = 1 or K =
0 (K > 0 [K < 0] produces an open [closed] model). By substituting
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equation (3.8) into equation (3.5) at the turnaround radius, we find

A =
ri
2ai

(

5δi
3ai

)−1

(3.11)

B =
1

2H0

(

5δi
3ai

)−3/2

. (3.12)

In anΩm ≈ 1 Universe, where1 + z = (3H0t/2)
−2/3, we find that a shell

collapses at redshift1 + zc = 0.5929δi/ai. Using the fact that,in linear
theory, perturbations grow asδ ∝ t2/3 ∝ a in the matter dominated era,
the quantityδ/a is constant with time. Thus, the linearized overdensity of
a shell collapsing at redshiftzc had alinearizedoverdensity extrapolated to
the present day ofi

δcrit(zc) =
1.686

D(zc)
≈ 1.686(1 + zc), (3.13)

whereD(z) is the linear growth factor (see equation 2.7), although thetrue
density (computed with the full nonlinear theory) differs.This critical den-
sity plays a key role in calculations of the halo abundance below.

Of course, we do not expect a real object to collapse to a zero size;
anisotropies and angular momentum in the initial distribution will prevent
perfect collapse. Instead, we envision that the material will virialize, with
strong particle interactions transforming the bulk kinetic energy of collapse
into random velocities. The result is adark matter halowith a centrally-
concentrated mass distribution; we will discuss the properties of such halos
in §3.3 below.

While this derivation has been for spheres of constant density, we may
treat a general spherical density profileδi(r) up until shell crossing. A par-
ticular radial shell evolves according to the mass interiorto it; therefore, we
define the average overdensityδi

δi(R) =
3

4πR3

∫ R

0
d3rδi(r), (3.14)

so that we may useδi in place ofδi in the above formulae. Ifδi is not
monotonically decreasing withR, then the spherical top-hat evolution of
two different radii will predict that they cross each other at some late time;
this is known asshell-crossingand signals the breakdown of the solution.
Even well-behavedδi profiles will produce shell crossing if shells are al-
lowed to collapse tor = 0 and then re-expand, since these expanding shells

iLinear evolution also givesδ0 = 1.063(1 + zc) at turnaround.
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will cross infalling shells. In such a case, first-time infalling shells will
never be affected prior to their turn-around; the more complicated behavior
after turn-around is a manifestation of virialization. While the end state for
general initial conditions cannot be predicted, various results are known for
a self-similar collapse, in whichδ(r) is a power-law, as well as for the case
of secondary infall models atz > 1 whenΩm ≈ 1.10

3.2 COSMOLOGICAL JEANS MASS

Of course, the most interesting components of galaxies – stars, quasars,
and people – are not made of dark matter but of baryons. As the density
contrast between a spherical gas cloud and its cosmic environment grows,
two main forces come into play. The first is gravity and the second involves
the pressure gradient of the gas. The second modifies the simple picture of
spherical collapse above for the baryonic matter.

We can obtain a rough estimate of the relative importance of these forces
from the following simple considerations (see Figure 3.2).The increase
in gas density near the center of a cloud sends out a pressure wave which
propagates outward at the speed of soundcs ∼ (kBT/mp)

1/2 whereT is
the gas temperature. The wave tries to even out the density enhancement,
consistent with the tendency of pressure to resist collapse. At the same time,
gravity pulls the cloud together in the opposite direction.The characteristic
time-scale for the collapse of the cloud is given by its radius R divided
by the free-fall speed∼ (2GM/R)1/2, yielding tcoll ∼ (G〈ρ〉)−1/2 where
〈ρ〉 = M/(4πR3/3) is the characteristic density of the cloud as it turns
around on its way to collapse.ii

If the sound wave does not have sufficient time to traverse thecloud dur-
ing the free-fall time, namelyR > cstcoll, then the cloud will collapse. Un-
der these circumstances, the sound wave moves outward at a speed that is
slower than the inward motion of the gas, and so the wave is simply carried
along together with the infalling material. On the other hand, the collapse
will be inhibited by pressure for a sufficiently small cloud with R < cstcoll.
The transition between these regimes is defined by the so-called Jeans ra-
dius, RJ ∼ cstcoll, which determines how large a perturbation must be be-
fore gravitational instability triggers collapse.

More precisely, in a static, infinite, uniform gas (with density ρ and sound
speedcs) that obeys Newtonian gravity theJeans lengthλJ is defined as

ii Substituting the mean density of the Earth to this expression yields the characteristic
time it takes a freely-falling elevator to reach the center of the Earth from its surface (∼ 1/3
of an hour), as well as the order of magnitude of the time it takes a low-orbit satellite to go
around the Earth (∼ 1.5 hours).
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Figure 3.2 The Jeans criterion for gravitational collapse of baryonic material. In(a), the
outward pressure gradient exceeds the inward gravitational force, so the region
is stable. In(b), the opposite is true, and the resulting instability causesrunaway
collapse. Note that, if the pressure changes over time, a time-averaged pressure
restoring force must be used, as described in§3.2.1.

the critical wavelength that separates oscillatory and exponentially-growing
density perturbations. A detailed stability analysis yields

λ2
J =

πc2s
Gρ

, (3.15)

The Jeans mass is defined as the mass within a sphere of radiusλJ/2, or

MJ =
4π

3
ρ

(

λJ

2

)3

. (3.16)

This corresponds to associating the region in which a sine orcosine wave
is positive (of widthλJ/2) as the “object” that is collapsing. In a perturba-
tion with a mass greater thanMJ, the self-gravity cannot be supported by
the pressure gradient, and so the gas is unstable to gravitational collapse.
The Newtonian derivation of the Jeans instability suffers from a conceptual
inconsistency, as the unperturbed gravitational force of the uniform back-
ground must induce bulk motions. However, this inconsistency is remedied
when the analysis is done in an expanding Universe.

The perturbative derivation of the Jeans instability criterion can be car-
ried out in a cosmological setting by considering a sinusoidal perturbation
superposed on a uniformly expanding background. Here, as inthe New-
tonian limit, there is a critical wavelengthλJ that separates oscillatory and
growing modes. Although the expansion of the background slows down the
exponential growth of the amplitude to a power-law, the fundamental con-
cept of a minimum mass that can collapse at any given time remains the
same.
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We follow the notation of§2.1.2 and consider a mixture of dark matter
and baryons with density parametersΩc(z) andΩb(z), respectively. We
write Ωm(z) for the total matter density. We will examine the evolution of a
single Fourier mode on a scale much smaller than the horizon.In comoving
coordinates, we then want to solve equation (2.6) for the critical wavenum-
ber for collapse. (Here for simplicity we are ignoring the relative streaming
of the baryons and dark matter as well as temperature fluctuations, but see
below.) The Jeans wavelengthλJ = 2π/kJ is obtained by setting the right-
hand side of equation (2.6) to zero, and solving for the critical wavenumber
kJ:

k2
J =

2

3

aH

cs
(3.17)

The critical wavelengthλJ (and therefore the massMJ) is clearly time-
dependent in general.

For a concrete estimate, we need an expression for the sound speed. We
adopt an ideal gas equation of state for the baryons with an adiabatic index
(or specific heat ratio)γ=5/3. Initially, at time t = ti, we suppose that
the gas temperature is uniformTb(R, ti)=Ti. As described in§2.2, at very
high redshifts the baryon temperature traces the CMB temperature,Tb ∝
Tγ ∝ (1 + z), while at z < zt ∼ 100 they instead cool adiabatically,

Tb ∝ ρ
(γ−1)
b ∝ (1 + z)2. We will therefore account for both possibilities

with a parameterβT so thatTb ∝ (1 + z)βT −1. In that case, we can include
gas temperature perturbations as well and write equation (2.43) as

δ̈b + 2Hδ̇b =
3

2
H2 (Ωbδb + Ωcδc)−
kTi

µmp

(

k

a

)2
(ai

a

)(1+βT )
(

δb +
2

3
βT [δb − δb,i]

)

.(3.18)

Hereµ = 1.22 is the mean atomic weight of the neutral primordial gas in
units of the proton mass. The last term on the right hand side takes into
account the extra pressure gradient force in∇(ρbT ) = (T∇ρb + ρb∇T ),
arising from the temperature gradient which develops in theadiabatic limit.
We infer from equation (3.18) that, as time proceeds, perturbations with
increasingly smaller initial wavelengths stop oscillating and start to grow.

To estimate this scale, we assumeδb ∼ δc and consider sufficiently high
redshifts at which the Universe is matter dominated (so thatΩm ≈ 1). Fol-
lowing cosmological recombination atz ≈ 103, the residual ionization of
the cosmic gas keeps its temperature locked to the CMB temperature (via
Compton scattering) down to a redshift ofz ≈ 200 (see§2.2 and Figure 2.5)
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In this redshift range,βT = 0 and

kJ ≡ (2π/λJ) = [2kTγ,0/3µmp]
−1/2

√

ΩmH0, (3.19)

whereTγ,0 is the CMB temperature today. Then the Jeans mass is redshift
independent and obtains a value (for the total mass of baryons and dark
matter)

MJ ≡ 4π

3

(

λJ

2

)3

ρ̄c = 1.35 × 105

(

Ωmh
2

0.15

)−1/2

M⊙, (3.20)

whereρ̄c is the average comoving matter density.
On the other hand, atz < 100, the gas temperature declines adiabatically

with βT = 1 and the total Jeans mass obtains the value

MJ = 4.54× 103

(

Ωmh
2

0.15

)−1/2(
Ωbh

2

0.022

)−3/5(
1 + z

10

)3/2

M⊙. (3.21)

These equations set the minimum threshold mass for gas clumps to form
in the early Universe. We emphasize that the values depend onthe IGM
temperature, which we have assumed either traces the CMB or cools adia-
batically. We will see in later chapters that radiative processes – especially
photoionization – can strongly influence the IGM temperature, increasing
the Jeans mass dramatically.

So far, we have ignored similar effects in the dark matter component:
although these collisionless particles do not feel a pressure force, their in-
trinsic velocity dispersion plays an analogous role to pressure, and a similar
criterion for collapse exists. However, in popularcold dark matter models
with weakly-interacting massive particles, the Jeans massof the dark mat-
ter alone is negligible but non zero, of the order of the mass of a planet
like Earth or Jupiter.11 All halos between this minimum clump mass and
∼ 105M⊙ are expected to contain mostly dark matter and little ordinary
matter. Warm dark matter, with a moderately large velocity dispersion,
could change this expectation and – if its Jeans mass exceedsthat of the
baryons – substantially modify the early phases of structure formation.

3.2.1 The Filtering Mass

Even within linear theory, the Jeans mass is related only to the evolution
of perturbations at a given time. When the Jeans mass itself varies with
time, the overall suppression of the growth of perturbations depends on a
time-weighted Jeans mass. The proper time-weighted mass iscalled the
filtering mass12 MF = (4π/3) ρ̄ (πa/kF )3, written in terms of the comov-
ing wavenumberkF associated with the “filtering scale”. This scale can be
derived as follows.
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Consider a growing mode perturbation in the dark matterδc and baryons
δb in the limit where the baryons are gravitationally unimportant (Ωb ≪
Ωm). In this regime, the linear perturbation equations admit asimple solu-
tion in the special case where the Jeans wavenumberkJ is constant in time,

δb(t, k) =
δc(t, k)

1 + k2/k2
J

, (3.22)

where the dark matter fluctuation grows in proportion to the linear growth
factor, δc ∝ D(t) (equation 2.7). In the general case where the Jeans
wavenumberkJ is time-dependent, we can identify the proper time averag-
ing by considering the perturbative effect of gas pressure on large scales. We
therefore expand the ratioδb(t, k)/δc(t, k) in powers ofk2 with δb(t, k =
0) = δc(t, k = 0). The ratio between the linear overdensity of the baryons
and dark matter in the limit of smallk can then be written as

δb
δc

= 1 − k2

k2
F

+ ... . (3.23)

or equivalently

δb(t, k)

δc(t, k)
= 1 − A(t)

D(t)
k2, (3.24)

whereA(t) ≡ D(t)/k2
F can be found by substituting the latter relation into

the coupled linear growth equations forδb andδc and ignoring terms of order
k4 or higher (equation 2.6). This gives the differential equation,

d2A

dt2
+ 2H

dA

dt
=
c2s
a2
D(t). (3.25)

The filtering wavenumberkF is the solution to this equation. Writing it
in terms of the Jeans wavenumberkJ (using the latter’s relation tocs in
equation 3.17),

1

k2
F (t)

=
1

D(t)

∫ t

0
dt′ a2(t′)

D̈(t′) + 2H(t′)Ḋ(t′)

k2
J(t

′)

∫ t

t′

dt′′

a2(t′′)
. (3.26)

At high redshifts (whereΩm → 1), this relation simplifies to

1

k2
F (t)

=
3

a

∫ a

0

da′

k2
J(a

′)

(

1 −
√

a′

a

)

. (3.27)

Figure 3.3 contrasts the time-averaged filtering mass (computed using
a full perturbative analysis, without the simplifications of equation 3.27)
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Figure 3.3 The Jeans and filtering masses as a function of redshift. The dot-dashed curve
shows the Jeans mass computed with equation (3.17), while the thin solid curve
shows the filtering mass from equation (3.27). The other lines include baryon

streaming: the dashed and dotted takevbc =
˙

v2
bc

¸1/2
and2

˙

v2
bc

¸1/2
, while

the thick solid line averages over the entire velocity distribution. Figure credit:
Tseliakhovich, D., Barkana, R., & Hirata, C.,Mon. Not. R. Astron. Soc., 418,
906 (2011). Copyright 2011 by the Royal Astronomical Society.

with the instantaneous Jeans mass (thin solid and dot-dashed curves, respec-
tively). Note how the Jeans mass declines with cosmic time asthe Universe
cools, but the filtering mass remains roughly constant over this wide redshift
interval. The filtering mass is initially much smaller than the Jeans mass be-
cause the baryon fluctuations are suppressed after recombination and must
then catch up to the dark matter. But it remains roughly constant with red-
shift, whereas the Jeans mass declines rapidly as the Universe expands and
cools. Byz ∼ 10, the Jeans mass is several times smaller than the filtering
mass.

It is conventional to assume that the Jeans or filtering mass accurately re-
flects the threshold for baryonic structure formation. However, linear theory
only specifies whether an initial perturbation, characterized by the parame-
tersk, δdm,i, δb,i andti, begins to grow, and the above analysis is perturba-
tive (valid only as long asδb andδc are much smaller than unity). Asδb and
δc grow and become larger than unity, the density profiles startto evolve and
dark matter shells may cross baryonic shells due to their different dynam-
ics. Hence the amount of mass enclosed within a given baryonic shell may
increase with time, until eventually the dark matter pulls the baryons with
it and causes their collapse even for objects nominally below the filtering
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mass. To determine the minimum mass of the resulting nonlinear baryonic
object following the shell-crossing and virialization of the dark matter, we
typically appeal to the spherical collapse model describedin the previous
section.

3.2.2 Primordial Streaming of Baryons and Halo Formation

As we saw in§ 2.1.2, the baryonic gas also has a substantial relative velocity
to the baryons at early times. Figure 2.2 shows the variance of the velocity
difference perturbations (in units ofc) per ln k as a function of the mode
wavenumberk at z = 103. The power declines rapidly atk > 0.5 Mpc−1,
indicating that the velocity of the baryons relative to the dark matter was
coherent over the photon diffusion (Silk damping) scale of several comov-
ing Mpc. This scale is much larger than the filtering mass, so to these halos
the background intergalactic baryons appeared to be movingcoherently as
a wind. It is therefore important to examine whether this wind had a signif-
icant effect on the assembly of baryons onto the earliest galaxies.

By z ∼ 50, the typical streaming velocity∼ 1.5 km s−1 corresponded
to an equivalent gas temperatureTbc ∼ mpv

2
bc/kB = 270 K[(1 + z)/50]2,

well above the IGM temperature. Effectively, the relative velocity acts as an
increased sound speed (since it needs to be dissipated upon virialization of
the gas) and prevents the baryons from settling into the shallowest potential
wells: very roughly, the sound speed in equation (2.6) and (3.17) should be
replaced byv2

eff ≡ (v2
bc + c2s) to account for this. Figure 3.4 illustrates this

in a cartoon fashion.
The effect on the filtering mass is quite dramatic. Followingthe pertur-

bative procedure outlined in§3.2.1 with the full set of linear perturbation
equations (2.25)–(2.28), and including the temperature fluctuations as in
§2.2.1, we can then determine the effective filtering mass as afunction of
the streaming velocityvcb. The thick solid curve in Figure 3.3 shows this
quantity averaged over the full streaming velocity distribution (the dashed
and dotted lines show the results at specific velocities). These increase the
minimum mass for baryonic accretion by nearly an order of magnitude (on
average) over naive expectations, though of course the actual value will de-
pend on the local streaming velocity. (We will return to thissuppression in
the next section from a slightly different angle; see Fig. 3.9.)

3.3 HALO PROPERTIES

When an object above the Jeans mass collapses, the dark matter forms a
halo inside of which the gas may cool, condense to the center,and eventu-
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Figure 3.4 Cartoon representation of the effects of the relative streaming of baryons and
dark matter on halo formation. In the absence of these motions (left), dark mat-
ter potential wells (which formed before recombination) attract nearby baryons,
quickly building up their gas content so long as their total mass exceeds the fil-
ter mass. But when these motions are present (right), the baryons may move
so quickly that they do not respond strongly to the dark matter potential unless
they happen to pass very close to its center. In this case, baryonic accretion onto
dark matter halos can be strongly suppressed (and can even affect dark matter
accretion, by decreasing the total halo mass).

ally fragment into stars. The dark matter cannot cool since it has very weak
interactions. As a result, a galaxy emerges with a central core that is occu-
pied by stars and cold gas and is surrounded by an extended halo of invisible
dark matter. Since cooling eliminates the pressure supportfrom the gas, the
only force that can prevent the gas from sinking all the way tothe center and
ending up in a black hole is the centrifugal force associatedwith its rotation
around the center (angular momentum). The slight (∼ 5%) rotation, given
to the gas by tidal torques from nearby galaxies as it turns around from the
initial cosmic expansion and gets assembled into the object, is sufficient to
stop its infall on a scale which isan order of magnitude smallerthan the
size of the dark matter halo (the so-called “virial radius”). On this stopping
scale, the gas is assembled into a thin disk and orbits aroundthe center for
an extended period of time (see§8.4), during which it tends to break into
dense clouds which fragment further into denser clumps. Within the com-
pact clumps that are produced, the gas density is sufficiently high and the
gas temperature is sufficiently low for the Jeans mass to be oforder the mass
of a star. As a result, the clumps fragment into stars and a galaxy is born;
we discuss the physics of this process in Part II.

These dark matter halos therefore form the fundamental units within which
astronomical objects form, and it is important to understand their properties.
By solving the equation of motion (3.1) for a spherical overdense region, we
can relate the characteristic radius and gravitational potential well of each
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of these galaxies to their mass and their redshift of formation. In principle,
a spherical region would collapse to a point mass, but of course the real
world is not so idealized. As already mentioned, even a slight violation of
the exact symmetry of the initial perturbation can prevent the top-hat from
collapsing entirely. Instead, the halo reaches a state of virial equilibrium
through violent dynamical relaxation. We are familiar withthe fact that the
circular orbit of the Earth around the Sun has a kinetic energy which is half
the magnitude of the gravitational potential energy. According to thevirial
theorem, this happens to be a property shared by all dynamically relaxed,
self-gravitating systems.

We may therefore useU = −2K to relate the potential energyU to
the kinetic energyK in the final state of a collapsed halo. This implies
that the virial radius is half the turnaround radius (where the kinetic energy
vanishes). Within the context of the spherical collapse model in §3.1, let
us suppose that virialization occurs when the spherical perturbation would
otherwise collapse completely, at twice the turnaround time. In a flat matter-
dominated universe (appropriate at the high redshifts of most interest to us),
a ∝ t2/3, so the Universe would have expanded by a factor22/3 between
turnaround and virialization, so its mean density would have fallen by a
factor of four. Thus the final density of the virialized object relative to the
critical density is

∆vir(Ωm = 1) ≡ ρvir(zvir)

ρ̄crit(zvir)
=

(

9π2

16

)

× 8 × 4 = 18π2 ≈ 178, (3.28)

where the first factor is the overdensity at turnaround (see§3.1), the second
is the inverse of the change in volume from turnaround, and the last is the
change in the mean density of the Universe over the collapse interval. Note
that the virial overdensity at collapse implies that the dynamical time within
the virial radius of galaxies,∼ (Gρvir)

−1/2, is of order a tenth of the age of
the Universe at any redshift.

In a Universe withΩm + ΩΛ = 1 the virial overdensity at the collapse
redshift admits the fitting formula13

∆c = 18π2 + 82d− 39d2 , (3.29)

whered ≡ Ωm(z) − 1 is evaluated at the collapse redshift andΩm(z) is
defined in equation (2.9).

A halo of massM collapsing at redshiftz ≫ 1 thus has a virial radius

rvir = 1.5

[

Ωm

Ωm(z)

∆c

18π2

]−1/3( M

108M⊙

)1/3(1 + z

10

)−1

kpc , (3.30)
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Figure 3.5 Virial radius over a wide range of halo masses and redshifts (equation 3.30).
The dotted, short-dashed, long-dashed, solid, and dot-dashed curves takez =
30, 20, 10, 5, and 0, respectively.

and a corresponding circular velocity,

Vc =

(

GM

rvir

)1/2

= 17.0

[

Ωm

Ωm(z)

∆c

18π2

]1/6( M

108M⊙

)1/3(1 + z

10

)1/2

km s−1 .

(3.31)
We may also define a virial temperature

Tvir =
µmpV

2
c

2k
= 1.04×104

( µ

0.6

)

[

Ωm

Ωm(z)

∆c

18π2

]1/3( M

108M⊙

)2/3(1 + z

10

)

K.

(3.32)
Note that the value ofµ depends on the ionization fraction of the gas; for a
fully ionized primordial gasµ = 0.59, while a gas with ionized hydrogen
but only singly-ionized helium hasµ = 0.61 and a fully neutral primor-
dial gas hasµ = 1.22. For context, Figures 3.5, 3.6, and 3.7 show these
quantities over a wide range of halo masses and redshifts.
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Figure 3.6 Circular velocity over a wide range of halo massesand redshifts (equation 3.31).
The dotted, short-dashed, long-dashed, solid, and dot-dashed curves takez =
30, 20, 10, 5, and 0, respectively.
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Figure 3.7 Virial temperature over a wide range of halo masses and redshifts (equa-
tion 3.30). The dotted, short-dashed, long-dashed, solid,and dot-dashed curves
takez = 30, 20, 10, 5, and 0, respectively. For simplicity we assume fully-
ionized gas in all these halos, though the low-mass objects may actually accrete
neutral gas.
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The binding energy of the halo is approximately

Eb =
1

2

GM2

rvir
= 2.9×1053

[

Ωm

Ωm(z)

∆c

18π2

]1/3 ( M

108M⊙

)5/3(1 + z

10

)

erg .

(3.33)
Note that if the ordinary matter traces the dark matter, its total binding en-
ergy is smaller thanEb by a factor ofΩb/Ωm, and could be lower than the
energy output of a single supernova (∼ 1051 ergs) for halos near the filtering
mass (although, as we will see later, cooling is likely to increase this binding
energy by quite a large factor).

Although spherical collapse captures some of the physics governing the
formation of halos, structure formation in cold dark mattermodels proceeds
hierarchically. At early times, most of the dark matter was in low-mass
halos, and these halos then continuously accreted and merged to form high-
mass halos. Numerical simulations of hierarchical halo formation indicate a
roughly universal spherically-averaged density profile for the resulting ha-
los, though with considerable scatter among different halos. This so-called
NFW (or Navarro-Frenk-White) profile has the approximate form14

ρ(r) =
3H2

0

8πG
(1 + z)3

Ωm

Ωm(z)

δc
cNx(1 + cNx)2

, (3.34)

wherex = r/rvir, and the characteristic densityδc is related to the concen-
tration parametercN by

δc =
∆c

3

c3N
ln(1 + cN) − cN/(1 + cN)

. (3.35)

The concentration parameter itself depends weakly on the halo massM
and more strongly on the formation redshift, with a value∼ 4 for newly
collapsed halos and a larger value< 20 at later times.

An even better (but more complex) fit to state-of-the-art CDMsimulations
is obtained with the Einasto profile15,

ln

[

ρ(r)

ρ−2

]

= − 2

α

[(

r

r−2

)α

− 1

]

, (3.36)

whereα ≈ 0.16, r−2 is the radius where the logarithmic slope of the density
profile equals the isothermal sphere value,(d ln ρ/d ln r) = −2. At this
radiusr2ρ peaks at a density value ofρ−2 = ρ(r−2). For the NFW profile,
r−2 = rvir/cN. We show these two profiles in Figure 3.8; note that they
differ substantially only close to the halo center.

As an example of the utility of these parameterizations, consider the ef-
fects of the relative streaming of baryons and dark matter ongas accretion
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Figure 3.8 Parameterizations for the “universal” dark matter halo profile. The NFW pre-
scription (eq. 3.34) is shown with the solid line, while the Einasto profile
(eq. 3.36) is shown with the dotted line. We scale both to the point at which
the logarithmic slope equals−2. For the NFW profile, this is atr = rvir/cN ,
wherecN is the concentration.
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into halos (as in§3.2.2). As described earlier, the effective pressure resisting
collapse is parameterized by the mass density timesv2

eff = c2s +v2
bc. Gravity

will only overcome this effective pressure if the crossing timer/veff exceeds
the free fall time,1/

√
Gρvir ∼ r/Vc, or equivalently ifveff < Vc for the

halo. Figure 3.9 shows a similar estimate for the minimum halo mass to ac-
crete baryonic material in the presence of streaming. The streaming velocity
marked on the vertical axis is evaluated atz = 100, with vbc ∝ (1 + z)−1

as the gas falls into the dark matter potential wells at lowerredshifts. The

horizontal line has
〈

v2
bc

〉1/2
= 3 km s−1 at z = 100. Each curve shows the

minimum mass at the labeled redshift for a reasonable range of streaming
velocities; the symbols show the results of detailed numerical simulations
at z = 24 (squares) andz = 14 (diamonds), which match this simple es-
timate reasonably well. Note that the streaming will have little effect on
halos withM > 106 M⊙ and is more important at higher redshifts, where
the streaming velocities are larger.

3.4 ABUNDANCE OF DARK MATTER HALOS

In addition to characterizing the properties of individualhalos, a critical
prediction of any theory of structure formation is the abundance of halos,
namely, the number density of halos as a function of mass, at any red-
shift. This prediction is an important step toward inferring the abundances
of galaxies and galaxy clusters. While the number density ofhalos can be
measured for particular cosmologies in numerical simulations, an analytic
model helps us gain physical understanding and can be used toexplore the
dependence of abundances on all the cosmological parameters.

A simple analytic model which successfully matches most of the numer-
ical simulations was developed by Bill Press and Paul Schechter in 1974.16

The model is based on the ideas of a Gaussian random field of density pertur-
bations, linear gravitational growth, and spherical collapse. Once a region
on the mass scale of interest reaches the threshold amplitude for collapse
according to linear theory, it can be declared a virialized object. Counting
the number of such density peaks per unit volume is straightforward for a
Gaussian probability distribution.

To determine the abundance of halos at a redshiftz, we useδM , the den-
sity field smoothed on a mass scaleM , as defined in§2.1.1. SinceδM
is distributed as a Gaussian variable with zero mean and a standard devi-
ationσ(M) (which depends only on the linear power spectrum; see equa-
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Figure 3.9 Effect of baryon-dark matter streaming on the minimum (Jeans) mass of a halo
into which gas can assemble later and form stars (with the horizontal bar at
3 km s−1 marking the expectedrms value). Each line represents the neces-
sary halo mass for baryon collapse at the labeled redshift. Diamonds represent
the final halo masses found in collapse simulations of a region with σ8 = 0.9
(z = 14 with no streaming), squares represent masses from accelerated collapse
simulations of a region withσ8 = 1.4 (z = 24 with no streaming), and the
lines delineate the prediction of the simple analytic modeldescribed in the text.
The halo masses do not increase significantly at low streaming velocities. Halos
collapsing at high redshift are more affected by relative streaming, as the phys-
ical streaming velocities are higher at these early times. Figure credit: Stacy,
A., Bromm, V.,& Loeb, A.,Astrophys. J.730, L1 (2011). Reproduced with
permission of the American Astronomical Society.



NONLINEAR STRUCTURE AND HALO FORMATION 69

tion 2.34), the probability thatδM is greater than some fixedδ equals

∫ ∞

δ
dδM

1√
2π σ(M)

exp

[

− δ2M
2σ2(M)

]

=
1

2
erfc

(

δ√
2σ(M)

)

. (3.37)

The basic ansatz is to identify this probability with the fraction of dark mat-
ter particles that are part of collapsed halos of massgreater thanM at red-
shift z. Note that a given region smoothed on massM could be part of
an even larger overdensity above the threshold, which is whywe have the
fraction of particles in halos above this mass threshold.

We need two additional ingredients to complete the model. First, we set
the threshold density toδcrit(z) (see equation 3.13), which is the critical
density of collapse found for a spherical top-hat. Crucially, δcrit is the lin-
earizeddensity associated with collapse in this nonlinear model, so it is
directly comparable to the linearized treatment of the density field in the
Gaussian approximation.

The second key ingredient is to note that even regions withδM < 0
can actually be part of collapsed objects, if they are part ofa regions with
δ > δcrit on a scaleM ′ > M . The original Press & Schechter paper solved
this in an ad hoc fashion by multiplying the fraction in equation (3.37) by a
factor of two; this guarantees that every dark matter particle is part of a halo
(of someM > 0) even if its immediate environment is underdense. Thus,
the final formula for the mass fraction in halos aboveM at redshiftz, or the
collapse fractionis

fcoll(> M |z) = erfc

(

δcrit(z)√
2σ(M)

)

. (3.38)

We will revisit the ad-hoc factor of two, and provide a more satisfying ex-
planation for the adjustment, in the following sections.

One should note that, at a redshiftz, the probability distribution ofδM
is actually a Gaussian with varianceσ2(M)D2(z), becauseσ2 is conven-
tionally evaluated at the present day. The growth factorD2(z) then scales
this to the actual density field at redshiftz, provided that we use the usual
normalizationD(z = 0) = 1. This is possible because the growth factor is
independent of physical scale: all Fourier modes grow by an identical factor
during the matter era. However, conventionally we associate these redshift-
dependent factors withδcrit. Essentially, we imagine that we are working
entirely with the linearized density field atz = 0 and allowing the threshold
over which halos form to vary with redshift.

Differentiating the fraction of dark matter in halos above massM yields
the mass distribution. Lettingn(M)dM be the comoving number density
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of halos of mass betweenM andM + dM , we have

n(M) =

√

2

π

ρm

M

−d(lnσ)

dM
νc e

−ν2
c /2 , (3.39)

whereνc = δcrit(z)/σ(M) is the number of standard deviations away from
zero that the critical collapse overdensity represents on mass scaleM . Note
thatn(M) is often written asdn/dM in order to emphasize that it is a dif-
ferential mass function, but we will generally use the more compact notation
in this book.

Thus, the halo abundance depends on the two functionsσ(M) andδcrit(z),
each of which depends on the fundamental cosmological parameters and the
initial conditions of inflation. Figure 3.10 shows some example halo mass
distributions at a variety of redshifts; note that it uses a slightly improved
version of the mass function that we will discuss in the next sections.

3.4.1 The Excursion Set Formalism

Although the original Press-Schechter model is founded on an important
physical insight, it turns out to be profitable to rephrase the problem in an
entirely different way.17 This provides two benefits: first, it yields a much
more satisfying derivation of the factor of two correction,and second, it
provides a number of new insights into the spatial distribution and histories
of dark matter halos.

In particular, the Press-Schechter formalism makes no attempt to describe
the correlations amongst halos or between different mass scales. For exam-
ple, while it can generate a distribution of halos at two different epochs, it
says nothing about how particular halos in one epoch are related to those in
the second. For many applications, we would like some methodto predict, at
least statistically, the growth of individual halos via accretion and mergers.
Even restricting ourselves to spherical collapse, such a model would have to
utilize the full spherically-averaged density profile around a particular point.
The potential correlations between the mean overdensitiesat different radii
make the statistical description substantially more difficult.

The excursion set formalism seeks to describe the statistics of halos by
considering the statistical properties ofδM , the average overdensity within
some spherical window of characteristic massM , as a function ofM (or
equivalentlyR). While the Press-Schechter model depends only on the
Gaussian distribution of overdensity for one particularM , the excursion set
considers allM as a set. Again the connection between a value of the linear
regimeδM and the final state is made via the spherical collapse solution so
that there is a critical valueδcrit(z) of δM which is required for a halo to
virialize at a redshiftz.
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Figure 3.10Top: The mass fraction incorporated into halos per logarithmic bin of halo mass
(M2dn/dM)/ρm, as a function ofM at different redshiftsz. Hereρm =
Ωmρc is the present-day matter density, andn(M)dM is the comoving density
of halos with masses betweenM andM +dM . The halo mass distribution was
calculated based on an improved version of the Press-Schechter formalism for
ellipsoidal collapse that better fits numerical simulations (see§3.4.3). Bottom:
Number density of halos per logarithmic bin of halo mass,Mdn/dM (in units
of comoving Mpc−3), at various redshifts.
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The basic idea is to view the density field around a given point, smoothed
on different scales, as a diffusion process. Smoothed over asufficiently large
mass,δM → 0. As we zoom in to smaller scales, we naturally expectδM
to deviate from zero, with a variance that must equalσ2(M). It is easiest to
view this process in Fourier space: as we approach smaller scales, more and
more Fourier modes become important, adding fluctuations tothe density
field. The particular set of modes contributing to a given spatial point will
determine the “trajectory” ofδM as a function of smoothed mass. The key
insight of the excursion set approach is that we can considerthis trajectory as
a diffusion process (because eachk-mode is independent of all others) and
thereby calculate its statistics. Conceptually, each set of Fourier modes that
one adds asM decreases provides a step in the random walk of the density
field, so the key to a quantitative understanding of halo abundances is in
generating the distribution of these random walks. Figure 3.11 illustrates
this sequence for a few different sample points (or trajectories). The point
will be part of a halo of massM if its trajectory in this random walk first
passes above the virialization threshold at that massM .

The subtlety in this approach lies in defining the smoothed density field;
recall that it is the full (linearized) density field convolved with a window
function W (R) (see equation 2.32). For most choices of window func-
tion, the quantitiesδM are correlated from oneM to another such that it
is difficult to calculate the desired statistics directly. However, for one par-
ticular choice of a window function, the correlations between differentM
greatly simplify and many interesting quantities may be calculated.18 We
take advantage of the fact that, in linear theory, each Fourier mode evolves
independently, with no correlations between different scalesk, and we use
a k-space top-hat window function, namely,Wk =constant for allk less
than some criticalkc andWk = 0 for k > kc. In that case, each step in the
random walk corresponds to increasingkc. For this filter,

δM ∝
∫

k<kc(M)

d3k

(2π)3
δk, (3.40)

meaning that the overdensity on a particular scale is simplythe sum of the
random variables (each Gaussian distributed)δk interior to the chosenkc.

Because the filter is sharp, we simply add new Fourier modes tochange
the scaleM . In linear theory, these evolve independently of the larger-
wavelength modes already inside the filter, so the difference betweenδM1

andδM2
(whereM1 > M2) is statistically independent of the value on the

larger mass scale: i.e., each “step” in the walk is uncorrelated with previous
steps. In particular, the difference is just the sum of theδk in the spherical
k-shell betweenkc(M1) andkc(M2), which is independent of the sum of
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Figure 3.11 Several random walk trajectories for the overdensity as a function ofσ2(M),
assuming a sharpk-space filter (or uncorrelated step sizes). The scale is arbi-
trary here;δc denotes a threshold of interest (i.e.,δcrit in the Press-Schechter
model). Note the wide variation between the trajectories and the rapid variations
with scale: a particular trajectory may cross the thresholdon multiple scales.
In the excursion set model, however, we consider the barrierto beabsorbing,
so that a trajectory is marked by its first up-crossing. The two solid trajectories
have equal probability to occur, which allows us to compute the halo abundance
using the “mirror” trick described in the text.
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theδk interior to the smallerkc(M1). We thus have a simple random walk,
albeit one where the step-size varies withkc. Meanwhile, the distribution of
δM (given no prior information about the random walk at largerM ) is still
a Gaussian of zero mean and a variance ofσ2(M) (see equation 2.33).

Unfortunately, this filter is fundamentally inconsistent with the threshold
δcrit. Thek-space top-hat filter has aspatial form W (r) ∝ j1(kcr)/kcr,
wherej1(x) is the first spherical Bessel function (see equation 2.33).iii Thus,
in real space, this set of modes exhibits a (decaying) sinusoidal oscillation
rather than the sharp real-space top-hat used to deriveδcrit. The problem
is a basic one, ubiquitous in Fourier transforms: we cannot hope to have
the simultaneous advantages of real-space top-hats (specifically, the simple
spherical collapse criterion) andk-space top-hats (uncorrelated steps in the
random walk). Nevertheless, we may brush this inconsistency aside and
assume that the two different filters are “close enough” to becompatible
– we use both sharpk-space filtering for the random walks and a sharp
top-hat to define the critical virialization density. The only justification for
such an approach is its eventual success and its simplicity:although one can
construct more self-consistent approaches, they ultimately fare no better.

It is now easy to re-derive the Press-Schechter mass function, including
the previously unexplained factor of two.iv The fraction of mass elements
included in halos of mass less thanM is just the probability that a ran-
dom walk remains belowδcrit(z) for all kc less thanKc, the filter cutoff
appropriate toM . This probability must be the complement of the sum
of the probabilities that(a) δM ≥ δcrit(z) and that(b) δM < δcrit(z) but
δM ′ ≥ δcrit(z) for someM ′ > M . The first is immediately obvious: since
the distribution ofδM is simply Gaussian with varianceσ2(M), the fraction
of random walks falling into class(a) is simply

pa =
1√

2πσ2

∫ ∞

δcrit(z)
dδ exp{−δ2/2σ2(M)}. (3.41)

The second class can also be easily computed with a clever “mirror” ar-
gument originally due to Chandrasekhar (see Figure 3.11). In fact, these
two cases have an equal probability: any random walk belonging to class
(a) may be reflected around its first upcrossing ofδcrit(z) to produce a walk
of class(b), and vice versa. Hence, the fraction of mass elements included
in halos of mass less thanM at redshiftz is simply

fcoll(< M) = 1 − 2pa, (3.42)

iii This implies a comoving volume6π2/k3
c or mass6π2ρm/k3

c . The characteristic radius
of the filter is∼ k−1

c , as expected.
ivHere we will derive the mass function using a special trick; the general approach to its

solution is described later in§9.4.1.
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which may be differentiated to yield the Press-Schechter mass function,
equation (3.39). This approach better shows the physical origin of the extra
factor of two needed to obtain equation (3.38): many of the mass elements
may appear to be in local underdensities but have actually already been
incorporated into larger collapsed halos.

3.4.2 The Extended Press-Schechter Formalism: Conditional Mass Functions
and Accretion Histories

The other advantage of the excursion set approach is that it allows us to ex-
amine how halos relate to each other and evolve over time.19 First, consider
how halos at one redshift are related to those at another. Suppose that a halo
of massM2 exists at redshiftz2. Then we know that the random function
δM corresponding to a mass element within the halo first crossesδcrit(z2) at
kc2 corresponding toM2.

Given this constraint, we may study the distribution ofkc where the func-
tion δM crosses other thresholds (keep in mind thatδcrit is a function of
redshift, so these other thresholds tell us about either theprogenitors or “de-
scendants” of the given halo). It is particularly easy to construct the proba-
bility distribution for when trajectories first cross someδcrit(z1) > δcrit(z2)
(implying z1 > z2, corresponding to the halo’s progenitors); clearly this
must occur at somekc1 > kc2 orM1 < M2. Figure 3.11 shows an example
of such a pair of objects and thresholds.

Fortunately, this problem reduces to the previous one if we simply trans-
late the origin of the random walks from(kc, δM ) = (0, 0) to (kc2, δcrit[z2]).
We therefore compute the distribution of halo massesM1 that a mass ele-
ment finds itself in at redshiftz1, given that it is part of a larger halo of mass
M2 at a later redshiftz2 < z1:

dP

dM1
(M1, z1|M2, z2) =

√

2

π

[

δcrit(z1) − δcrit(z2)

σ2(M1) − σ2(M2)

] ∣

∣

∣

∣

dσ(M1)

dM1

∣

∣

∣

∣

exp

{

− [δcrit(z1) − δcrit(z2)]
2

2[σ2(M1) − σ2(M2)]

}

.

(3.43)

This may be rewritten as saying that the quantity

ṽ =
δcrit(z1) − δcrit(z2)
√

σ2(M1) − σ2(M2)
(3.44)

is distributed as the positive half of a Gaussian with unit variance; equation
(3.44) may be inverted to findM1(ṽ).

We can interpret the statistics of these random walks as those of merging
and accreting halos. For a single halo, we may imagine that aswe go back in
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time, the object breaks into ever smaller pieces, similar tothe branching of a
tree. Equation (3.43) provides the distribution of the sizes of these branches
at some given earlier time. One can then imagine using this description
of the ensemble distribution to generate random realizations of the merger
histories of single halos – or “merger trees.” One recursively steps back in
time, at each step breaking the final object into two pieces, choosing a value
from the distribution of equation (3.43) to determine the mass ratio of the
two branches.

Unfortunately, this has proven to be difficult in practice. Part of the prob-
lem is conceptual: one might want to define “merger rates” by taking the
limit of equation (3.43) asz2 → z1. However, one immediately finds that
the resulting rate is not symmetric in the Press-Schechter theory: the rate
at which objects of massM merge with objects of massM ′ is not equal to
the rate at which objects of massM ′ merge with objects of massM ! The
root of the problem is that, even with the excursion set approach, the Press-
Schechter formalism does not divide dark matter particles into discrete ob-
jects; rather it simply computes the statistical properties of the ensemble.
Unfortunately, quantities like the merger rate implicitlyassume that the ob-
jects do sit in discrete objects and ignore smooth accretionof diffuse mat-
ter.N -body simulations are the most reliable tool for following the merger
statistics.

Nevertheless, we may use the distribution of the ensemble toderive some
approximate analytic results that at least provide a helpful guide. A useful
example is the distribution of the epoch at which an object that has mass
M2 at redshiftz2 has accumulated half of its mass. The probability that the
formation time is earlier thanz1 can be defined as the probability that at
redshiftz1 a progenitor whose mass exceedsM2/2 exists:

P (zf > z1) =

∫ M2

M2/2

M2

M

dP

dM
(M,z1|M2, z2)dM, (3.45)

wheredP/dM is given in equation (3.43). The factorM2/M corrects the
counting from mass-weighted to number-weighting; each halo of massM2

can have only one progenitor of mass greater thanM2/2. Differentiat-
ing equation (3.45) with respect to time gives the distribution of formation
times. Overall, the excursion set formalism provides a reasonable approxi-
mation to more exact numerical simulations of halo assemblyand merging
histories.

3.4.3 Improvements to the Press-Schechter Formalism

The above simple ansatz was refined over the years to provide abetter match
to numerical simulations. In particular, the Press-Schechter mass function
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substantially underestimates the abundance of rare massive halos (especially
at high redshift) and overestimates the abundance of low-mass halos.

There are two key areas in which the Press-Schechter approach can clearly
be improved. The first is the mismatch in filter choice betweenthe uncor-
related random walks and the spherical collapse model. However, more
self-consistent ab initio approaches do not significantly improve the results,
even at the cost of substsantially increased complexity.

The second direction is to refine the spherical collapse model itself: as
we will see in the next chapter, dark matter structures rarely collapse sym-
metrically, and so it is possible to improve the threshold density δcrit(z) by
including a more accurate physical description. The best motivated such ap-
proach is to allow ellipsoidal collapse, in which the three axes of the object
collapse at different times. The torques driving this collapse are set by the
halo’s environment, which depends on the halo mass itself (as will be shown
in §3.5). This means that the collapse thresholdδST

crit is a function of not only
redshift but also halo mass, so the absorbing barrier in the diffusion prob-
lem is no longer a constant. In particular, the threshold increases as halos
get smaller: this increases the abundance of massive halos and decreases the
abundance of small halos, just as needed.

However, the match to numerical simulations is still not perfect, so it is
now most common to use a fit to these results; fortunately, detailed sim-
ulations show that the resulting function can stillnearly be phrased as a
function ofνc. Fits of the form20

nST(M) = A′

√

2a′

π

ρm

M

−d(lnσ)

dM
νc

[

1 +
1

(a′ν2
c )q′

]

e−a′ν2
c /2 , (3.46)

which is closely motivated by ellipsoidal collapse, perform reasonably well;
this is known as theSheth-Tormen model. A reasonably good fit to simula-
tions can be obtained by settinga′ = 0.707 andq′ = 0.3, with the proper
normalization ensured by adoptingA′ = 0.322.21 The parameters here are
motivated by ellipsoidal collapse; however, the fit to numerical simulations
can be improved by varying them slightly or introducing refined functional
forms. For example, at very high redshifts, the form of equation (3.10) can
overestimate the abundance of very massive, rare halos by< 50%.22

On the other hand, recent refined numerical simulations showthat even
more complex fits, in which the universal dependence onνc breaks slightly,
are necessary for high precision work, with the fitting parameters depend-
ing on redshift.23 The functions that best fit numerical simulations continue
to evolve somewhat as those simulations improve – especially because the
high redshift case is relatively unexplored thus far – so we will use the sim-
ple form of equation (3.46) for the calculations in this book. Results for
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Figure 3.12 The collapse fraction of dark matter halos at high redshifts. The solid curves
showfcoll computed from the mass function of equation (3.46), which ismoti-
vated by ellipsoidal collapse with parameters determined by a fit to numerical
simulations. From top to bottom the three curves show the fraction of mass
in halos withTvir > 103, 104, and105 K. The dotted curves use the original
Press-Schechter form in equation (3.38).

the associated comoving density of halos of different masses at different
redshifts are shown in Figure 3.10.

Figure 3.12 also showsfcoll, or the fraction of mass above a given thresh-
old (here shown as a function ofTvir). The solid curves take the improved
mass function in equation (3.46), while the dotted curves take the simpler
(but less accurate) form of equation (3.38). The three sets of curves show
the fraction in halos withTvir > 103, 104, and105 K. We will see later that
the middle value here corresponds to the threshold for efficient star forma-
tion before reionization, while the last is approximately the threshold for
star formation after reionization. Note that, in all cases,fcoll increases ex-
tremely rapidly at high redshifts, since (at least atz > 10) all of these halos
are far out on the exponential tail of the mass function. Alsonote that the
simple Press-Schechter prescription tends to underestimate the abundance
of high-mass halos – and thus drastically underestimatefcoll when halos are
rare – but slightly overestimates the abundance of low-masshalos (visible
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in theTvir > 103 K curves nearz ∼ 5).

3.5 HALO CLUSTERING IN LINEAR THEORY

To this point, we have computed theaverageabundance of halos through-
out the universe. But of course the universe is not perfectlysmooth on
larger scales, and we naturally expect that large-scale overdensities have an
overabundance of halos relative to the average, and that large-scale under-
densities (or voids) have a deficit. This clustering is an extremely important
aspect of halos in the real universe, especially at high redshift.

The excursion set formalism allows us to describe this clustering in detail,
at least to linear order.24 A large-scale overdensity corresponds toδb > 0
across a large but finite massMb. We then imagine our halos (with mass
M < Mb) forming out of this material (similarly to a region carved out from
a universe with a higher value ofΩm). We can solve the related diffusion
problem just as for the conditional mass function, simply bychanging the
origin of our random walks fromδ = 0 andM → ∞ (or σ2 → 0) to δb
atMb (the boundaries of our region). The small head start these modified
initial conditions provide to halos in overdense regions can be extremely
important: recall that the density distribution itself is Gaussian, and so the
abundance of rare halos is exponentially sensitive to the underlying density
(see Figure 3.13). We now wish to describe this dependence, often called
the “peak-background split,” quantitatively.

First, we should keep in mind that the Press-Schechter approach provides
the comovingnumber density of halos or the number density of halos per
unit mass rather than the more observationally relevant number per volume
V . An overdense region with densityδb = (ρ/ρ̄ − 1) > 0 fills a smaller
volume, by a factor(1 − δb). Thus, we expect the measurable halo density
to be larger even if the total number of halos remained constant:

(

δn

n

)

halo

=
V

V (1 − δb)
− 1 = δb. (3.47)

This is the same factor by which the dark matter density itself changes, so if
this were the only effect the halos would be anunbiasedtracer of mass.

Next, we solve the usual diffusion problem with our modified initial con-
ditions; for simplicity we will assume thatMb is sufficiently large to have
σ2(Mb) ≪ σ2(M). As with the conditional mass function, the solution is
identical to the usual form except that

δcrit → δcrit − δ0b or νc → (δcrit − δb)/σ(M). (3.48)

Note here that, as is conventional in the excursion set approach, we will



80 CHAPTER 3

Figure 3.13 Modulation of dark matter halos by the underlying density field. Here, a single
long-wavelength mode is shown for simplicity. The dashed horizontal line rep-
resents the density threshold for collapse (as in the Press-Schechter model); the
large-scale mode does not reach the threshold anywhere. However, (to linear
order) the superposed small-scale modes evolve independently of the amplitude
of this large-scale field. Where the large-scale field has a high overdensity, it is
much easier for the small-scale modes to pass the collapse threshold. We there-
fore expect dark matter halos to be highly clustered inside large-scale overdense
regions.

extrapolateδcrit at the redshift of interest to the present day by dividing by
the growth factor (recall that this makesσ2 redshift-independent). We must
therefore also (linearly) extrapolate the background density to the present;
this isδ0b = δb(z)/D(z).

We can therefore immediately write down the halo abundance in the re-
gion. However, it is most useful to consider a small overdensity δb ≪ δcrit
and Taylor expand about the average result. Expanding in a Taylor series,

dn

dM
(δexb ) ≈ dn

dM
+

dn

dM dνc

dνc

dδ0b
δ0b + ..., (3.49)

and using the original Press-Schechter mass function for simplicity, the halo
abundance changes by a factor

δn

n

∣

∣

∣

∣

PS

=
ν2

c − 1

σνc
δ0b . (3.50)

Canceling the growth factors that appear in bothνc andδ0b , we obtain

δn

n

∣

∣

∣

∣

PS

=
ν2

c − 1

δc(z = 0)
δb(z). (3.51)
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Combining this effect with the change in volume (equation 3.47), we find

dn

dM
(δb) =

dn

dM
[1 + bPS(m)δb], (3.52)

where

bPS(M) = 1 +
ν2

c − 1

δc(z = 0)
. (3.53)

Obviously, becauseνc depends on mass implicitly throughσ(M), the bias
also depends on the halo mass. Recalling thatσ is a decreasing function of
mass, we see thatb will increasewith halo mass: the abundance of larger
halos fluctuates more than the abundance of small halos. Thisis because
massive halos are on the exponential tail of the density distribution, so that
the small boost provided by the overdense region has a large effect. Simi-
larly, νc is an increasing function of redshift, so halos of a given mass be-
come more biased earlier in cosmic history, when they are rarer. As a result,
it is not simply thetotal abundance of halos that changes with background
density: theshapeof the mass function also changes, leaning more heavily
toward massive halos in dense environments.

We have evaluated the bias for the Press-Schechter mass function; one can
perform a similar exercise with the more accurate mass functions described
in §3.4.3. For example, the mass function of equation (3.46) yields,

bST(M) = 1 +
a′ν2

c − 1

δc(z = 0)
+

2q′/δc(z = 0)

1 + (a′ν2
c )q′

. (3.54)

This result has the same qualitative trends as the earlier expression, although
massive halos tend to be somewhat less clustered and small halos somewhat
more. Figure 3.14 shows the bias for this model over the same mass and
redshift ranges as Figure 3.10. Note that galaxy-mass halos(M > 108M⊙)
can be quite highly biased during the era of the first galaxies, while very
small halos are “anti-biased (bST < 1) at late times. These halos tend to
form in underdense regions, because those in overdense regions have al-
ready been swallowed by larger halos. In other words, we see that massive,
rare halos tend to live in overdense regions, with many neighbors, while ha-
los below a characteristic mass scale will tend to form in isolation. This in
turns means that, on average, massive halos will grow rapidly by merging
with their many neighbors, while low-mass halos will grow more sedately.
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Figure 3.14 The linear bias of halos as a function ofM at different redshiftsz according to
the Sheth-Tormen model (equations 3.46 and 3.54).
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3.6 THE NONLINEAR POWER SPECTRA OF DARK MATTER AND GALAX-

IES

3.6.1 The Halo Model

We have now assembled several powerful ingredients to describe the dis-
tribution of matter in the Universe:(i) the mean abundance of halos as a
function of mass and redshift;(ii) the clustering of these halos; and(iii) the
radial structure of these halos (the NFW or Einasto profiles). The first two
of these ingredients are constructed from linear theory; the third is taken
from numerical simulations but is remarkably simple. We cannow gather
these tools into a first stab at computing the statistical distribution of mat-
ter even in thenonlinearregime through a powerful approach known as the
halo model.25

The idea is to construct the power spectrum (or, alternatively, the correla-
tion function) or dark matter by conceptually dividing all the matter in the
Universe into halos of some – often very small – mass.v Because the “uni-
versal” halo profile describes the structure ofeachof these halos, and the
excursion set formalism describes their abundance and statistical distribu-
tion, we can use this picture to compute the correlations between any two
dark matter particles (see Figure 3.15).

In the following, we will use the simpler NFW halo form for concrete-
ness, but the improved Einasto profile is qualitatively similar (the difference
is only important on very small scales; see Figure 3.8). We first write the
NFW profile for a halo of virial massM in the simplified form

ρ(r|m) =
ρs

(r/rs)(1 + r/rs)2
, (3.55)

for r < rvir and zero otherwise, wherem labels the mass of the appropriate
halo andrs = rvir/cN . We define a normalized density profileu = ρ/M ,
so that the integral over all space is unity. To compute the power spectrum
we will work in Fourier space; the Fourier transform ofu(r|m) is

u(k|m) =
4πρsr

3
s

m
{sin(krs) [Si([1 + c]krs) − Si(krs)]

− sin(krs)

(1 + c)krs
+ cos(krs)[Ci([1 + c]krs) − Ci(krs)]

}

,(3.56)

vThis follows naturally in the excursion set formalism, where any trajectory musteven-
tually exceed an arbitrary thresholdδcrit if σ2 → ∞ for M → 0 in an arbitrary cold dark
matter model.
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Figure 3.15 Cartoon of thehalo modelfor the cosmic density field. The model splits the
dark matter field into gravitationally bound halos (gray circles) with a range of
masses. Each of these follows a well-defined density structure, so one can re-
construct the density field purely from the locations of the halos (bottom plot).
Correlations amongst the dark matter particles may then be quantified in two
steps: theone-halo termdescribes correlations amongst particles in a single
halo, while thetwo-halo termdescribes correlations between dark matter parti-
cles in separate halos.
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where

Si(x) =

∫ x

0

sin t

t
dt, (3.57)

Ci(x) =−
∫ ∞

x

cos t

t
dt. (3.58)

This is a rather unwieldy expression but can easily be computed numerically.
To gain further insight, it is often useful to consider haloswith Gaussian
density profiles and widthrs; then

ug(k|m) = exp[−(krs)
2/2]. (3.59)

This is near unity fork ≪ 1/rs before falling off at larger wavenumbers;
the shape of any realistic density profile is qualitatively similar. Figure 3.16
shows these halo profiles (both in the NFW and Gaussian forms)for a range
of halo masses atz = 6. Note howu is flat for k < rvir in both cases and
then falls off steeply. The rate of decline depends on the halo structure and is
somewhat gentler with the power law density profile of the NFWmodel (the
oscillations are due to the finite size of the halo). Note thatthe concentration
of the larger halos is near unity, sors ≈ rvir; it is ∼ 7 for the smallest halo.

Given our assumption that every dark matter particle lies within a halo,
we can construct the total density field by simply adding up the profiles of
all the halos:

ρ(x) =
∑

i

ρ(x − xi|mi) (3.60)

=
∑

i

miu(x − xi|mi) (3.61)

=
∑

i

∫

dm

∫

d3x′δ(m −mi)δ(x
′ − xi)mu(x − x′|m),(3.62)

wherei labels the different halos. In the last line, the integrals over mass
and space simply fix the coordinates and mass of the halo described byu.

Now note the useful identity

〈

∑

i

δ(m−mi)δ(x
′ − xi)

〉

= n(m). (3.63)

This happens because the Dirac delta functions in each volume appear a
number of times equal to the number of halos (at each mass) perunit vol-
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Figure 3.16 Fourier transforms of the normalized halo density profiles for a series of halos
at z = 6. The solid lines show the profiles for halos with NFW profiles and
m = 106, 107 108, 109, and1010 M⊙, from right to left (equation 3.56). The
dotted lines show the Gaussian profiles of equation (3.59), with the same value
of rs.
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ume. So the mean density is

ρ̄=

∫

dm

∫

d3x′

〈

∑

i

δ(m−mi)δ(x
′ − xi)

〉

mu(x − x′|m)(3.64)

=

∫

dmmn(m). (3.65)

This is then just the number density of halos multiplied by their mass: recall
that we assume thatall dark matter particles are bound into halos of one
mass or another.

3.6.2 The Correlation Function

Next, let us use the same approach to calculate the second moment of the
mass distribution, the correlation function,ξ(x − x′) = 〈δ(x)δ(x′)〉. Here
we have two integrals over space; the spatial average will act on

〈

∑

i,j

δ(m1 −mi)δ(x1 − xi)δ(m2 −mj)δ(x2 − xj)

〉

, (3.66)

wherei andj label the halo sums at the two spatial points. Although analo-
gous to the average in̄ρ, this expression is much more complicated, and to
evaluate it we must split it into two components, motivated by our picture
of all particles sitting inside of halos (see Figure 3.15). In that model, the
two particles whose correlation we seek can have two qualitatively different
configurations. First, they can sit inside the same halo (so that the indices
are the same,i = j), in which case the halo density profile uniquely fixes
their correlation strength. Here we are summing twice over the same halo,
so this part of the average is

n(m)δ(m1 −m2)δ(x1 − x2) (3.67)

In the double integral, we therefore have
∫

dmm2n(m)

∫

d3x1

∫

d3x2 δ(x1 − x2)u(x − x1|m)u(x′ − x2|m)

=

∫

dmm2n(m)

∫

d3x1u(x − x1|m)u(x′ − x1|m)

=

∫

dmm2n(m)

∫

d3yu(y|m)u(y + x′ − x|m) ≡ ρ̄2ξ1h(x − x′)(3.68)

where in the last line we have lety = x− x1 and defined theone-halo cor-
relation functionξ1h. We see that this term is the convolution of two density
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profiles, weighted by the halo’s mass squared. This is just the integral over
all pairs of particles within the halos.

The second possibility is that the two particles lie in separate halos; this
case corresponds to the off-diagonali 6= j part of the double sum. The
spatial average compares the locations of two halos of knownseparation,
and it becomes

n(m1)n(m2)[1 + ξhh(x1 − x2|m1,m2)] (3.69)

whereξhh measures the correlations between the halos themselves. Fortu-
nately, we can easily compute this, at least when linear theory applies: we
know the linear dark matter power spectrum and hence correlation func-
tion, ξ(r), and we know from§3.5 how the halo number densities reflect the
underlying dark matter density. Therefore

ξhh(x− x′|m1,m2) = b(m1)b(m2)ξlin(x − x′). (3.70)

Note, however, that although equation (3.69) is general, equation (3.70) as-
sumes that fluctuations in the halo distribution remain linear. This is not
necessarily the case at high redshifts: even though the darkmatter density
fluctuations are very small, the halos can be so biased that the halo fluc-
tuations are nonlinear (see Figure 3.14). One must be cautious with using
linear theory in this regime.

In any case, these off-diagonal terms become

∫

dm1m1n(m1)
∫

dm2m2n(m2)

∫

d3x1

∫

d3x2 u(x − x1|m1)u(x
′ − x2|m2)

×[1 + ξhh(x1 − x2|m1,m2)]

≡ ρ̄2[1 + ξ2h(x− x′)], (3.71)

where thetwo-halo correlation functionξ2h describes correlations between
particles in different halos. For some physical insight, suppose that halos are
sharply peaked compared to the separation of interest, or|x − x′| ≫ rvir.
Then we can approximate the profiles as delta functions, and the integrals
overx are easy. We therefore obtain (in the linear regime of equation 3.70)

ξ2h(x−x′) ≈ ξ(x−x′)

∫

dm1
m1

ρ̄
b(m1)n(m1)

∫

dm2
m2

ρ̄
b(m2)n(m2).

(3.72)
This is just the normal dark matter correlation functionξ, weighted by the
mass-averaged bias squared of all halos.

To compute this average, it is simplest to transform the integration vari-
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able toνc:

∫

dm
m

ρ̄

[

1 +
ν2

c − 1

δcrit(z = 0)

]

n(m)= 1 +

∫

dm
m

ρ̄

[

ν2
c − 1

δcrit(z = 0)

]

n(m)(3.73)

= 1 +

√

2

π

∫

d νc

[

ν2
c − 1

δcrit(z = 0)

]

e−ν2/2 (3.74)

= 1, (3.75)

where in second line we usemn(m)dm = ρ̄
√

2/πe−ν2/2dν. In hindsight,
this is obvious: because all dark matter particles are in onehalo or another,
the net bias of the halo population relative to the dark matter must be unity!

Finally, combining the diagonal and off-diagonal terms, weobtain the
total nonlinearcorrelation function:

ξ(x − x′) = ξ1h(x − x′) + ξ2h(x − x′). (3.76)

Again, this form has a simple physical interpretation: the net result is the
sum of correlations of particles within halos and those between halos. The
relative importance of the two terms depends on the separation: when|x −
x′| ≪ rvir, the particles sit inside a single halo soξ1h dominates; on much
larger scales,ξ2h is more important. On sufficiently large scales for linear
theory to apply, the latter is very easy to compute in terms ofthe linear-
theory dark matter correlation function.

3.6.3 The Power Spectrum

To obtain the power spectrum, we simply take the Fourier transform of ξ.
Because that is a linear operation, we again obtain separateone-halo and
two-halo terms, with a total power spectrum

P (k) = P1h(k) + P2h(k). (3.77)

The former is straightforward, since it is a simple convolution:

P1h(k) =

∫

dm
m2n(m)

ρ̄2
|u(k|m)|2. (3.78)

The two-halo term is not as trivial. For simplicity, we will focus on the
linear case in which equation (3.70) applies. First note that it is only a func-
tion of the separation, so we letx = 0 and write (suppressing the integrals
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over mass and bias for now)

ξ2h(r)∝
∫

d3x1

∫

d3x2u(−x1|m1)u(r − x2|m2)ξlin(r) (3.79)

=

∫

d3k1

(2π)3
u(k1|m1)

∫

d3k2

(2π)3
u(k2|m2)

∫

d3k3

(2π)3
Plin(k3)e

ik2·r(3.80)

×
∫

d3x1e
ix1(k1+k3)

∫

d3x2e
−ix2(k2+k3) (3.81)

=

∫

d3k3

(2π)3
u(−k3|m1)u(−k3|m2)Plin(k3)e

−ik3·r. (3.82)

In the second line, we took the Fourier transform of each piece and collected
exponentials, and in the last we note that the integrals overeix·k are Dirac
delta functions (multiplied by[2π]3). Inserting the mass integrals again, we
have

P2h(k) = Plin(k)

[∫

dm
m

ρ̄
b(m)n(m)u(k|m)

]2

, (3.83)

wherePlin(k) is the linear theory power spectrum. Of course, whenξhh

cannot be written simply according to equation (3.70), the expression for
P2h is more complex, although the general form of equation (3.77) still
applies.

Let us pause to summarize what we have accomplished. We beganwith
the linear theory predictions for halo abundances and clustering. By adding
the density profile of each halo (chosen with reference to numerical simu-
lations), the halo model ansatz allowed us to compute thenonlinearpower
spectrum of dark matter from these linear theory predictions.

Figure 3.17 shows the resulting power spectra predictions at a range of
redshifts as well as a comparison to the underlyingPlin(k), using the linear
bias approximation. Not surprisingly, on sufficiently large scales the halo
model prediction matchesPlin(k) precisely: on scales much larger than the
halo size,u(k|m) → 1. The factor in brackets in equation (3.83) then
becomes the mass-averaged bias, which is just unity and soP2h ≈ Plin.
Meanwhile, on these scalesP1h ≈ constant, is small.vi At largek, the one-
halo term – which describes the structures within each halo –dominates; it
becomes more and more important as halos grow over time.

Unfortunately, in comparison to detailed numerical simulations atz > 6,
the halo model prediction is not particularly accurate on the “crossover”

viNote that this is not universally true: in some applicationsof the galaxy power spectrum
(see below), the constant value ofP1h may not be small when the objects of interest are very
rare.
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Figure 3.17 Dark matter density power spectrum predictionsover a range of redshifts in the
context of the halo model. The solid curves show the halo model prediction
including only linear bias, while the dashed curves show thecorresponding
linear theory predictions. For thez = 6 curves, we also show separately the
one-halo and two-halo terms with the dotted curves; these dominate at large and
smallk, respectively.
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scales between the one-halo and two-halo terms at high redshifts. This is
because the assumption of linear bias breaks down in this regime. Although
the dark matter fluctuations themselves are small atz > 6 (see Figure 2.4),
massive halos are very highly biased (Figure 3.14). For example, atz =
10 the typical (linear theory) density fluctuation on a comoving scale of
2π/k ∼ 1 Mpc isσ ∼ 0.3. But halos withM > 108M⊙ havebST > 3, so
their fluctuations are nonlinear. Although such halos contain only a small
fraction of the mass, their nonlinear clustering is responsible for most of the
structure at moderate to small scales.

One way to account for these nonlinear effects is to continuethe expan-
sion of equation (3.49) to higher order inδb. However, that is not easily
incorporated into the halo model, because it requires incorporating higher
order fluctuations – and the expansion becomes unwieldy oncebσ ∼ 1.

A more empirical approach is to allow for an “effective” scale-dependent
bias beff(k|m), which can be measured by comparison to numerical sim-
ulations. This function approaches the standard linear bias at smallk but
increases monotonically toward largek to reflect the nonlinear clustering
of nearby halos. Figure 3.18 illustrates this from one numerical simula-
tion of high-redshift structure formation. The curves showthe average
effective bias for halos withM > 2 × 109M⊙ as a function of spatial
scale, estimated by comparing the nonlinear and linear power spectra via
b2eff(k) = P (k)/Plin(k). Note how they approach constant values (corre-
sponding to the linear-theory estimate) atk < 0.1 Mpc−1 but then increase
rapidly toward smaller scales. Comparison to Figure 3.16 shows that these
scales are still much larger than the halos themselves: the culprit is the non-
linear clustering of these very massive halos. In practice,the effect on the
total matter power spectrum is smaller, because these halosare so unusual.

3.6.4 The Galaxy Power Spectrum

The halo model approach is most often used to compute the power spec-
trum of galaxies (or, more specifically, subsets of galaxiesthat match an
observable sample). Here we usually consider each galaxy tobe a marker
or signpost: we do not care whether the galaxy is large or small, just that it
belongs to our statistical sample.vii

This necessitates just a few simple modifications to the formalism above.
For example, the two-halo term (equation 3.83) has a factor of m inside each
integral. This effectively counts the number of dark matterparticles inside
each halo (since each has an identical mass). Instead of counting pairs of

vii This is not a necessary condition of course: one could easilycompute clustering statis-
tics weighted by galaxy luminosity, for example. That is done in many applications where
the galaxies are not resolved; see§13.2 for an example.
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Figure 3.18 Average effective bias for halos withM > 2 × 109M⊙ as a function of spa-
tial scale, estimated by comparing the nonlinear and linearpower spectra via
b2
eff(k) = P (k)/Plin(k), where the “shot noise” term is already subtracted to

obtain the clustering-driven component of the power spectrumP (k). The three
different curves vary the redshift of the bias measurement.Figure credit: Fer-
nandez, E. et al.,Astrophys. J., 710, 1089 (2010). Reproduced with permission
of the American Astronomical Society.
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particles, we only care about pairs of galaxies,

P gal
2h (k) = Plin(k)

[∫

dm
〈N |m〉
n̄gal

n(m)beff(k|m)ugal(k|m)

]2

, (3.84)

where〈N |m〉 is the mean number of galaxies in a dark matter halo of mass
m and we have included the nonlinear bias correctionbeff . We have also
added two other small adjustments: we normalize to the average number
density of galaxies in the sample,n̄gal, rather than̄ρ, and we include the
profile of galaxies within the halo,ugal, rather than the dark matter density
profileu. In the limit in which linear theory is a good approximation,and on
large scaleskrs ≪ 1, this expression isP gal

2h ≈ 〈b〉2n Plin, where〈b〉n is the
bias averaged bynumberof galaxies (rather than mass, as in equation 3.83),
because we are considering each galaxy as a single marker, regardless of its
mass.

Similarly, the one-halo term has a factor ofm2 reflecting the weighting
of pairs of particles within that halo. We need only change that expression
to

P gal
1h (k) =

∫

dmn(m)
〈N(N − 1)|m〉

n̄2
gal

|ugal(k|m)|, (3.85)

where〈N(N − 1)|m〉 counts pairs of galaxies.
Clearly, to compute the properties of a given sample we need an addi-

tional function which relates galaxies to dark matter halos. Thishalo occu-
pation distributioncan involve a great deal of the physics of galaxy forma-
tion, which we will discuss in later chapters. However, the basic principles
are relatively simple; it is the application to real surveysthat involves the
subtleties. First, let us assume that each halo can have two types of galax-
ies: a “central” galaxy and satellites. The former typically exists if the halo
exceeds some minimum mass thresholdMmin (for example, the Jeans mass
that we have already discussed, or the cooling mass that we will consider
later); we can think of it as the halo’s “initial” galaxy, tracing its history
along the largest branch at each merger.

Satellites constitute the remaining population: they liveinside “subha-
los” that have not yet merged completely with the primary halo. Numerical
simulations at low redshifts show that subhalos typically appear above some
other minimum massMsat > Mmin, and their numberNs increases roughly
proportionally to the halo mass.26

However, at high redshifts satellites are much less common:halos simply
are not big enough to contain a substantial number of sub-galaxies, and
halos are sufficiently small that even those with two merginggalaxies may
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appear as a single irregular source in a real survey. Thus, athigh redshifts it
often suffices to take〈N |m〉 = 1 if m > Mmin and zero otherwise.

It is somewhat more difficult to compute the one-halo term. Atlow red-
shifts, the number of satellites is found to be roughly a Poisson variable
(which is reasonable, since merging is a somewhat stochastic process), so
that 〈Ns(Ns − 1)〉 = 〈Ns〉2. Including the central galaxy as an additional
component, this implies that〈N(N − 1)〉 = 〈N〉2−1, which is sub-Poisson
at the low-mass end. In the high-redshift limit, where satellites are unim-
portant, the one-halo term in the galaxy power spectrum disappears because
there is only one galaxy per halo and hence no correlations.

In addition to these terms, which arise because galaxies trace the density
field, we must also add in stochastic “shot-noise” fluctuations arising from
the discrete nature of galaxies: any such measurement is fundamentally a
counting exercise, so we expect Poisson errors in the galaxynumber counts
to provide an additional source of fluctuations. In a volumeV , the variance
in the galaxy number counts is therefore∼ nV , so the fractional density
fluctuation in a mode with wavenumberk will be ∆2

shot ∼ 1/nV ∼ k3/n.
A more precise derivation (see§10.4.1) showsPshot(k) = 1/n, or

∆2
shot =

k3

2π2n
. (3.86)

This noise term contains no useful physics and must be removed from an
observed power spectrum in order to study the interesting physical compo-
nent tracing the underlying density field. Fortunately, that is usually easy, so
long as one has a reasonable estimate for the sample’s true number density
(i.e.,nVsurvey ≫ 1).

3.7 NUMERICAL SIMULATIONS OF STRUCTURE FORMATION

Although the analytic models we have discussed in this chapter are useful,
they inevitably fall short of a complete description of the structure and dy-
namics of dark matter and baryons in an expanding Universe. Each dark
matter particle responds to the gravitational force from every other particle
within its causal horizon, and the baryons are also affectedby their gas pres-
sure gradient (and interaction with photons). A comprehensive description
of this problem is far beyond the capabilities of any analytic model.

Fortunately, the rapid increase in computing power over thepast several
decades has enabled numerical calculations to address thischallenge. Com-
puters are particularly well-suited to this endeavor, because they can easily
calculate the simple physical interactions between many particles. Although
following the behavior of individual dark matter particlesis still not feasible,
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numerical simulations can now (as of 2012) follow the dynamics of∼ 1010

particles over long periods of cosmic history. The fundamental idea behind
cosmological numerical simulations is to discretize the density field ρ(x)
into a large number of particles or grid cells and follow their evolution, in-
corporating as many physical processes (preferably from first principles) as
possible. This allows detailed comparisons of theoreticalpredictions with
observations as well as the study of “emergent phenomena” that depend
upon the interaction of many physical inputs and so cannot easily be pre-
dicted from analytic models. Nevertheless, one must alwaysbear in mind
that a numerical simulation is ultimately no better than thephysics underly-
ing its component algorithms, and it is crucial to understand those inputs in
order to assess the the reliability of linking simulation results to observables
in the sky.

Numerical simulations have been instrumental in understanding large scale
structure, the Lyman-α forest, the formation of the first stars, and a number
of other topics that we will discuss. In the remainder of thissection, we
will briefly discuss their most important features and limitations. We will,
however, defer discussion of computational radiative transfer to section 9.6
and focus here on gravitational and gas dynamics.

3.7.1 Gravitational Dynamics:N -Body Codes

The simplest problem is to follow the gravitational interactions of cold col-
lisionless particles in an expanding Universe. If we have a collection ofN
particles with particle massm, each labeled by indexi and a comoving po-
sition and peculiar velocity(xi, ui), this amounts to solving the equations
of motion (c.f., equations 2.2-2.3)

dxi

dt
=ui (3.87)

dui

dt
+ 2H(t)ui =−a−2∇φ, (3.88)

where the gravitational potential is determined by the Poisson equation (2.4).
To solve this problem, we discretize time into a sequencetn and assume that
we know the initial values[xi(t1), ui(t1)] for all particles. Then the future
configuration can be solved by numerically integrating the above system of
equations.

The key point is to determine the force on each particle by choosing an
integration scheme that is both stable and resistant to secular numerical er-
rors. The simplest such scheme is known as aleapfrogapproach, because it
uses two different sets of discretized times for the input quantities. For ex-
ample, suppose we know the position at a timetn and wish to know it after
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a single time step, attn+1 = tn + ∆t. As an intermediate step, we compute
the position and accelerationai of particlei at tn+1/2 = tn + ∆t/2:

xi(tn+1/2)=xi(tn) + ui(tn)∆t/2, (3.89)

ai(tn+1/2)= a[xi(tn+1/2), tn+1/2], (3.90)

where the acceleration at the intermediate time depends upon the predicted
location of the particle at that time as well as the locationsof all the other
particles. We can then compute the new position and velocityat the final
time tn+1 using the acceleration at the intermediate time,

ui(tn+1) =ui(tn) + ai(tn+1/2)∆t, (3.91)

xi(tn+1) =xi(tn) + [ui(tn) + ui(tn+1)]∆t/2. (3.92)

This is superior to Eulerian integration schemes because, by evaluating the
acceleration at the midpoint of the timestep, it improves time-reversibility
and better preserves the phase space properties of the particle orbits.

This scheme requires computing

−∇φ(xi) = −Gm
∑

j 6=i

xi − xj

|xi − xj |3
. (3.93)

at the location each particle. However, the computational time required to
calculate all these forces scales asN2 and is prohibitive even for modest
size systems. Modern codes use one or more tricks to simplifythe calcu-
lation. The most straightforward is atree algorithm, which groups distant
particles into sets (with the group size generally increasing for more distant
particles). The gravitational force from each group can then be estimated
using a multipole expansion. Grouping algorithms can speedup the calcu-
lation to scale with particle number asN logN .

A second trick is to use a Fast Fourier Transform (FFT) algorithm to
compute the force on a grid, a technique known as aparticle-mesh (PM)
algorithm . In this approach, the particle mass distribution is smoothed and
mapped onto a uniform mesh. Poisson’s equation can then be solved rapidly
via an FFT, provided that the computational box is assumed tohave periodic
boundary conditions. The force at each grid point follows via an inverse
Fourier transform. Finally, the force at each particle location is computed
via interpolation. This approach scales linearly with particle number, but
the practical limit is often dictated by computer memory, since the mesh
resolution ultimately determines the force accuracy. Thisapproach does not,
however, deal with highly clustered particles very well. A commonly-used
compromise, calledP3M , adopts direct summation at small separations and
a series of adaptive grids on larger scales.
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There are three effective resolution limits onN -body codes. The first is
the particle massm, which obviously determines the smallest object that can
be followed. Typically,> 103 particles are required to estimate the density
profile of a virialized halo reliably, and many orders of magnitude more are
required to resolve its substructure in detail.

A second limit emerges from the discretization of the density field: the
point mass force calculation in equation (3.93) causes large artificial deflec-
tions when particles pass very close to each other. This is unphysical be-
cause the material should actually be distributed over larger volumes, which
dramatically reduces the peak force. To alleviate this problem, codes intro-
duce aforce-softeningparameter such that the force scales as1/(r2 + ǫ2F ).
This limits the maximum resolvable density contrast to(ℓ̄/ǫF )3, whereℓ̄ is
the mean particle spacing. Most modern codes takeℓ̄/ǫF ∼ 20–50. For PM
codes, the force limit is roughly twice the grid spacing, because it depends
on the gradient of the potential across that grid.

The final limit comes from the requirement that the numericalintegration
over time remain stable. Crudely, this requires that the time steps be suffi-
ciently close so that the first-order approximations intrinsic to the integration
converge. Equivalently, the series (c.f., equations 3.91-3.92)

x(ti+1) = x(ti) + u(ti)∆t+
1

2
a(ti + ∆t/2)∆t2 + ... (3.94)

must converge rapidly. Here the force per unit mass is typically evaluated
at the midpoint of the particle’s trajectory in order to improve stability and
convergence. The ratio of these terms suggests

∆t = ǫt
σ

|a| , (3.95)

whereǫt < 1 is an imposed tolerance parameter andσ is the typical velocity
dispersion of the particles in the simulation. This is knownas theCourant-
Friedrichs-Lewy condition(often referred to as the Courant condition).

3.7.2 Hydrodynamics: Grid-Based Approaches

Extending the calculation beyond dark matter significantlyincreases its com-
plexity, because the trajectories of baryons are shaped by hydrodynamic
forces in addition to gravity. In particular, converging gas flows can lead
to the development of sharp discontinuities (shock fronts)whose accurate
treatment requires high spatial resolution. The complete fluid equations can
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be written (in proper coordinates) as

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.96)

∂v

∂t
+ (v · ∇)v =−∇Φ − 1

ρ
∇p, (3.97)

∂ε

∂t
+ v · ∇ε=−p

ρ
∇ · v +

(H −Q)

ρ
. (3.98)

These represent the conservation of mass, momentum, and specific energy
(per unit mass)ε, respectively. In the last equation,H andQ are the ra-
diative heating and cooling rates per unit volume, respectively, and we have
ignored any other internal heating mechanisms. Alternatively, the energy
equation can be replaced with an equation for the entropy perunit masss,

ρT

(

∂s

∂t
+ v · ∇s

)

= (H −Q). (3.99)

We have written these equations in anEulerianform, in which the spatial co-
ordinate system is fixed. An alternative is aLagrangianapproach, in which
the coordinates move with the fluid elements. In this case, the appropriate
derivative is theconvective derivative,

D

Dt
≡ ∂

∂t
+ v · ∇, (3.100)

so that, for example, equation (3.97) simplifies to

Dv

Dt
= −∇Φ − 1

ρ
∇p. (3.101)

There are two common approaches to solving this system of equations,
both illustrated in Figure 3.19. The first is to divide space into a uniform
grid and to solve the hydrodynamic equations for cell-averaged quantities
at each grid point. This Eulerian scheme is attractive because the mass,
momentum, and energy components of the fluid equations can all be cast as
flux conservation laws

∂q

∂t
+ ∇ · F = 0, (3.102)

whereq is the (cell-averaged) densityρ, momentum densityρux,y,z, or to-
tal energy densityρ(ε + u2/2) andF represents the flux of this conserved
density across the cell boundaries. This formulation lendsitself naturally to
grid-based methods: it means that to track the evolution ofq at a particu-
lar location we need only keep track of the fluxF through each of the cell
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Figure 3.19 Numerical methods for solving hydrodynamics. At left, we show a grid-based
algorithm, where the continuous fluid quantities are discretized on a grid, with
the equations solved along the grid faces. Mass flows are described by ex-
changing material between the cells. Resolution is often increased through
adaptive mesh refinement, where a new grid is spawned once certain criteria are
reached (most commonly, a density or timestep criterion). At right, we illustrate
smoothed-particle hydrodynamics, in which the matter fieldis discretized into a
set of particles that can flow freely through the simulation volume. Each particle
describes a fixed mass, distributed according to asmoothing kernelillustrated
at bottom. Mass flows by moving the particles around.
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boundaries. Labeling cells by an indexk and assuming they are∆ℓ across,
we have

qk(t+ ∆t) = qk(t) +
∆t

∆x

3
∑

j=1

[Fj+(t) − Fj−(t)], (3.103)

where the indicesj label the three axes of the cells andFj+ represents the
flux along thei direction between the cell of interest and the next cell in
the positivejth direction (andFj− the flux in the negativejth direction).
Formulating the fluid equations in this way has one importantadvantage
over the usual differential forms written earlier: when fluids develop sharp
discontinuities, like shocks, the latter break down in any scheme with fi-
nite resolution. On the other hand, the integral forms like equation (3.102),
which in the case of shocks are known as the Rankine-Hugoniotjump con-
ditions, properly conserve the fluid quantities even if the detailed structures
remain unresolved.

The subtlety in grid-based methods lay in ensuring numerical stability for
the solutions. For example, the most naive approach to estimate a fluid vari-
ableQ at a cell interface is to simply take the midpoint of the cell-averaged
quantities in the neighboring cell (e.g.,Qk+ = [Qk+1 +Qk]/2). However,
this simple approach is in fact unstable, and more sophisticated algorithms
are required. One common strategy is to approximate the calculation as a
Riemann problem(also known as a shock tube), in which a fluid quantity is
constant over two regions with a discontinuity in between them. Provided
that the system obeys conservation laws of the form in equation (3.102),
Riemann problems can be solved exactly in terms ofcharacteristicsthat
propagate at known speeds in either direction; this exact solution can then
be leveraged to calculate the evolution in more realistic circumstances effi-
ciently. (For example, an initially uniform gas with a sharpedge adjacent
to vacuum would flow into the vacuum at the sound speed, while ararefac-
tion wave would travel in the opposite direction through thegas, also at the
sound speed.)

One popular technique for leveraging the Riemann problem isknown as
Godunov’s scheme. One approximates each cell as a uniform medium at its
average value and then solves the Riemann problem at each of its interfaces.
The resulting waves can then be propagated into the cell and its new prop-
erties calculated at a later time. In order to avoid the wavescolliding and
interacting with each other, the timestep must be limited by

∆t = ǫgrid
(∆x/2)

cs
, (3.104)

wherecs is the sound speed andǫgrid is a dimensionless constant.
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Another example is thepiecewise parabolic method (PPM), which uses
a parabolic function to interpolate a fluid variable across acell and its im-
mediate neighbors (it is thus a third-order extension of thebasic Godunov
method). The algorithm is constructed so as to mimic the propagation of
nonlinear waves in the fluid system and to accurately captureshocks. Unfor-
tunately, interpolation can also induce spurious oscillations when the fluid
quantities change rapidly (as they do, for example, in shocks). These too
can make the solutions unstable. One can therefore introduce a numerical
dissipation scheme to damp these fluctuations, or alternatively enforce aflux
(or slope) limiterthat forces spatial derivatives to remain within reasonable
bounds.

The disadvantage of grid-based approaches is that the grid resolution
must be uniform, whereas thedesiredresolution may vary across the simula-
tion volume – for example, the relevant spatial scales are much smaller near
a collapsed dark matter halo than in a large void. Thus, one “wastes” com-
putational resources in some regions. A common solution to this problem is
adaptive mesh refinement (AMR), in which finer grids are introduced as
necessary to cover particular sub-volumes of the computation.

The fundamental idea of AMR is to demand that the local grid spacing
adjust “on-the-fly” to the physical conditions within the fluid. For exam-
ple, if a dark matter halo collapses to high density and accretes baryons, the
physical resolution must increase in order to follow the flow. Meanwhile,
the timestep required with a smaller grid will shrink dramatically according
to equation (3.104). AMR codes spawn smaller meshes that arestepped at
higher rates, while the background grid continues its slow evolution in low-
density regions. While AMR does allow a dramatic increase inthe dynamic
range of grid-based calculations, the spawning of grids is an imperfect pro-
cess that leads to some subtle numerical problems when the resolution in-
creases discontinuously, for example in populating the initial conditions of
small-scale modes originally absent from the parent grid.

While AMR solves the most glaring problem with grid-based approaches
in astrophysics, these codes suffer from some other important shortcomings.
Foremost amongst them is the violation of Galilean invariance inherent to
such methods (i.e., the results of the calculation depend onthe reference
frame): because the advection terms in equations (3.96)–(3.98) are mod-
eled explicitly, they inevitably contain numerical errorsthat depend upon
the magnitude of the bulk velocity relative to the velocity dispersion (which
can be large – for example, galaxies merge at velocities comparable to or
greater than their own velocity dispersions). This createsnumerical viscos-
ity and diffusion that violate Galilean invariance. Without large physical
transport coefficients, these numerical artifacts are in fact the leading order
terms, so even the qualitative solutions may be questionable under some cir-
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cumstances. In general some amount of dissipation is helpful, but limited
resolution or high bulk velocities will cause over-mixing.Similar artifacts
also appear whenever the bulk velocity is much larger than the thermal ve-
locities; these can be remedied (but not entirely removed) with a careful
choice of the reference frame.

3.7.3 Hydrodynamics: Particle-Based Methods

The alternative to grid-based approaches,smoothed particle hydrodynam-
ics (SPH), discretizes the fluid field and implicitly adapts the resolution to
the local fluid properties (see Figure 3.19). It is more naturally suited to
problems with a high dynamic range of density, but it also faces its own set
of challenges.

SPH methods formally aim to recover a smoothed versionQs of a fluid
fieldQ (such as density or temperature),

Qs(r) ≡
∫

d3r′Q(r)W (r− r′, h), (3.105)

whereW (r, h) is a smoothing kernel, withh describing its characteristic
width. Most commonly, this kernel has a cubic spline form withW (r, h) =
w(r/2h) and

w(x) =
8

π







1 − 6x2 + 6x3, 0 ≤ x ≤ 1/2,
2(1 − x)3, 1/2 ≤ x ≤ 1,
0, 1 < x.

(3.106)

Note that each particle therefore has a finite “radius”2h in this scheme.
Now suppose that we know the fluid properties at a set of pointsri. We

associate particles with each of these points, assigning massmi so as to
conserve the total mass in the field and densitiesρi such that the volume
between the particles is∼ mi/ρi. We can then estimate the smoothed field
Qs by a summation over these particles, so that equation (3.105) becomes

Qs(r) ≈
∑

k

mk

ρk
Q(rk)W (r− rk, h). (3.107)

This sum is accurate so long as the kernel widthh exceeds the (local) parti-
cle spacing. More precisely, one can set the density of particle i asviii

ρi =

Nngb
∑

k=1

mkW (ri − rk, hi), (3.108)

viii Note that we choose one scheme here for concreteness, but others are sometimes used
as well.
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wherehi is set so as to ensure that each particle has a fixed “mass”ρih
3
i =constant.

This ensures that the number of neighborsNngb within its kernel is also
nearly constant. This is the key advantage of SPH approaches: it can auto-
matically adjust the degree of smoothing to the density of particles, focus-
ing the “high-resolution” part of the calculation in volumes where it is most
needed.

Equation (3.107) is generally taken as the SPH estimate for any fluid field.
The derivatives of such a field can then easily be calculated (as they require
only the derivatives of the kernelW ), and from them one can construct
discretized versions of the fluid equations. For example, equation (3.96)
becomes

Dvi

Dt
= −∇φ−

Nngb
∑

k=1

mk

(

pi

ρ2
i

+
pk

ρ2
k

)

∇iW (ri − rk, h), (3.109)

where∇i is the gradient with respect to theri coordinates. Unfortunately,
this straightforward approach contains a number of subtleties in its practical
application regarding bookkeeping between particles, smoothing lengths,
etc. Here that is reflected in the loose notationW (ri−rk, h), which does not
specify the smoothing length to be used in the derivative (namely whether it
applies to particlei or k).

The most popular astrophysical codes therefore take a slightly different
approach by noting that the fluid equations (3.96)–(3.98) follow from the
Lagrangian

L =

∫

d3r ρ

( |v|2
2

− ε

)

, (3.110)

which itself can be easily discretized,

LSPH =
∑

i

(

mi|vi|2
2

−miεi

)

, (3.111)

where the thermal energy of a given particle is assumed to depend only on
its entropy. For now we will assume that entropy to be constant (i.e., we will
neglect shocks and other dissipative processes).

The advantage of this Lagrangian formulation is that it can straightfor-
wardly incorporate the constraintρih

3
i =constant to define the smoothing

length, as in any system of particles in elementary mechanics. Following
the standard Lagrangian procedure, the equation of motion for this system
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is

Dvi

Dt
= −∇φ−

Nngb
∑

k=1

mk

(

fi
pi

ρ2
i

∇iW (ri − rk, hi) + fk
pk

ρ2
k

∇iW (ri − rk, hk)

)

,

(3.112)
where

fi ≡
(

1 +
hi

3ρi

∂ρi

∂hi

)−1

(3.113)

arises from the constraint. Note the similarity to equation(3.109); this
slightly more complicated form implicitly includes the particle accounting
without much increased complexity, and the direct derivation from a dis-
cretized Lagrangian manifestly conserves linear momentum, angular mo-
mentum, and energy.

Although elegant, this approach has one key weakness: namely, by as-
suming a constant entropy it does not allow shocks or other forms of dissi-
pation. The above equation must then be supplemented with anartificial vis-
cosity that re-introduces these features. Perhaps surprisingly, it is relatively
easy to formulate this viscosity in such a way that it generates the proper
additional entropy at shocks, so long as the prescribed viscosity conserves
momentum and energy. This follows because the shock jump conditions
(and hence macroscopic fluid variables) are independent of the transport
coefficients such as the viscosity. However, SPH codes cannot resolve the
structure of the shock itself unless the viscosity parameter reflects the mi-
crophysics of the gas; typically, shocks are much broader inSPH treatments
than in grid-based codes. Another challenge is to ensure that this artificial
viscosity does not affect the dynamics in regions outside ofshocks.

The SPH approach requires a time integrator; because the fluid has been
discretized into particles, the leapfrog methods described in §3.7.1 work
equally well here (though note that the irreversibility of most hydrodynam-
ics process actually means that other methods work as well).The time steps
must respect the Courant condition of equation (3.95), but because the hy-
drodynamics equations also involve spatial derivatives anadditional limit
applies as well, with|v∆t|/∆r < 1. This is usually written as

∆ti = ǫSPH
hi

cs,i
, (3.114)

wherecs,i is the sound speed at the location of theith particle. In practice,
because the particle sizes and sound speeds can vary dramatically in a cos-
mological system, most codes allow for different particlesto have different
timesteps. This too allows the calculation to spend the bulkof its resources
where they are most needed.
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In addition to the difficulties with resolving shocks, SPH codes also have
some problems following certain important fluid instabilities. Particle-based
schemes inevitably contain “noise” in their realizations of the density and
velocity fields, which in certain regimes can cause unphysical effects such
as suppressing the Kelvin-Helmholtz instability in shear flows. The noise
can be reduced by introducing an artificial viscosity that smooths the fluid
fields, but that viscosity itself affects the instabilitiesas well. Clearly, one
must pay careful attention to matching the ideal computational method for
any particular physical problem.

It is also worth noting that, although SPH simulations do intrinsically
adapt to high-density environments, they cannot “zoom” indefinitely. Once
the timestep of equation (3.114) is too short – say in runawaygravitational
collapse – it becomes impractical to continue the integration. The problem
can be circumventing by creating asink particlethat accretes mass (and pos-
sibly exerts feedback in some prescribed manner) but whose internal struc-
ture is not resolved. This technique is used in simulations of star formation
and is an example ofsubgrid modelsthat represent physical processes un-
resolved by the simulation itself (see§3.7.4 for more discussion of these
approaches).

Finally, SPH is ill-suited to problems in which the mixing ofdifferent
fluids is important (such as diffusion), because the particles are generally
not allowed to exchange mass. This has more important ramifications than
simply following mass around, however: entropy generationthrough gas
mixing is impossible to follow reliably with standard SPH codes.

Although SPH is by far the most popular particle-based solver, it is not
the only approach; the kernel is ultimately used only to partition the fluid
field into mass elements, and other schemes to accomplish thesame purpose
can also be used. For example, one can compute aVoronoi tesselationfor
the volume. This assigns a volume to each particle that includes all regions
closer to its location than to any other particle, without any overlap between
the particles. The same Lagrangian technique described above works with
this modified constraint to write the equations of motion foreach particle.

A step beyond that is to combine the advantages of particle and grid-based
approaches by constructing a “moving mesh” of grid cells using the Voronoi
tessellation technique to build the cells. Because the cellboundaries are
well-defined (unlike in SPH), grid-based numerical algorithms can be used
to compute the fluxes of integral fluid properties across the Voronoi mesh
cells. Codes exploiting these techniques are just now becoming available.
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3.7.4 The Limits of Numerical Simulations

Computational astrophysics has risen dramatically in importance over the
last several decades, and the continuing increase in computing power promises
to make these methods even more useful in the future. They have been in-
strumental in shaping our understanding of many aspects of astrophysics,
including the high-redshift Universe. Nevertheless, one should bear in mind
that they are only one tool in our arsenal for addressing challenging prob-
lems, and they rarely provide a complete physical understanding of such
problems. It is therefore important to identify their limitations for any par-
ticular problem and to calibrate the significance of their results in that con-
text.

We have already discussed some of the specific computationalchallenges
faced by the different approaches: for example, grid-basd codes typically
violate Galilean invariance and have difficulty with supersonic flows, while
SPH codes do not resolve shocks properly or follow shear instabilities accu-
rately. We have also discussed how the finite grid size or particle num-
ber limits the spatial resolution that any particular simulation can probe
(though in a predictable manner). But astrophysical applications present
deeper problems as well.

Foremost amongst them is the enormous dynamic range required to sim-
ulate cosmological volumes from “first principles.” Ideally, we would like a
simulation that resolves star formation inside dwarf galaxies but also con-
tains a representative volume of the intergalactic structures. We will see
in chapter 9 that, during cosmological reionization, this requires sampling
a volume> (100 Mpc)3. Meanwhile, star formation occurs down a scale
∼ R⊙ = 2.3 × 10−14 Mpc. Covering both at once requires a spatial dy-
namic range∼ 1016 (or 1048 in mass!), far beyond the capabilities of even
the largest computer clusters today or in the foreseeable future.

Cosmological simulations must therefore inevitably incorporatesubgrid
models to approximate physics unresolved by the simulation. The impor-
tance of these prescriptions depends on the dynamic range and goals of the
simulation. Most commonly, they parameterize processes inside galaxies,
including:

• Star formation: Cosmological simulations, and even simulations of
individual galaxies, are far from being able to resolve starformation
– and, as discussed in later chapters, we are still far from understand-
ing that process even if we could zoom in to very small scales.Sim-
ulations must therefore construct a subgrid model for star formation,
usually calibrating it to an empirical relation such as the Kennicutt-
Schmidt law (see§8.5). The computed star formation rates are there-
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fore no more reliable than the empirical or semi-analytic model un-
derlying the simulation.

• Black hole growth:An equally difficult problem is the accretion of
gas onto black holes, which typically occurs on solar systemscales
inside the complex environments of galactic nuclei. Without resolv-
ing the detailed gas dynamics at the center of galaxies (which can be
done in specialized simulations, but not in their cosmological scale
counterparts), it is impossible to determine the accretionrates onto
these objects from first principles. It is therefore necessary to impose
a subgrid model in order to track the growth of black holes andquasar
activity.

• Galactic winds and feedback:We will see in chapter 6 (and§8.7)
that feedback is likely ubiquitous in star-forming galaxies and crucial
for regulating their star formation rates. The energy and momentum
injected from supernovae and radiation likely prevents much of the
gas from cooling into stars and removes material from the galaxy, en-
riching the intergalactic medium (IGM) with metals. However, these
processes are difficult to model even in very high-resolution simu-
lations, and simple prescriptions are usually implementedin cosmo-
logical simulations. The free parameters are then calibrated to local
observations of feedback on galactic scales.

Even more difficult to model is feedback from supermassive black
holes, which can be very important energetically but has very limited
observational constraints. Because it occurs most often atthe centers
of galaxies, the transport of the energy and momentum through the
galaxy is crucial for modeling it effectively. For example,nearby ra-
dio galaxies launch powerful jets into the IGM, but it is not clear that
these jets couple strongly to their host galaxies. With onlya crude
physical understanding of these processes, subgrid modelsthat make
strong assumptions about the underlying coupling mechanisms (in the
form of relativistic and non-relativistic outflows, radiative heating, ra-
diation pressure, or cosmic rays) are necessary.

• Clumping: We will see in chapter 9 that small-scale gas clumping
is crucial to understanding reionization, but many cosmological sim-
ulations do not resolve the relevant physical scales (especially be-
fore reionization, when the Jeans mass is small). Moreover,this
small-scale structure will evolve as the IGM temperature and pressure
change. Often a subgrid model is inserted to describe this clumping:
it can include the clumping from unresolved filaments and sheets in
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the cosmic web (see chapter 4) as well as the photo-evaporation of
collapse “minihalos” that are unable to form stars because their low
virial temperature does not allow the gas to cool further. Some reion-
ization simulations ignore hydrodynamics entirely and imposeall gas
clumping through a simplified prescription.

• Radiative heating and cooling:For most of the baryons in the uni-
verse, radiative processes – either photoheating from ionization or
cooling from line transitions – are amongst the most important mech-
anisms setting their thermal properties. These in turn depend not only
upon the metagalactic radiation field (which must be imposedexter-
nally, unless radiative transfer is included), but also on unresolved
physics of the gas, including its metal content and any multiphase
medium. Although coarse resolution likely suffices in the IGM, gas
near or inside galaxies is subject to major uncertainties from these
effects.

The importance of these subgrid models cannot be understated: nearly
all of the observablepredictions of cosmological simulations rely on their
parameterizations. Indeed, it is no coincidence that the most influential cos-
mological simulations have often not been those with the most computing
power; instead, they have made the most important advances in implement-
ing physically motivated subgrid models.

Another problem, particularly at high redshifts is ensuring that the simu-
lation samples a representative volume of the Universe. Typically, this is en-
sured by demanding that the largest density modes in the simulation remain
well in the linear regime at the time the simulation is ended.For technical
reasons (in order to make a FFT easy, and so that the density field “outside”
of the box can be represented by the box itself), most cosmological simula-
tions implementperiodic boundary conditions, in which opposite faces of
the box are identified with each other. This forces the mean density of the
box to take on the average cosmological value, which at first blush automat-
ically appears to make the box a “representative” volume of the Universe.
However, for highly clustered objects (which includes galaxies at very high
redshifts), this may be misleading, because even a small density boost in a
long-wavelength mode can dramatically affect the halo abundance. For suf-
ficiently rare objects, most such objects may actually lie inside large-scale
overdensities; a periodic box at the mean density can therefore not contain
a fair sample of these halos. Fortunately, this effect can easily be quanti-
fied using the conditional mass function in the excursion setformalism (see
§3.4.2).

For similar reasons, rare objects (like extremely massive halos) are very
difficult to simulate, although they are also the most interesting because
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their extreme properties often make them the easiest to observe. Typically,
one studies such an object with an adaptive technique, although SPH and
AMR on their own are rarely up to the task. Instead, an object of interest
is identified (but not resolved sufficiently) in a large-scale simulation, and
then another higher-resolution simulation is performed using the object’s
large-scale environment as boundary conditions.

In summary, computer simulations are no more intelligent than their cre-
ators, and they rely on the proper input physics in order to produce reliable
answers. Their construction and proper use therefore requires as broad and
deep a physical understanding as any other area of theoretical astrophysics.
Computers follow the algorithms with which they are programmed, and they
are limited by the approximate sub-grid physics that was implemented in
them. They are therefore most effective at identifying and understanding
so-called “emergent phenomena,” in which complex systems grow from the
interactions of simple systems whose physics can individually be accurately
described, or in making high-precision predictions for well-understood phe-
nomena. However, if the input physics is incorrect – if the code uses in-
correct initial conditions, or excludes any important physical process – the
simulation is no better than an analytic model with similar flaws. A recent
example is the recognition of baryonic acoustic oscillations – nominally a
second order effect and so ignored in cosmological simulations of structure
formation – as potentially providing a crucial modulation of the collapsed
matter field (see§2.1.2 and 3.2.2).

In many astrophysical problems, these inputs are so poorly understood
that a computer simulation is no better than a simple toy model (and, most
likely, both more expensive and less flexible). We urge the reader to combat
the natural human tendency to conflate accuracy with precision: a computer
is capable of blindly following incorrect physical assumptions toward an
incorrect – but highly precise – solution (often accompanied by beautiful
pictures and animations). It is important for both observers and theorists
to appreciate the strengths and limitations of any theoretical calculation in
detail before comparing its predictions to other calculations or observations.



Chapter Four

The Intergalactic Medium

4.1 THE COSMIC WEB

Although much of astronomy focuses on the luminous materialinside galax-
ies, the majority of matter today – and the vast majority atz > 6 – actually
lies outside of these structures, in theintergalactic medium(IGM). This
material ultimately provides the fuel for galaxy and cluster formation, and –
because it is much less affected by the complex physics of galaxies – offers
a cleaner view of the underlying physical processes of structure formation
and of fundamental cosmology. It is therefore of great interest to study the
properties of the IGM, especially during the era of the first galaxies (when
the IGM undergoes major changes).

One of the great triumphs of modern numerical simulations isin describ-
ing the distribution of the intergalactic matter distribution in terms of acos-
mic webof sheets and filaments separating large voids that are nearly empty
of matter (see Figure 4.1). However, the formation of these structures is
actually remarkably simple, and it can be understood with a simple exten-
sion of linear perturbation theory called theZel’dovich approximation27 and
illustrated in Figure 4.2.

Let us begin by considering the distribution of matter at a very early time
ti. We defineq as the initial comoving position of each particle. If the
universe were homogeneous, we could then write its later position asr(t) =
a(t)q.

Now suppose we allow perturbations in the density field. We think of
these perturbations as small displacements in the initial position of each
particle, and we can express these displacements as a function of the original
location, p(q). At later times, gravity will cause these displacements to
change according to the local potential. As a simple approximation, let us
assume that this evolution is driven entirely by theinitial potentialΦi. Then
we can write

r(t) = a(t)[q + b(t)p(q)], (4.1)

whereb(t) is a new temporal function that describes the growth of thesedis-
placements with time. Note that because we assume that the displacement
field is driven by the potential at a fixed time, thedirection of the pertur-
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Figure 4.1 Slice through theMillennium Simulation, a massive computer simulation of cos-
mological structure formation (seeColor Plate 2for a color version of this fig-
ure). The colorscale shows the dark matter density; note howmatter is organized
into dense filaments (in many cases, these are actually slices through sheets of
matter) separating nearly empty voids. Massive galaxies and galaxy clusters
form at the intersections of these filaments. Figure credit:V. Springel (2005).
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Figure 4.2 Illustration of the Zel’dovich approximation for evolution of the cosmological
density field. In panel(a), we show the initial conditions for a calculation (ap-
proximating the density field as a set of discrete particles for simplicity). The
arrow indicates the direction of the displacement field at the location of each
particle. Panel(b) shows a later stage in the evolution. In the Zel’dovich ap-
proximation, each particle continues to move along the direction of its original
displacement (generated from the potential field at the initial time). As a result,
matter particles converge into sheets, filaments, and halos.

bation does not change with time, only its amplitude. This approximation
ignores the later evolution in the potential driven by theseperturbations, so
it represents a limited extension of perturbation theory.

The coordinatesq are known asLagrangiancoordinates, because they
label individual mass parcels; the Lagrangian coordinatesof the parcels do
not evolve with time. They are not the same as comoving coordinatesx,
which are defined byr(t) = a(t)x(t). Comoving coordinates are anEule-
rian system, meaning they refer to a fixed spatial grid rather thanlabeling
particles. The comoving position can evolve as a particle moves, whereas
the Lagrangian positionq does not (see also the discussion in 3.7.3).

Let us now consider the evolution of the density field in the Lagrangian
framework. Conservation of mass demandsρ(r, t)d3r = ρ̄d3q, where in the
Lagrangian system the density perturbations are containedentirely within
the spacings of the coordinate gridq. Thus, the Jacobian transformation
gives

ρ(r, t) = ρ̄det(∂qi/∂rj) (4.2)

=
ρ̄(t)

det[δij + b(t)(∂pj/∂qi)]
, (4.3)
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or to first order inb(t)p(q), the density perturbationδ ≡ ρ/ρ̄− 1 is

δ = −b(t)∇q · p, (4.4)

where∇q is the gradient with respect to the Lagrangian coordinate system.
It is convenient to Fourier transform the density field, as inequation (2.13),

except we separate the time dependence of the growing mode:

δ = D(t)

∫

d3k

(2π)3
δk,ie

−ik·x, (4.5)

whereδk,i is the Fourier transform ofδ(ti). Fourier transforming equa-
tion (4.4) and comparing to this expression, we see first thatin order for the
time dependence to match we must haveb(t) = D(t), the normal growth
factor. Then

p(q) = −iδk,i

k
k̂. (4.6)

Not surprisingly, this has the same form as the peculiar velocity u in equa-
tion (2.15): the displacement field is simply the linear-order peculiar veloc-
ity of each particle integrated over time.

By dottingk into equation (4.6), it is clear thatp(q) is the gradient of a
function. This implies that the matrix∂pj/∂qi is a real, symmetric matrix
that can be diagonalized to obtain three real eigenvaluesλ1 ≥ λ2 ≥ λ3 and
their associated principal axes. As a result, the determinant in equation (4.3)
may be factored such that

ρ(r, t) =
ρ̄(t)

[1 − b(t)λ1(q)][1 − b(t)λ2(q)][1 − b(t)λ3(q)]
. (4.7)

This has a straightforward physical interpretation. Consider an infinitesimal
cube surrounding each point in space and containing a set of neighboring
particles. The peculiar velocities of these particles deform the cube over
time. The principal axes of the transformationp(q) define the principal axes
by which this cube is deformed, and the eigenvaluesλi are proportional to
the growth rate of the deformation along these axes.

WhenD(t)λ1 = 1, the collection of particles has collapsed into a sheet
perpendicular to the first principal axis. This approximation therefore pre-
dicts that two-dimensional “sheets” or “pancakes” will be the first nonlin-
ear structures to form. Once collapse occurs along a second axis, a one-
dimensional filament will form, and once the third axis collapses, a halo
forms.i It is this physical picture that motivates the ellipsoidal collapse mod-
els used to improve the excursion set approach to halo abundances in§3.4.1.

iStrictly speaking, this complete collapse does not occur inthe Zel’dovich approxima-
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This qualitative picture matches up nicely with the cosmic web seen in
numerical simulations, and indeed the Zel’dovich approximation works sur-
prisingly well even into the nonlinear regime. There are twoways to un-
derstand this impressive success. First, the Zel’dovich approximation only
requires thatb(t)p ≪ q. That is less restrictive than requiringδ ≪ 1, be-
causeδ is a function of derivatives ofp, which can get large well before the
displacement field itself does. Second, it is easy to see thatthe Zel’dovich
approximation is exact in one dimension. In that case, the gravitational dy-
namics just follow sheets of matter, and the acceleration toward a sheet is
independent of distance. Thus, in one dimension, the net acceleration ex-
perienced at a point only depends on the number of mass sheetson either
side of it, which remains constant until “shell-crossing” at collapse. One
can therefore extrapolate positions from the initial displacement field with
the constant velocity fieldb(t)p exactly, at least until shell-crossing. To the
extent that collapse along theλ1 axis is much faster than that along the other
two axes, we therefore expect the Zel’dovich approximationto describe the
initial collapse in the real Universe very well.

4.2 LYMAN- α ABSORPTION IN THE INTERGALACTIC MEDIUM

Although dark matter dominates the mass budget of the IGM, itis the baryons
that most concern us, because they provide the fuel for galaxy formation,
interact with the radiation from galaxies, and – most importantly – provide
observables that allow us to trace the structure of the cosmic web. Now we
are in a position to study how these baryons are distributed in the Universe.

Hydrogen is the most abundant element in the Universe, making up≈
93% of the atoms in the Universe (the remainder is almost all helium). This
is now a well-understood result of the hot Big Bang model, in which nu-
cleosynthesis (completed within the first few minutes afterthe Big Bang)
efficiently combined all the remaining neutrons into heliumatoms but then
got bottlenecked by the lack of stable isotopes with five or eight nucleons.
As a result, all of the heavier elements were formed in the interiors of stars
within galaxies. We expect (and observations confirm) that the IGM is even
more dominated by hydrogen and helium than the Milky Way. We therefore
focus on these two elements – and especially hydrogen – in ourstudy of that
material.

tion, because the particles continue to travel in their original direction of motion. Thus,
shortly after collapse to a sheet, the particles cross each other and the sheet expands again.
Obviously, the problem lies in assuming a constant peculiarvelocity set by the initial po-
tential; once collapse occurs the potential has changed significantly. The so-calledadhesion
model28 improves the Zel’dovich approximation to account for this effect.
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Figure 4.3 Two important transitions of the Hydrogen atom. The 21-cm transition of hy-
drogen is between the two hyperfine states of the ground energy level (principal
quantum numbern = 1). In the higher energy state, the spin of the electron (e)
is aligned with that of the proton (p), and in the lower energystate the two are
anti-aligned. A spin flip of the electron results in the emission of a photon with
a wavelength of 21-cm (or a frequency of 1420 MHz). The secondtransition is
between then = 2 and then = 1 levels, resulting in the emission of a Lyman-α
photon of wavelengthλα = 1.216 × 10−5 cm (or a frequency of2.468 × 1015

Hz).

Since the lifetime of energy levels with principal quantum numbern > 1
is far shorter than the typical time it takes to excite them inthe rarefied
environments of the Universe, hydrogen is nearly always found to be in
its ground state (lowest energy level) withn = 1. This implies that the
transitions we should focus on are those that involve then = 1 state. In
this book, we will describe two such transitions in detail, both depicted in
Figure 4.3 (see also chapters 11 and 12).

The most widely discussed transition of hydrogen in cosmology is the
Lyman-α spectral line, in which an electron moves between then = 1 and
n = 2 electronic states and which was discovered experimentallyin 1905
by Harvard physicist Theodore Lyman. This line has been traditionally used
to probe the ionization state of the IGM in the spectra of quasars, galaxies,
and gamma-ray bursts. Back in 1965, Peter Scheuer29 and, independently,
Jim Gunn and Bruce Peterson30 realized that the cross-section for Lyman-α
absorption is so large that the IGM should be opaque to it evenif its neutral
fraction is as small as∼ 10−5.

Imagine a photon emitted at a wavelengthλ < λα, whereλα = 1216 Å is
the wavelength of the Lyman-α transition. As the photon travels through the
IGM, it redshifts along with the expanding Universe. Eventually, its wave-
length stretches near the Lyman-α resonance, where it can be absorbed by
a hydrogen atom and re-emitted in a different direction. We therefore com-
pute the optical depth intercepted by the photon by integrating all the way
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across the resonance line. We will letλobs (νobs) be the observed wave-
length (frequency).

The full cross section of a single atom is

σα(ν) =
3λ2

αΛ2
α

8π

(ν/να)4

4π2(ν − να)2 + (Λ2
α/4)(ν/να)6

, (4.8)

whereΛα = (8π2e2fα/3mecλ
2
α) = 6.25 × 108 s−1 is the Lyman-α (2p →

1s) decay rate,fα = 0.4162 is the oscillator strength, andνα = (c/λα) =
2.47 × 1015 Hz is the frequency of the Lyman-α line. The term in the
numerator is responsible for classical Rayleigh scattering.

In practice, the IGM atoms have a finite spread in their thermal velocities
– as well as peculiar velocities and (possibly) turbulence –all of which move
the line center around in velocity space (see§11.1.1 for details). However,
these velocity shifts are small compared to the cosmological redshift, and
we can safely ignore them so long as the photon begins its journey with a
wavelengthλ much farther from resonance than the line width (see§11.2
for a discussion of the more general case).

We can then approximate the line as narrow,

σα(ν) =
3Λαλ

2
α

8π
δ(ν − να), (4.9)

where the prefactor is the integral of equation (4.8) over frequency. Then, if
r is the photon’s proper distance from the observer and the neutral hydrogen
density isnH I(z) = xH InH(z) with xH I being the neutral fraction andnH

being the number density of hydrogen nuclei,

τα =

∫

dr σα(r)nH I(r)

=
c

H0

∫

da

a
σα(νobs/a)nH I(a)[Ωm/a

3 + ΩΛ]−1/2

=
3Λαλ

3
α

8π

xH InH(z)

H(z)
(4.10)

≈ 1.6 × 105xH I(1 + δ)

(

1 + z

4

)3/2

. (4.11)

where we have useddr = cdt = cda/ȧ = c(da/aH) with the Hubble
parameterH = (ȧ/a) evaluated in the matter-dominated era. We have
also letnH(z) = n̄H(z)(1 + δ) in the last line, wherēnH is the mean
cosmic density. ThisaverageIGM optical depth in the Lyman-α transition
is referred to as theGunn-Peterson optical depth.
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Obviously, the IGM optical depth can be enormous even if the neutral
fraction is small. Any transmission across these wavelengths is therefore
evidence that the diffuse IGM is highly ionized.

In practice, the IGM absorption is observed against a luminous back-
ground source (either a bright quasar or bright gamma-ray burst afterglow).
The source emits photons over an extended continuum, which allows us to
see absorption over a range of wavelengths. If the source resides at a redshift
zs, its Lyman-α transition will occur at an observed wavelengthλα(1+ zs).
Photons redward of this point begin their journeys atλ > λα and redshift as
they travel, so they never enter resonance with the Lyman-α line in the IGM
(though they may be absorbed by other species; see§4.6 below).

On the other hand, photons blueward of this point will eventually redshift
into resonance and (if the gas is not too highly ionized) be absorbed. Each
such photon will redshift into resonance at a particular distance from the
observer (and source) that depends on its initial wavelength: photons emit-
ted far blueward of Lyman-α in the source frame will travel a great distance
before their wavelength redshifts to 1216̊A, while those emitted just short-
ward of it will reach the resonance near the source. The photon will then
be absorbed if there is neutral hydrogen at this particular point in the IGM
– once it passes that point and redshifts further, it will no longer interact
with hydrogen atoms. Thus, eachobservedwavelength samples a different
point along the line of sight, and we can map the distributionof H I over
a large region along the line of sight to a particular source,as illustrated in
Figure 4.4.

The resultingLyman-α forest is so-named because of the strong vari-
ability of these absorption features. This is illustrated in Figure 4.5, which
shows three examples of Lyman-α forest spectra at moderately high red-
shifts (z ∼ 4). Redward of 1216̊A (in the source frame), the quasar con-
tinuum is largely unaffected by the IGM, but blueward of Lyman-α there is
highly variable absorption depending on the detailed structure along the line
of sight. We now understand this forest of features to originate from the cos-
mic web: as a line-of-sight passes through the sheets, filaments, and voids
of the cosmic web, the optical depth fluctuates. It is this forest that provides
most of our knowledge about the IGM at moderate and low redshifts, and
we will next study the physics behind it.

While these features can be identified individually with high-resolution
spectra, at lower resolution they will blend together as a “trough” of absorp-
tion. We therefore expect a break in the spectrum atλα(1+zs), with a depth
that depends on the ionized fraction of the IGM andzs (which affects the
proper density of hydrogen). At moderate and high redshifts(z > 3), this
“Lyman-break” is substantial enough to be useful as a redshift estimator. In
fact, one of the premier techniques for identifying high-z galaxies is by pho-
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Figure 4.4 The Lyman-α forest. In the top panel, light from a distant quasar passes through
several clouds of neutral hydrogen along the line of sight. As these photons
travel, they redshift. Photons beginning blueward of the Lyman-α transition at
the quasar will eventually redshift through that resonance. If they do so inside an
H I cloud, they may be absorbed by those atoms, creating an absorption feature
in the quasar’s spectrum. The spectra of distant quasars therefore allow us to
map the IGM’s density and ionization structure.

tometrically searching for extended sources with strong flux redward of the
wavelength corresponding to the desiredzs and little or no flux blueward of
that wavelength (see§10.2.2).

Naively, how would one expect the optical depth to evolve? The redshift
factor (1 + z)3/2 reflects the evolution of the column density of hydrogen
atoms and implies a slow increase forτα as redshift increases. But more
important is the factorxH I, which will evolve both with the cosmic density
and the ionizing background. As redshift increases, one might naturally ex-
pect the number of ionizing sources to decrease, because structure formation
is less advanced. In that case we would expect the optical depth to increase
even faster than(1+z)3/2, with the IGM eventually becoming opaque once
the ionizing background falls far enough. (In practice, theionizing back-
ground appears to be roughly constant with redshift at2 < z < 5, but it
must eventually decrease at higher redshifts.)

If a source were to be observed when the atomic fraction of hydrogen
were substantial, thenall photons with wavelengths just short of1216(1 +
zs) Å would redshift into resonance, be absorbed by the IGM, and then get
re-emitted in other directions. Eventually, this would result in an observed
completeabsorption trough shortward ofλα in the source spectrum, known
as aGunn-Peterson trough.

Figure 4.6 shows spectra of 19 quasars atz ∼ 6; note how indeed the
fraction of transmitted flux blueward of the Lyman-α line of each quasar de-
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Figure 4.5 Example Lyman-α forest spectra taken with the ESI spectrograph on the Keck
Telescope. The highly variable absorption blueward of the Lyman-α rest wave-
length (at 1216Å) is the Lyman-α forest, not noise. Redward of this transition,
the quasar continuum is visible, with only a few absorption features due to metal
line absorbers in the IGM. Figure credit: Songaila, A. & Cowie, L.,Astrophys. J.,
721, 1448 (2011). Reproduced with permission of the American Astronomical
Society.
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Figure 4.6 Observed spectra of 19 quasars with redshifts5.74 < z < 6.42 from the Sloan
Digital Sky Survey (seeColor Plate 3for a color version of this figure). For some
of the highest-redshift quasars, the spectra show no transmitted flux shortward
of the Lyman-α wavelength at the quasar redshift, providing a possible hint of
the so-called “Gunn-Peterson trough” and indicating a slightly increased neutral
fraction of the IGM. It is evident from these spectra that broad-band photometry
is adequate for inferring the redshift of sources during theepoch of reionization.
Figure credit: Fan, X., et al.Astron. J.128, 515 (2004). Reproduced with
permission of the American Astronomical Society.

creases toward the higher redshifts in this range. The spectra of the highest-
redshift quasars atz < 6.4 show hints of a Gunn-Peterson effect. Unfortu-
nately, this is difficult to interpret because only a very small neutral fraction
is required to saturate the Gunn-Peterson trough (see equation 4.11). We
cannot yet determine whether the IGM is slightly ionized or nearly neutral
at this time; we will discuss the Lyman-α line at very high redshifts in§4.7
and again in chapter 11.

Although the Lyman-α transition has so far proven the most useful in un-
derstanding the IGM, it is not the only approach. Its key feature is simply
that it is a spectral line, so that each observed wavelength corresponds to
a different distance from us. Any other spectral line has thesame feature
and can in principle be used in the same way. Higher Lyman-series tran-
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sitions are one possibility: they are useful for some applications (see§4.7,
for example), but they suffer contamination from the Lyman-α forest and so
are more difficult to study. Another possibility is the 21-cmspin-flip line, a
hyperfine transition of the ground state of H I (see Figure 4.3). The disad-
vantage of this transition is that it is extremely weak – withan optical depth
about seven orders of magnitude smaller than Lyman-α. Thus, it is only
observable when the H I density is very large – either becausethe system
itself is very dense or because the IGM is nearly neutral. In either case, the
Lyman-α optical depthτα ≫ 1, so its transmission is extremely small and
not detectable for the same regime. The two lines therefore complement
each other as probes of the IGM. We will see in chapter 12 that the spin-
flip 21-cm transition has great potential for studying the earliest phases of
structure formation.

4.3 THEORETICAL MODELS OF THE LYMAN- α FOREST

To compute the optical depth distribution of the IGM, it is therefore neces-
sary to know how the neutral fractionxH I varies through space. To a very
good approximation, almost all regions are inionization equilibrium, where
the number of ionizations per second balances the number of recombina-
tions,

nenpα(T ) = nH IΓ (4.12)

whereα(T ) is the (temperature-dependent) recombination coefficientand
the ionization rate (per atom) isii

Γ =

∫ ∞

νL

dν
4πJ(ν)σH I(ν)

hν
(4.13)

with J(ν) being the specific intensity of the background field (in unitsof
erg cm−2 s−1 Hz−1 sr−1) andσH I is the cross section for ionization. This
integral counts the number of photons per second striking anatom, weighted
by the ionization cross section. As we will see below, typical values for the
ionization rate areΓ ≈ 10−12 s−1, and so we will normalizeΓ = Γ12 ×
10−12 s−1 for convenience. At this ionization rate, the typical timescale for
a neutral atom to be photoionized is1/Γ ∼ 105 yr, which is much smaller
thanH−1(z). Thus ionization equilibrium is an excellent approximation.

In detail, bothne and the amplitude of the radiation background de-
pend upon the ionization state of helium, which holds∼ 10% of the total

ii Here and below we make one subtle simplification by assuming that each photon can
ionize only one atom; in reality, the secondary electron liberated during the ionization can
go on to ionize additional atoms. See§9.8.2 for more details.
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electrons in the Universe. We should therefore write two analogs of equa-
tion (4.12), for He I and He II, and solve the coupled system ofequations
given the radiation background. Although this is importantfor precision cal-
culations, it does not qualitatively affect the methods or results, so we will
usually ignore helium in the following presentation for pedagogical reasons.

The bound-free absorption cross-section from the ground state of a hy-
drogenic ion of speciesi with nuclear chargeZ and an ionization threshold
hνi is given by31

σbf (ν) =
6.30 × 10−18

Z2
cm2 ×

(νi

ν

)4 e4−(4 tan−1 ǫbf )/ǫbf

1 − e−2π/ǫbf
for ν ≥ νi,

(4.14)
where

ǫbf ≡
√

ν

νi
− 1. (4.15)

For neutral hydrogen,Z = 1 andνH I = (c/λc) = 3.29 × 1015 Hz (EH I =
hνH I = 13.60 eV); for singly-ionized helium,Z = 2 andνHe II = 1.31 ×
1016 Hz (EHe II = hνHe II = 54.42 eV). Although hardly obvious, this
follows σH I ∝ ν−3 near the ionization threshold.

The cross-section for neutral helium is more complicated; when averaged
over its narrow resonances it can be fitted to an accuracy of a few percent
up tohν = 50 keV by the function32

σbf,He I(ν)= 9.492 × 10−16 cm2 ×
[

(x− 1)2 + 4.158
]

×
y−1.953

(

1 + 0.825y1/4
)−3.188

, (4.16)

wherex ≡ [(ν/3.286 × 1015 Hz) − 0.4434], y ≡ x2 + 4.563, and the
threshold for ionization isνHe I = 5.938 × 1015 Hz (EHe I = hνHe I =
24.59 eV).

The radiative recombination coefficientα(T ) describes the rate at which
electrons and protons recombine (while emitting a photon).Of course, the
recombination can occur to any of the hydrogen atom’s energylevels; an
important special case is recombination to the ground state, which generates
a new ionizing photon. Provided that photon is re-absorbed by the gas, such
a recombination does not lead to a net increase in the neutralfraction. The
same is true for resonant photons, such as Lyman-α, which through repeated
emission and absorption events do not lead to net recombinations in a gas
that is optically-thick to them. It is therefore often useful to consider the
case-Brecombination coefficientαB , which excludes recombinations to the
ground state. For hydrogen,33

αB(T ) ≈ 2.6 × 10−13T−0.76
4 cm3 s−1, (4.17)
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whereT4 = T/104 K. The contrasting case, where such photons escape the
region of interest, is referred to ascase-Aand has a rate coefficient

αA(T ) ≈ 4.2 × 10−13T−0.76
4 cm3 s−1. (4.18)

Note that both rates are fairly slow in the IGM, except at highredshifts.
At the mean density of the IGM, the ratio of the case-B recombination time,
tBrec = 1/nHα, to the age of the Universe is

tBrec
tH

≈ 0.8

(

8

1 + z

)3/2

. (4.19)

In other words, once an atom is ionized atz < 7, it may remain ionized
forever at the mean cosmic density.

The appropriate coefficient to use depends on the physical situation at
hand. If one is concerned with the average absorption in a uniform IGM,
case-B is clearly the best choice, because photons from recombinations to
the ground state will be absorbed somewhere else in the IGM. If, on the
other hand, the IGM is very clumpy so that most of the recombination pho-
tons will be absorbed inside dense neutral blobs without influencing the
low-density IGM about which we principally care, case-A is abetter choice.
Similarly, if one considers ionization equilibrium in a single dense cloud,
case-A may be more appropriate if the recombinations occur preferentially
on the “skin” of the cloud, so that the resulting photons can easily escape to
the external medium.

In the highly ionized limit of equation (4.12), we can equatenp to the
total proton density (inside and out of hydrogen atoms); in that case, using
the case-B recombination rate,

xH I = neαB(T )Γ−1 ∼ 4 × 10−6(1 + δ)

(

1 + z

4

)3

T−0.76
4 Γ−1

12 , (4.20)

where(1+ δ) = ρ/ρ̄. Note that, for detailed calculations we should include
the electrons from ionized helium, but that makes only a minor difference at
the level of∼ 10%.

Because observations show thatΓ12 ∼ 1, we know that the gas is indeed
highly ionized, at least at moderate and low redshifts. Conveniently, substi-
tuting this value into equation (4.11), the optical depth for gas at the mean
density (andz ∼ 3) is of order unity, just in the range in which we can
accurately measure the absorption. The Lyman-α forest therefore allows us
to map the cosmic web in exquisite detail, even though the gasitself is at
extremely low densities.
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4.3.1 The Temperature-Density Relation

To proceed further and evaluateτα as a function of density, we must de-
termine the temperature of the IGM gas. Thermal equilibriumis typically
established by three competing effects. The first two are cooling processes:
the adiabatic expansion of the Universe and Compton cooling(which is only
important atz > 6; see§2.2). Other mechanisms – such as line cooling –
are much less efficient.

On the other hand, photoionization heats the gas. A typical ionizing pho-
ton hashν > hνi, so the free electron is left with some residual kinetic
energy. The electron then scatters through the IGM and deposits its energy
as heat. The heating rate perparticle for H I (in K s−1) isiii

Hph,H I = xH I

∫ ∞

νH I

dν (4πJν)σH I(ν)

(

hν − hνH I

hν

)

. (4.21)

(Note that it is often important to include helium here, as itremains in its
singly-ionized state untilz ∼ 3 and efficiently absorbs high-energy photons,
but for pedagogical simplicity we will ignore it.)

The temperature of a given parcel of gas will therefore evolve following

dT

dt
= −2HT +

2T

3

d ln(1 + δ)

dt
− T

d ln(2 − xH I)

dt
+

2

3kBntot
(H− Λ),

(4.22)
where the first two terms account for adiabatic expansion, the third for the
change in the total particle density, and the last for radiative heating and
cooling: H ≈ Hph in most cases andΛ is dominated by Compton cooling
(see also§9.8.2). We then imagine that the parcel begins as a neutral region
and is ionized over some period of time by luminous sources, until it reaches
ionization equilibrium with a (slowly-evolving) metagalactic background.
We would like to understand how its temperature evolves through these two
stages.

If we imagine that a gas parcel is initially neutral and then is rapidly
exposed to a strong ionizing background, all of the gas will quickly be ion-
ized. In this regime, equation (4.22) simplifies substantially, because only
the particle number and photoheating terms are large. The final value is then
simply the average excess energy per ionization〈Ei〉, yielding

kB∆T =
2

3

nH

ntot
〈Ei〉 . (4.23)

iii Again, here we assume that all of the excess energy of the photon goes to heat the gas;
in reality, some will help to ionize it and some to collisionally excite neutral atoms. See
§9.8.2.
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This deceptively simple expression actually hides a fair amount of physics
in the factor〈Ei〉, which depends on how the spectrum of incident radiation
interacts with the gas parcel. Two limits are illuminating.First, if the parcel
is optically thin, then the weighting byσH I in equation (4.21) reduces the
impact of high-energy photons. In this case,

〈Ei,thin〉 ≈
1

Γ

∫ ∞

νi

dν (4πJν)σH I(ν)

(

hν − hνi

hν

)

. (4.24)

On the other hand, if the element is optically thick up to somemaximum
frequency (set by the frequency dependence of the cross-section, σH I ∝
ν−3), thenall photons below this frequency are absorbed and the weighting
by σH I disappears.

These two limits can make a significant difference to the total tempera-
ture increase: for a specific luminosityLν ∝ ν−α, we obtain〈Ei,thin〉 =
EH I/(α + 2). In the particular case ofLν ∝ ν−2 appropriate for a low-
metallicity galaxy,〈Ei,thin〉 /EH I ≈ 1/4, if we include all photons be-
tween the H I and He II ionization thresholds. In the optically thick limit,
we have instead〈Ei,thick〉 = EH I/(α − 1). For Lν ∝ ν−2, this yields
〈Ei,thick〉 /EH I ≈ 3/5 (again including all photons in the range 13.6–
54.4 eV). The net temperature change is then∆T ≈ 0.5(2/3kB ) 〈E〉 ∼
30, 000 K for the optically-thick case, significantly above the value of ∼
12, 500 K for the optically-thin case.

Because this energy input is identical for each particle (modulo the opti-
cal depth of its environment), the temperature of a parcel should beindepen-
dentof its density immediately after ionization.iv However, after this initial
phase of ionization,Hph decreases dramatically, becausexH I becomes very
small.

At this point, the temperature approaches a quasi-steady state, varying
only slightly on cosmological scales as the expansion rate changes. The
temperature in this statedoesdepend on density through the adiabatic cool-
ing rate (the second term on the right hand side in equation 4.22) – under-
dense voids can be considered (locally) to have a smallerΩm, and so they
expand faster. Thus, the low-density regions cool fastest.Numerical calcu-
lations show that an equilibrium is reached in which

T ≈ T0(1 + δ)γ−1, (4.25)

with T0 being a normalization constant andγ ≈ 1.6 long after reioniza-
tion. Because the photoheating rate is independent of density, this slope

ivWe will see later, however, that there ison averagea non-trivial temperature-density
relation during reionization, because the cosmic time at which elements are ionized depends
on the density; see§9.9.
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depends only on the varying dynamics of the expansion rate and so can be
predicted robustly using linear theory [δ ∝ D(t)]. The normalization of this
temperature-density relationv, on the other hand, depends on the amplitude
of that photoheating rate, which (by equation 4.21) is entirely determined
by thespectral shapeof the ionizing background. Importantly, this normal-
ization is independent of the radiation background’s amplitude, because the
heating rate per neutral atom is proportional toJν but the neutral fraction is
itself proportional to1/Jν (throughΓ in equation 4.20). Figure 4.7 shows
an example of this temperature-density relation. The points show individual
cells from a cosmological simulation, while the solid line shows an analytic
prediction using linear perturbation theory and equation (4.22), which leads
to a solution of the form in equation (4.25). Note the very tight relationship
at low and moderate densities in the IGM. The flattening at high densities is
due to shock formation in filament and halo collapse, which isnot included
in our model here.

4.3.2 The Fluctuating Gunn-Peterson Approximation

A simple model for the absorption pattern of the inhomogeneous IGM as-
sociates each gas element with its “local” Gunn-Peterson optical depth in
equation (4.11). This is an oversimplification for two reasons: first, it ig-
nores the frequency structure of the line (in reality the total τα at a given
wavelength arises from many neighboring gas elements), andsecond, it ig-
nores the velocity structure of the IGM, which moves gas elements around
in frequency space. Nevertheless, it provides a simple description and a rea-
sonable approximation to the parameter dependencies of thereal Lyman-
α forest.

With the assumption of ionization equilibrium (equation 4.20) and using
the approximate power-law form of the temperature-densityrelation (equa-
tion 4.25), equation (4.11) becomes

τα(δ, T ) ≈ 13
(1 + δ)2−0.76(γ−1)

Γ12

(

T0

104 K

)−0.76(1 + z

7

)9/2

. (4.26)

The(1 + δ) exponent ranges from∼ 2 (for isothermal gas) to∼ 1.5 (at the
thermal asymptote); it is greater than unity because of the recombination
rate scaling (which also induces the temperature dependence).

Equation (4.26) shows that atz ∼ 6 only the most underdense regions
will be visible (with τα < 1); gas at the mean density will be extremely

vThis relation is sometimes referred to as the “IGM equation of state,” but that is a
misnomer because the relation implicitly averages over many different gas parcels, rather
than following a single one.
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Figure 4.7 Temperature-density relation atz = 4 in a cosmological simulation (points),
together with analytic prediction based on linear perturbation theory and equa-
tion (4.22). Note the near power-law relation, except at very high densities where
the complex physics of nonlinear structure formation beginto matter. Figure
credit: Hui, L. & Gnedin, N. Y.Mon. Not. R. Astron. Soc.292, 27 (1997).
Copyright 1997 by the Royal Astronomical Society.
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opaque even if the ionizing background is comparable to its values at lower
redshifts. This explains the deep absorption troughs in Figure 4.6. However,
at z ∼ 3 the same gas parcel at the mean density hasτα ∼ 1: this is why
the Lyman-α forest is such a powerful tool at moderate and low redshifts,
as shown in Figure 4.5.

Becauseτα depends only on fundamental cosmological parameters (which
are known reasonably well), the density and temperature of the IGM (which
can be modeled), and the unknownΓ, the transmission in the Lyman-α for-
est provides a good measure ofΓ. The points with error bars in Figure 4.8
show several measurements of the ionizing background fromz ∼ 2–6, most
using this method. To a reasonable approximationΓ12 ∼ 1 over the range
z ∼ 2–5, with uncertainties (both systematic and statistical) of afactor∼ 2.
The solid curves show a theoretical prediction ofΓ(z), calculated following
the methods we will outline in the next several sections.

Equation (4.26) shows that the IGM absorption traces the density field
of the IGM, and hence the cosmic web. Because of this inhomogeneous
absorption, the mean transmission averaged over broad spectral bands is
smaller than through a homogeneous one. To see this, let us definePV (δ)
as the volume-averaged probability distribution of the IGMdensity. Then
the net transmission is

Tα =

∫

dδ PV (δ) exp[−τα(δ)] (4.27)

≡ exp(−τeff,α), (4.28)

where we have defined theeffective optical depthin the line asτeff,α. This
effective value must be smaller than the corresponding Gunn-Peterson ab-
sorptionτα(δ = 0) because of the well-known triangle inequality,

〈exp(−τα)〉 ≥ exp(−〈τα〉). (4.29)

Essentially, because the absorption saturates in dense regions, an inhomo-
geneous medium haslessoverall absorption than a uniform medium. Most
of the transmission arises in the low-density voids, which can remain trans-
parent even if the gas at the mean density is optically thick.

4.3.3 The Column Density Distribution

The fluctuating Gunn-Peterson approximation is a useful model partly be-
cause it suggests that the IGM optical depth varies continuously along the
line-of-sight, just as the density field of the cosmic web does. However, in
practice the Lyman-α forest appears as a set of discrete absorbers, because
IGM density peaks (intercepted sheets and filaments) are rather sharp. Thus,
it is often useful to consider such systems as discrete absorbers.
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Figure 4.8 Measurements of the ionizing background at moderate redshifts (points with er-
ror bars), and models of it (curves). The measurements use the mean transmis-
sion of the Lyman-α forest as described in this section as well as the proximity
effect (see§11.3.2). The curves base the emissivity and mean free path inputs on
measured values atz < 6 and use the method described in§4.4. The solid line
shows the totalΓ, while the dashed curves peaking atz ∼ 4 andz ∼ 2 show
the separate contributions from star-forming galaxies andquasars, respectively.
Figure credit: Haardt, F. & Madau, P.,Astrophys. J., submitted (2011), astro-
ph/1105.2039; observational measurements collected fromreferences therein.
Reproduced with permission from the American AstronomicalSociety.
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We begin by assuming that the absorption by a given region will be domi-
nated by its densest portion (with peak fractional overdensity δ). In order to
compute the column density (and hence optical depth), we must assign this
region a length scale. The most natural size is thelocal Jeans length, which
is simply the length scale over which the pressure force balances gravity (see
§3.2),LJ ∼ cstcoll ∼ cs(Gρ)

−1/2: a smaller cloud (at the same densityρ)
will be smoothed out by pressure whereas a larger cloud will collapse grav-
itationally. If we assume that the gas maintains photoionization equilibrium
in the highly-ionized limit, the corresponding column density through the
cloud isNH I = xH InHLJ, or

NH I = 3.3 × 1014 cm−2(1 + δ)3/2

(

T0

104 K

)−0.26

Γ−1
12

(

1 + z

7

)9/2

.

(4.30)
As described above, the properties of these regions are measured from

their optical depth for Lyman-α absorption, which for a single absorbing
system isτα(ν) = NH Iσα(ν). To understand the density distribution of
the IGM, we therefore would like to measure the the number density of
absorbers in a column density interval(NH I, NH I + dNH I) and in a red-
shift interval(z, z + dz), d2N/dNH Idz. In the literature, the column den-
sity distribution is often reported asf(NH I, z) = d2NH I/dnH IdX, where
the coordinateX is defined via the differential relationdX/dz = H0(1 +
z)2/H(z). This coordinate is useful because a population with constant
comoving number density and constant proper cross-sectionwill havef in-
dependent of redshift. In the past,d2N/dNH Idz ∝ N−β

H I , whereβ ≈ 1.5,
was often used as a convenient and simple fit to the forest data. However,
Figure 4.9 shows a recent measurement of this function atz ∼ 3.7, which
indicates that a single power-law may be too simple of an approximation,
though a broken power-law does fit quite well.

Typically, this distribution function is estimated by fitting each absorbing
system and estimating its column density. However, in practice,NH I can
be difficult to measure because of saturation. Theequivalent widthparame-
terizes the amount of absorption by specifying the wavelength interval over
which light would be absent if the line profile were a step function,

W =

∫

[1 − e−τ(λ)]dλ. (4.31)

Whenτ is small,W ∝
∫

dλτ(λ) ∝ NH I, which makes the measurement
straightforward. This corresponds to column densitiesNH I < 1014.5 cm−2,
or τα < 1 at line center. These systems are known as Lyman-α forest
absorbers, although the forest is also often taken to mean the full set of
absorbers (as we have used it earlier in this chapter). They appear at the
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Figure 4.9 Observational estimate of the Lyman-α forest column density distribution func-
tion f(NH I) at z ≈ 3.7, fit as a series of broken power laws. The different
column densities are labeled according to their categories: Lyα for optically-thin
forest systems, LLS for Lyman-limit systems, SLLS for “super Lyman-limit sys-
tems”, and DLA for damped Lyman-α systems. The distribution in the remain-
ing region, labeledλmfp is difficult to probe directly and so is inferred indirectly.
That region therefore has relatively large error bars compared to higher column
densities (which are shown by the shaded regions or points with error bars). Fig-
ure credit: Prochaska, J. X., O’Meara, J. M., & Worseck, G.,Astrophys. J.718,
392 (2010). Reproduced with permission of the American Astronomical Society.
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Figure 4.10 Example IGM Lyman-α absorbers measured by the ESI spectrograph on the
Keck Telescope.Left: A damped Lyman-α absorber (DLA). The two curves
show fits to the absorber; note the long damping wings.Right: A Lyman-
limit system (LLS) that is opaque to ionizing radiation (with λ < 912 Å). The
horizontal bars redward of 912̊A show fits to the quasar continuum; the dashed
line blueward of this wavelength shows the expected flux. Theobserved flux is
much smaller because of the LLS, whose location is marked with the vertical
line. Figure credit: Songaila, A. & Cowie, L.,Astrophys. J., 721, 1448 (2011).
Reproduced with permission of the American Astronomical Society.

upper left corner of Figure 4.9.
On the other hand, whenτα ≫ 1, the line center is strongly saturated

but the Lorentzian wings (see equation 4.8) have substantial optical depth
and dominate the total absorption; in that case,W ∝ N

1/2
H I . In particu-

lar, absorbers with extremely high column densities (NH I > 1020.3 cm−2)
have prominent damping wings from natural line broadening and are known
asdamped Lyman-α absorbers(DLAs); they appear at the lower right in
Figure 4.9, and an example absorber is shown in the left panelof Fig-
ure 4.10. These systems, although rare, are extraordinarily rich in infor-
mation. They have multiple absorption components (at slightly different
velocities), a wide range of metal lines (with a wide range ofionization
states), and sometimes even molecular hydrogen.

DLAs are now understood to probe the interstellar medium of galaxies.
The lines therefore provide an intriguing selection technique for galaxies
that is largely orthogonal to standard methods: one that is weighted by
geometric cross-sectionrather than stellar luminosity. They are therefore
typically low-surface brightness galaxies with relatively low star formation
rates, requiring exceptionally deep observations to identify their emission
in conventional galaxy surveys. DLAs provide an unbiased census of the
neutral gas in the Universe, because, based on the observed column density
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distribution of H I absorbers, most of the neutral hydrogen after reioniza-
tion resides in DLAs. Interestingly, the fraction of gas that remains neutral
appears to vary little with redshift fromz ∼ 5 to the present day, although
of course that must change at higher redshifts when the IGM itself becomes
predominantly neutral. For our purposes, DLAs are crucial as the primary
reservoir of neutral gas after the end of reionization.

At somewhat lower column densities, the damping wings are less appar-
ent, but the column density can be estimated indirectly through its effect
on ionizing photons. At the ionization threshold,τH I = 1 for NH I,LLS ≡
1/σH I(νH I) = 1.6 × 1017 cm−2. Systems above this column density limit
are opaque to ionizing photons; we refer to this regime asself-shieldingand
these opaque systems asLyman-limit systems(LLSs). The former suggests
that gas on the outskirts of the system absorbs a large fraction of the incident
ionizing background, shielding the interior from ionizingphotons.

For this reason, these systems are relatively easy to identify even at high
redshifts, because their optical thickness to ionizing photons causes a con-
tinuum depression in the background source’s flux blueward of 912 Å in
the rest frame of the absorber. An example is shown in the right panel of
Figure 4.5; the sharp break at this wavelength indicates thepresence of an
LLS, and the depth of the absorption tells us the column density of the ab-
sorber. Because of this continuum suppression at very shortwavelengths,
these systems constitute the one family of hydrogen absorbers whose abun-
dance atz > 5 has been measured. These, and their somewhat higher col-
umn cousins calledsuper Lyman-limit systems, appear from1017.8 cm−2 <
NH I,LLS < 1020.3 cm−2 in Figure 4.9.

Unfortunately, in the intermediate regime where the line center is sat-
urated but the wings remain weak,W ∝ lnNH I. When the opacity to
ionizing photons is also small, it is very difficult to measure the true column
density of a line.vi This intermediate range approximately spans H I column
densities of1014.5–1017.5 cm−2. Their abundance must usually be inferred
indirectly; atz ∼ 3.7, Figure 4.9 shows the allowed range of density distri-
butions by the series of dashed lines.

If the column density distribution function is known, one can estimate the
total optical depthτeff,α in the forest by integrating over all the lines,

τeff,α =
(1 + z)

λα

∫

dNH I
d2N

dNH Idz
W (NH I). (4.32)

Note thatτeff,α is not simply the average of the optical depths of all the
lines, because the observed transmission depends exponentially on τα. Im-

viThe problem is ameliorated somewhat for higher Lyman serieslines, which have
smaller optical depths, but observing these lines presentsother challenges.
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portantly, however,τeff,α does notrequirea measurement ofd2N/dNH Idz:
as the total absorption, it can be estimated even from low-resolution mea-
surements or when the forest is so thick that Lyman-α absorbers cannot be
separated. This makes it a very useful quantity at high redshifts, where the
forest is nearly saturated (see§4.7 below).

Observations show that atz < 5.534

τeff,α = (0.85 ± 0.06)

(

1 + z

5

)4.3±0.3

. (4.33)

At z > 5.5 the optical depth appears to increase even more rapidly and is
nearly saturated atz ∼ 6; we discuss this regime in§4.7.

4.3.4 Mapping the Cosmic Web

As described previously, the forest is the premier tool for measuring the
properties of the IGM atz < 5, because it provides such a detailed view
of its structures. The only drawback is the relative dearth of background
sources against which absorption can be measured: “bright”quasars or
gamma-ray burst afterglows are rare, so to date almost all ofthe informa-
tion has come from studying a small number of individual one-dimensional
skewers of the cosmic web.

This leads to an important caveat for Lyman-α forest studies of the high-
z Universe: although detailed structures are visible along the line-of-sight,
inverting these to obtain the three-dimensional structureis difficult because
of aliasing (see Figure 4.11). This refers to the possibility of random ar-
rangements of small-scale oscillations inclined to the line-of-sight mimick-
ing large-scale oscillations along the line-of-sight; forexample, if the crests
of two k-modes are aligned with the plane of the sky (but at a wide radial
separation) and intersect the Lyman-α forest skewer, they would appear to
an observer as two crests of a single, large-wavelength oscillation along the
line-of-sight.

To quantify the importance of aliasing, we begin with the correlation
function: statistical isotropy guarantees that it is identical in every direction
and so can be measured with data along only the line-of-sight. It is related
to the three-dimensional power spectrumP3D through a Fourier transforma-
tion (equation 2.20). However, if we use the Lyman-α forest data itself to
measure a power spectrum, we obtain only a one-dimensional power spec-
trum, P1D. This is not the same asP3D, as the following argument illus-
trates. Letk‖ andx be the wavenumber and distance coordinate along the
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Figure 4.11 Illustration ofaliasing in the Lyman-α forest. The observer can only measure
structure along the line of sight. However, density modes transverse to that
skewer can still leave imprints in the one-dimensional fieldwhere they intersect
it. The superposition of many such modes can mimic large-scale fluctuations
along the line of sight,aliasingpower from small to large scales.

line-of-sight. Then

P1D(k1)=

∫

dx ξ(x)eik1x (4.34)

=

∫

dxeik1x

∫

d3k

(2π)3
P3D(k)e−ikx. (4.35)

Note that, becausex is along the line-of-sight, they andz coordinates vanish
in the second exponential. Now, integrating overx yields a factor2πδ(k −
k1) and implies that

P1D(k1) =

∫

dkydkz

(2π)2
P3D(

√

k2
1 + k2

y + k2
z) (4.36)

=

∫ ∞

|k1|

dk

2π
kP3D(k), (4.37)

where we have simplified the integral by transforming to polar coordinates
(k, θ) and integrating overθ. This form shows the difficulty in measuring
long-wavelength modes: the observed one-dimensional power at a scalek1

picks up contributions fromall wavenumbers greater than this value – and
weighted toward the high-k contribution: ifP3D ∝ k−n, then the observed
P1D ∝ k2−n.
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Thus, the Lyman-α forest is best at constraining cosmological informa-
tion on small physical scales. Of course, it is precisely these scales that are
most difficult to model, so numerical simulations are necessary for quanti-
tative constraints on, for example, the matter power spectrum. This proce-
dure also helps to constrain astrophysical parameters thataffect the forest
– most importantly, the ionizing background (which sets theoverall nor-
malization) and the temperature (which sets the maximum wavenumber of
interest through thermal broadening and Jeans smoothing ofthe IGM fea-
tures). Aliasing is particularly important at high redshifts, where the forest
is saturated so that small fluctuations are magnified in importance.

With the advent of large-scale, deep surveys, there are now plans to ob-
serve a dense array of skewers associated with a large numberof quasars
and map the related large-scale structure in three dimensions. This excit-
ing prospect will provide much better constraints on the sought-after baryon
acoustic oscillations which appear on very large scales.

4.4 THE METAGALACTIC IONIZING BACKGROUND

Presuming that one can model the structure of the IGM reliably, the primary
physical input determining the opacity of the Lyman-α forest is the ioniza-
tion rateΓ, which in turn depends on the angle-averaged specific intensity
of the radiation background,J(ν) (equation 4.13).

The equation of cosmological radiative transfer determining the evolution
of J(ν) can be derived from simple arguments. First, consider the total
number of photons in an infinitesimal volume∆V and frequency range∆ν
at a timet, N = nν∆V∆ν, wherenν is the photon number density per
unit frequencyν. At some later timet + ∆t, this total numberN must
be conserved provided that photons are not absorbed or created, although
both the photon frequencies and volume will have changed by the cosmic
expansion. For example, the frequency interval becomes

∆ν(t+ ∆t)≈∆ν(t) + ∆t
d∆ν

dt
(4.38)

≈∆ν(1 −H∆t). (4.39)

Performing a similar operation on the volume factor and using the constancy
of N , we find

dnν

dt
= −2Hnν . (4.40)
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Noting thatnν is a function of both frequency and time, we therefore have

∂nν

∂t
= Hν

∂nν

∂ν
− 2nνH. (4.41)

Finally, transforming to the specific intensityJν = (c/4π)hνnν , and
allowing for absorption and emission along the ray (just as in the standard
radiative transfer equation), we find

∂Jν

∂t
− νH

∂Jν

∂ν
+ 3HJν = −cκνJν +

c

4π
ǫν , (4.42)

whereκν is the absorption coefficient andǫ(ν) is the proper emissivity (in
units oferg s−1 cm−3). Here, the second term on the left hand side accounts
for the cosmological redshift and the third for the dilutionof the photons due
to the cosmic expansion, while the first term on the right handside describes
absorption as the photon passes through the IGM gas.

Integration of this equation gives the intensity at an observed wavelength
ν and redshiftz:

Jν(z) =
c

4π

∫ ∞

z
dz′
∣

∣

∣

∣

dt

dz′

∣

∣

∣

∣

(

1 + z

1 + z′

)3

ǫν′(z′)e−τeff,H I(ν
′,z′), (4.43)

whereν ′ = ν(1 + z′)/(1 + z) is the frequency of the photon atz′ that will
have frequencyν at z andτeff,H I ≡ − ln 〈exp(−τH I)〉 is the effective op-
tical depth of an ionizing photon as it travels through the Universe (defined
similarly to equation 4.28). This optical depth depends on frequency and
on the ionization state of the IGM, as depicted in Figure 4.12. If the mean
free path of an ionizing photon is very short, so that cosmological effects
can be neglected, and if we assume thatτeff,H I = r/λ(ν, z), so that it scales
linearly with distance traveled, this equation simplifies to

J(ν, z) =

∫ ∞

0
4πr2dr

ǫ(ν, z)

(4πr)2
e−r/λ(ν,z) =

1

4π
ǫ(ν, z)λ(ν, z), (4.44)

which shows that the two key inputs for this calculation are simply a mea-
sure of the absorption and the emissivity. This is a reasonable approximation
at high redshifts, except for the highest energy photons.

The emissivity clearly depends only on the sources – galaxies and quasars
– and understanding this coefficient will be a key goal of the following chap-
ters. In brief, stellar sources typically have relatively soft spectra: hot stars
with a surface temperature∼ 30, 000 K, for example, have their blackbody
peak atE ∼ 7 eV with their emission luminosity declining sharply at higher
photon energies. The spectrum of solar-mass stars cuts off well before the
Lyman-limit and does not contribute significantly to the ionizing photon
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Figure 4.12 Radiative transfer of ionizing photons throughthe IGM. Here, a central source
emits photons through the clumpy IGM. Photons near the ionization threshold
(a) are easily absorbed even by low-column density systems, called Lyman-limit
systems. These systems are typically transparent to higher-energyphotons (b),
which require higher column densities for a substantial optical depth. Never-
theless, these photons can still be absorbed by the accumulated opacity of low
column density systems (c). If even these clouds are rare, photons will simply
redshift until they pass below the ionization threshold (d). Calculating these
opacities is difficult because they depend on the backgroundfrom many nearby
quasars – which in turn depends on the mean free path of the photons, and hence
the ionization state of the clouds.
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budget. Thus, because hot massive stars have such short lifetimes, only
actively star-forming galaxies contribute to the metagalactic background.
However, even their photons must escape absorption by the gas and dust
inside their interstellar medium; this appears to be a difficult step in most
known galaxy populations where the so-calledescape fractionis only a few
percent and provides a key uncertainty in ab initio estimates of the ionizing
background (see§9.2.2).

Quasars, the second important class of sources, are somewhat easier to
model partly because they are brighter and hence easier to observe. Their
intense, high-energy radiation fields – typically with power-law spectra ex-
tending to X-ray energies – produce many more ionizing photons per unit
bolometric energy output and probably allow a much larger fraction of these
photons to escape to the IGM. In practice, both kinds of sources appear to be
important at moderate redshifts (see Figure 4.8). However,beyondz ∼ 4
the bright quasar population begins to decline precipitously while the co-
moving star formation rate remains similar in magnitude. The natural ex-
pectation is therefore that galaxies become increasingly important at high
redshifts.

4.4.1 The Mean Free Path of Ionizing Photons

The optical depth factor is determined by absorption in the IGM – and hence
the Lyman-α forest. If we ignore line absorption processes, so that only
bound-free opacity contributes toτeff,H I, we can easily write down an ex-
pression for the mean free path from the column density distribution. The
total opacity per unit redshift of the IGM at a frequencyν is just the sum of
the opacity of all the individual absorbers,

dτeff,H I(ν)

dz
=

∫

dNH I
d2N

dNH Idz
[1 − exp τ(ν,NH I)], (4.45)

where the optical depth of an absorber to ionizing photons isτ(ν,NH I) =
NH IσH I(ν). To estimate the mean free path, we simply convert this to a
comoving path length:

λ(ν, z) =
dr/dz

dτH I,eff(ν)/dz
, (4.46)

wheredr/dz is the comoving line element.
Given the distribution function of Lyman-α absorbers, this is a well-posed

calculation, so the mean free path might appear to be straightforward to pre-
dict from first principles. However, recall thatτα is itself a function ofΓ,
which in turn depends uponλ(ν, z). Self-consistently predicting the atten-
uation – and with it the ionizing background – is therefore a rather complex
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Figure 4.13 Metagalactic ionizing background spectrum atz = 1.1, 3.0, 4.9, and 6.9, in
the same theoretical model as Figure 4.8. The units correspond to Jν,−22 =
Jν/(10−22 erg cm−2 s−1 Hz−1 sr−1). The dark and light lines show models
with galaxies and quasars and only quasars, respectively. The vertical lines
bracket the Lyman-series transitions of H I and He II. Figurecredit: Haardt, F.
& Madau, P.,Astrophys. J., submitted (2011), astro-ph/1105.2039. Reproduced
with permission of the American Astronomical Society.

problem that must be attacked iteratively Figure 4.8 shows the resultingΓ(z)
from one such calculation. The solid curve shows the net ionizing back-
ground, while the two dashed curves show the contributions from quasars
and star-forming galaxies (the former peaks atz ∼ 2; the latter assumes
an escape fraction that increases rapidly toward higher redshifts). Note that
the total quasar emissivity is well-measured toz ∼ 5, and the rapid de-
cline at high redshiftsz > 3 is unavoidable. Thus, it appears that stars and
quasars are both important for the ionizing background, each dominating at
a different cosmological epoch.

Figure 4.13 shows the metagalactic ionizing background spectrum in the
same calculation at four different redshifts. In each panel, the dark and
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light curves show models with and without star-forming galaxies; including
these dramatically softens the spectrum, especially at high redshifts. The
light vertical lines demarcate the wavelength range between the Lyman-α
line and ionization edge for H I and He II. This calculation includes line
transfer effects, which are quite important in these regimes when the gas is
not fully ionized (see§6.1.4). The sharp break at the H I ionization edge
occurs because the Universe is so optically thick to these photons.

Does most of the opacity originate from these high-column density sys-
tems withτH I > 1 or from the accumulated opacity of lower column den-
sity systems? Let us suppose for simplicity thatd2N/dNH Idz = A[NH IσH I(ν)]

−β ≈
Aτ−β(ν/νH I)

−3β , whereτH I is defined at the ionization threshold; as dis-
cussed above a single power law withβ ≈ 3/2 provides a crude but reason-
able approximation to the observed distribution. The mean-free-path is then
(for 1 ≤ β ≤ 2)

λ(ν) =

[

A

σH I(νH I)

]−1( ν

νH I

)−3(1−β) [∫ ∞

0
dτH I τ

−β
H I (1 − e−τH I)

]−1

(4.47)

≈ 1

ΓG(2 − β)
λLLS

(

ν

νH I

)−3(1−β)

. (4.48)

Here ΓG(x) is the Gamma function (not to be confused with the ioniza-
tion rate). We have assumed that the absorbers span the rangefrom τ ≪ 1
to τ ≫ 1 (with a single power law), andλLLS is the mean free path at
the ionization edge including absorption only from systemswith τH I > 1
(we normalize to this value because it is relatively easy to measure). For
β = 1.5, λ(νH I) ≈ 0.56λLLS, so∼ 56% of the absorption comes from the
opaque systems. However, Figure 4.9 shows that atz ∼ 3.7 the observed
distribution flattens significantly throughout (at least) the upper end of the
LLS regime, withβ ≈ 1.2. In that case,λ(νH I) ≈ 0.86λLLS, and the
high column-density systems provide much more of the opacity. The evolu-
tion and distribution of these LLSs is therefore crucial to understanding the
ionizing background.

Clearly, the mean free path is much longer for high-energy photons: with
the canonical valueβ = 3/2 we haveλ ∝ ν3/2. This is a much weaker
dependence than theλ ∝ ν3 expected in a uniform IGM – its clumpiness is
crucial in regulating the high-energy background. Indeed,only DLAs can
efficiently absorb photons in the X-ray regime.

The redshift evolution of LLSs therefore provides important insight into
the ionizing background, even if these systems may not dominate the total
absorption. Fortunately, as we saw in§4.3.3, they are relatively easy to
identify even at high redshifts. Recent surveys have established the LLS
abundance reasonably well at0 < z < 6; the additional assumption that
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d2N/dNH Idz ∝ N−β
H I with β ≈ 1.1–1.5 (and constant with redshift) yields

a mean-free-path at the Lyman edge of35

λ(νH I) ≈ (50 ± 10)

(

1 + z

4.5

)−4.44±0.3

proper Mpc. (4.49)

Extrapolation toz ∼ 6 (10) yields a mean-free-path of∼ 7 (1) proper Mpc –
during the era of the first galaxies, ionizing photons suffermuchmore atten-
uation than at later times. This obviously leads to strong fluctuations in the
ionizing background and substantially affects the processof reionization.
We will consider the importance of LLSs in more detail later:in essence,
they regulate the end of reionization and provide the “matching condition”
from the epoch of reionization to later times (see§9.5).

Despite the relative ease offinding LLSs, their physical nature remains
obscure. Although the self-shielded absorbers are opaque to photons at the
ionization edge, the strong frequency dependence of the ionization cross-
section implies that they are transparent to higher-energyphotons. Typi-
cally, this implies that LLSs are themselves highly-ionized. If we assume
that a system with column densityNH I is opaque to all photons withν <
νmin and thatǫ(ν) ∝ ν−α, we have an effective ionization rate reaching the
interior of the absorbersΓ ∝ [NH IσH I(νH I)]

(−α+3β−6)/3, so according to
equation (4.20) the residual neutral fraction is

xH I ∼ 2.2 × 10−4T−0.59
4 Γ

−1/3
12 [NH IσH I(νH I)]

(−α+3β−6)/3. (4.50)

Here, we have set our fiducial value ofδ to match that of a LLS (at the
ionization edge) atz ∼ 3 using the relation

1 + δLLS = 320T 0.17
4 Γ

2/3
12

(

1 + z

4

)−3

, (4.51)

which follows from equation (4.30) if we setNH I = NH I,LLS.
Equation (4.51) shows that, at moderate redshifts, these objects have over-

densities comparable to those inside virialized halos. As such, they are diffi-
cult to model, requiring high-resolution numerical simulations of the struc-
ture of gas around galaxies, coupled with a large enough cosmic volume to
represent adequately the cosmic radiation field. Explanations for their origin
range from low-mass dark matter halos without substantial star formation to
cold gas accreting onto galactic halos from filaments in the cosmic web.

To complicate matters further, the very nature of these LLSsmay evolve
at higher redshifts. Even assuming optimistically that theionizing back-
ground remains constant, equation (4.51) shows thatδLLS ∼ 20 at z ∼ 10.
This illustrates how dangerous it can be to make inferences about the epoch
of reionization from extrapolations of features at low or moderate redshifts.
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4.4.2 Fluctuations in the Ionizing Background

Because ionizing photons can only travel finite distances and are generated
by discrete sources, one naturally expects fluctuations in the amplitude (and
possibly shape) of the ionizing background. In practice, these are very small
at z < 5, becauseλ is relatively large (see§4.4.1) and the ionizing sources
are relatively common (particularly galaxies, provided that their escape frac-
tion of ionizing photons is non-zero). But these fluctuations inevitably be-
come important at higher redshifts (especially toward the epoch of reioniza-
tion).

These fluctuations are sourced by both large-scale density fluctuations
and stochastic variations in the number counts of the sources; the latter are
most important when the number of sources within∼ λ3 is small. A sim-
ple estimate of the effects of the density field is to compute the variance of
the source population over one attenuation length,b̄σ(R = λ), whereb̄ is
the average bias of the sources. Atz ∼ 3, taking b̄ ∼ 3 andλ ∼ 300 co-
moving Mpc yields fractional fluctuations of∼ 2%, which is indeed close
to more precise numerical estimates and is mostly negligible. However, at
z ∼ 6, taking the same average bias butλ ∼ 50 Mpc implies fluctuations
of ∼ 10%. At earlier times, or if the mean free path is even smaller, these
fluctuations will only increase. This could be important forregulating the
temperature of the IGM, which in turn affects the accretion of baryons onto
galaxies (see§9.9). More sophisticated models for the fluctuations can be
constructed using the halo model (§3.6.1) by replacing the halo density pro-
file with the radiation intensity profile around each source (see§12.3.1 for
a similar application). Such calculations show fluctuations comparable in
magnitude to our simple estimate.36

4.5 THE HELIUM-IONIZING BACKGROUND

About 7% of the IGM gas (by number of atoms, or 24% by mass) is com-
posed of helium atoms. Helium’s first ionization potential is 24.6 eV and
second is 54.4 eV. Photons above these thresholds can therefore also interact
with these species. The former is sufficiently close to the H Ithreshold that
even stellar sources can ionize the first electron, providedthat they can do
the same to H I. However, normal stars do not produce significant numbers
of photons above 54.4 eV to ionize He II, so the full ionization of helium
requires quasars.

The ionization cross-section for He II follows the same formas in equa-
tion (4.14). LikeσH I, this cross-section also scales asν−3 near thresh-
old. He II is also more difficult to keep ionized because it recombines
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faster than hydrogen; its case-B recombination coefficientis αB = 1.53 ×
10−12 cm3 s−1 at T = 20, 000 K. The recombination timescale for gas at
the mean density therefore remains smaller than the age of the Universe
down toz < 2. Thus, He II atoms may recombine many times over the age
of the Universe.

Other than these changes to the input parameters (and the trivial change
of including electrons from both helium and hydrogen), the helium-ionizing
backgroundΓHe II can be computed in the same way as that for H I. Be-
cause of the lower ionizing background and faster recombination rate, He II
is usually significantly more common than H I, despite the lower intrinsic
abundance of helium. This is usually parameterized by

η ≡ NHe II

NH I
≈ 1.77

Γ

ΓHe II
, (4.52)

where in the second equality we have assumed that the system is optically
thin to ionizing photons for both species. Even after heliumreionization,
ΓHe II ∼ 10−14 s−1, soη ∼ 100.

Because of the large ionization cross section and rapid recombination
time, the Universe remains optically thick to He II-ionizing photons until
relatively late (or, in other words, the mean-free-path of these photons is
many times shorter than that of photons below the He II ionization thresh-
old). As a result, there is typically a substantial break in the ionizing back-
ground at the He II ionization edge until that species is fully ionized at
z ∼ 3 (see Figure 4.13). Moreover, the He II-ionizing backgroundhas
much stronger fluctuations than the H I-ionizing background, both because
of the short attenuation length and because only rare quasars contribute to
it.

For the most part, the properties of this high-energy background have lit-
tle effect on the H I Lyman-α forest; however, the photo-heating that occurs
as the helium is ionized affects the hydrogen as well. The process is iden-
tical to that described above for H I reionization in equation (4.23) (except
with nH → nHe). Moreover, the hard spectra of quasars quite efficiently
inject energy into the helium gas, so (despite the relative rarity of He atoms
in the IGM) the total temperature increase can be comparableto that during
hydrogen ionization. Once helium is reionized atz ∼ 3, any influence of
hydrogen reionization on the gas is largely erased.

4.6 METAL LINE SYSTEMS

So far we have focused on absorption by neutral hydrogen in the IGM as a
prime observational probe. Can other elements be used as well? Helium is
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an obvious candidate, but its Lyman-α line resides in the far-ultraviolet (with
a rest wavelength of 304̊A) and is difficult to probe (although it has proved
useful to study the He II-ionizing background). These two are, of course,
the primary elements produced in the Big Bang, but heavier elements do
exist in the IGM owing to ejection and stripping from galaxies where they
are produced through star formation.

Table 4.1 Important IGM Metal-Line Transitions

Element nX/nH (×104, for Z⊙) Ionization State λ (Å) fosc

Carbon 3.58
C II 1334.5 0.128
C IV 1548.2∗ 0.191
C IV 1550.8∗ 0.095

Oxygen 8.49
O I 1302.2 0.049

O VI 1031.9∗ 0.133
O VI 1037.6∗ 0.066

Silicon 0.33
Si II 1304.4 0.094
Si IV 1393.8∗ 0.514
Si IV 1402.8∗ 0.255

Iron 0.30
Fe II 1608.5 0.058
Fe II 2344.2 0.114
Fe II 2382.8 0.300

∗ Member of doublet

The typical abundance of heavy elements in the IGM is small – with a
median value〈Z〉 ∼ 10−3Z⊙ – but the absorption is still substantial. If
we make the simple assumption that the metals are uniformly distributed,
we can repeat the fluctuating Gunn-Peterson approximation.From equa-
tion (4.10),τ ∝ nXifoscλi, wherenXi is the number density of the relevant
species,fosc is the oscillator strength of the transition, andλi is its rest
wavelength. We then find that the optical depth of an IGM patchto a given
transition is

τXi = 0.097fi(1 + δ)

(

X

3.6 × 10−7

)(

fosc

0.191

)(

λi

1548 Å

)(

1 + z

7

)3/2

,

(4.53)
wherefi is the fraction of the element in the appropriate ionizationstate and
X is the abundance by number of the element relative to hydrogen.. The
fiducial choices correspond to the stronger line in the C IVλ1548, 1551
doublet withZ = 10−3Z⊙; Table 4.1 lists several other important transi-
tions for low and high-z work. As we will see later, the assumption of a
constant metallicity throughout the IGM is most certainly wrong, but it may
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be reasonable on the scale of a single absorbing system.
Clearly the optical depth can be substantial, even in relatively low density

gas, provided that the gas is in the appropriate ionization state. This makes
absorption from metals, not just H I, a useful probe of the IGM. In particular,
the metal abundance fluctuations trace the production and dispersal of heavy
elements after the Big Bang (due to star formation), and their ionization
states probe the metagalactic radiation background.

In the diffuse IGM at low and moderate redshifts, the best lines for these
purposes are highly-ionized states of the most common heavyelements, es-
pecially carbon, silicon and oxygen. These make a particular interesting
probe of the radiation background near the He II ionization edge. C III and
Si IV have ionization potentials of 47.888 and 45.142 eV, respectively; these
two species should therefore evolve similarly,unlesshigher-energy photons
are able to further ionize one but not the other. In fact, C IV and Si V require
64.492 and 166.77 eV to get ionized. The latter energy is relatively large,
but once He II is ionized to He III the universe becomes transparent to pho-
tons that can ionize C IV and such photons are still relatively common. We
might therefore expect C IV and Si IV to be relatively abundant absorbers
until He II reionization completes atz < 3, after which the C IV abundance
is substantially reduced.

Both of these species are also very useful from an observational per-
spective, because they have doublet transitions redward ofH I Lyman-α.
A transition withλi > λα is unaffected by H I absorption in the interval
zmin < z < zs, wherezs is the redshift of the background source and

(1 + zmin) = (1 + zs)
λα

λi
. (4.54)

Absorbers in this range produce isolated absorption features against the red
continuum of the source. Figure 4.5 shows several examples:most of the
absorption features redward of Lyman-α in the rest frame of the source are
IGM metal lines (although peculiar velocities could introduce a small num-
ber of Lyman-α absorption features just beyond the source redshift); note
that they are typically weaker then the forest features but nevertheless are
clearly visible. Doublet transitions are particularly interesting because they
make the species causing the absorption easy to identify, even in some cases
without knowing anything about the H I absorption. A particularly impor-
tant such doublet is C IVλ1548, 1551, an example of which is shown in
the top panels of Figure 4.14. The doublets clearly stand outredward of
Lyman-α.

An exception to this rule is provided by oxygen, whose fifth ionization
state (O VI) is an important observational tracer despite the fact that its pri-
mary absorption feature is a doubletbluewardof H I Lyman-α at1032, 1038
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Figure 4.14 Examples of high-z metal absorption systems.Top: Several C IV doublets dis-
covered with the Magellan Baade telescope. The upper histograms show the
data; the lower histograms shows the errors. The solid curvein each panel is a
Voigt profile fit to the two components of the doublet; the column densityNCIV

and Doppler widthb are listed in brackets in each panel.Bottom: An example
low-ionization absorber atz = 5.8765 toward the quasar SDSS J0818+1722
discovered with the Keck telescope. The solid dark lines arethe data; the errors
are shown as the lower lines in each panel. Shaded regions represent detected
transitions. The H I lines are completely saturated in both absorbers. Figure
credit: Simcoe, R. A.,Astrophys. J.743, 21 (2011, top panels); Becker, G. D.,
Astrophys. J., submitted (2011), astro-ph/1101.4399 (bottom panels). Repro-
duced with permission of the American Astronomical Society.
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Å. This transition therefore suffers from contamination bythe H I forest, but
because it is a doublet it can sometimes still be measured. Itis particularly
useful for constraining the properties of hot gas, because the ionization po-
tential of O V is 77.413 eV.

In neutral gas, as we expect to dominate very early in the Universe’s his-
tory, the relevant ions are different. For example, C I has anionization po-
tential of 11.26 eV, so provided that there is a source of UV photons – even
if the ionizing photons are attenuated – carbon atoms will preferentially turn
into C II (which has an ionization potential of 24.383 eV and so cannot be
ionized in gas that is optically thick to hydrogen-ionizingphotons). Iron,
another common heavy element, and silicon, occupy their first ionization
state for similar reasons.

A particularly interesting case is oxygen, whose first ionization potential
is 13.618 eV – nearly equal to H I. As a result, these two species should be
locked in charge exchange equilibrium through the interaction

O0 + H+ ↔ O+ + H0 (4.55)

whose equilibration timescale is∼ 1/kcenH I ∼ 2 × 105xH I(1 + δ)[(1 +
z)/7]3 yr, much shorter than the Hubble time (wherekce is the collisional
rate coefficient). Thus dual observations of O I and H I provide an estimate
of the metallicity (or, if that can be guessed, of the neutralfraction of H I)
even when the H I Lyman-α line is highly saturated.

Note that all of these transitions relevant to neutral gas are singlets, so
they are more difficult to identify than the C IV and Si IV linesin an ion-
ized gas. This means that the transitions must be identified in combination
with each other (or H I), with the additional complication that the different
elements may have different abundances. The bottom panel ofFigure 4.14
shows such a system atz = 5.88. In this case, absorption is detected in C II,
O I, and Si II lines, which provides solid evidence for a real absorber. Note
that this system has no apparent absorption in the high ionization states C IV
or Si IV. At lower redshifts, systems that are self-shieldedenough from the
metagalactic background to host substantially neutral gasare DLAs, which
are associated with galaxies and so always host highly-ionized gas as well.

At moderate redshifts, C IV absorbers are the most commonly studied
(primarily because they are the easiest to find), with metal absorption visi-
ble in most individual systems withNH I > 1015 cm−2 at a metallicityZ ∼
10−2Z⊙. They can also be detected statistically in much less dense systems,
implying a median metallicity in forest absorbers ofZ ∼ 10−3Z⊙.37 Many
other transitions are detectable in higher column density systems, especially
in the DLA range (where the neutral gas makes transitions like C II and O I
useful, although these systems usually have many differentabsorption com-
ponents, some of which are also highly ionized); these are well-understood
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as being due to internal metal enrichment of galaxies. O VI has also re-
ceived intense attention as a possible proxy for the hot, collisionally-ionized
gas in galactic winds.

Despite the relative wealth of observations of metal absorption, the physics
behind metals in the IGM remains mysterious. The forest absorbers them-
selves correspond to gas near or above the mean cosmic density, and such
sheets and filaments only fill a relatively small fraction of the volume. Thus,
observations currently require only> 10% of space to be enriched with
metals. The key question is how and when did this enrichment occur: many
models appeal to winds from the first galaxies, but more powerful winds
from star-forming galaxies at lower redshift are also a plausible explana-
tion. More precise measurements of the spatial distribution of the metals
(especially in comparison to samples of galaxies), their abundance patterns,
and the evolution toward higher redshift, may help to constrain or eliminate
some of these models, which we will discuss in§6.5.2.

4.7 THE LYMAN- α FOREST AT Z > 5

We now turn to the Lyman-α forest at very high redshifts, approaching the
time of reionization and the first galaxies. As equation (4.33) shows, the
absorption is quite thick byz ∼ 5.5 whenτeff,α ∼ 2.6 with only ∼ 7% of
the light transmitted. Past that point, the forest thickenseven more rapidly,
so that very little light is transmitted. Figure 4.15 shows this in detail using
measurements from quasars discovered with the Sloan Digital Sky Survey.
Note the turn to higher effective optical depths atz ∼ 6 in comparison to
the smooth evolution at lower redshifts.

Of course, this low-level of transmission is not uniform across the entire
spectrum due to the density fluctuations in the cosmic web. The small pock-
ets of residual transmission correspond to underdense regions in the IGM.
At z ∼ 5–6, these pockets are sufficiently common that the forest can still
be used to measure the properties of the IGM, and in particular the ionizing
background – which appears to be a factor of several smaller than at lower
redshifts (withΓ12 ∼ 0.2; see Figure 4.8).

Unfortunately, beyond that point the Lyman-α forest itself becomes too
thick to model robustly; in fact it is so thick that one can no longer pick out
individual absorbers, and it is more intuitive to use the fluctuating Gunn-
Peterson approximation. If one then has a model for the volume-weighted
probability distribution of the IGM densityp(δ), the effective optical depth
is simply given by equation (4.27). The functionp(δ) is easy to describe
qualitatively: it must peak nearδ ∼ 0, with a long tail toward high densities
(describing collapsed structures) and another tail towardunderdense voids
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Figure 4.15 Measurements of the effective optical depth in the Lyman-α transition at high
redshifts. The small filled circles atz > 5 are direct measurements from the
Lyman-α forest, the open circles are measurements from Lyman-β absorption
translated into Lyman-α, and the filled squares are the same for Lyman-γ. The
large filled circles with error bars show the average inferred from the Lyman-α
and Lyman-β measurements. Atz > 5.5, τeff ∝ (1 + z)11 or possibly even
steeper. Figure credit: Fan, X. et al.,Astron. J.132, 117 (2006). Reproduced
with permission of the Royal Astronomical Society.
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which is truncated below a valueδ = −1 (corresponding to space with no
matter). Because all matter with∆ > 100 is inside virialized objects, the
density profile of these halos determines the shape of the high-δ tail: for
power-law density profiles, Equation (4.26) shows that, with Γ12 ∼ 0.2 at
z ∼ 6, τα ∼ 65(1 + δ)2 (ignoring the weak temperature dependence), re-
quiring −1 < δ < −0.8 for measurable transmission. The leftmost solid
line in Figure 4.16 illustrate this explicitly, showing thecontributions to the
effective optical depth integral (equation 4.27) assuminga simple model for
p(δ) and a uniform IGM temperature and ionizing background, plotted as a
function of∆ = 1+ δ. Note how the transmission originates from very low
density gas. In contrast, the dashed curves show the analogous integrand
if one wished to compute the average neutral fraction in the same simple
model: the overlap between these curves and the Lyman-α contribution is
essentially the fraction of neutral gas sampled directly bythe Lyman-α for-
est. Understanding the rest of the neutral gas requires extrapolation from
this low-density regime.

Thus, the crucial piece of the integral involves the tip of the low-density
tail (note that these voids are actually in the nonlinear regime), which is very
difficult to model robustly without large numerical simulations. Even then,
to measure the mean neutral fraction of the entire IGM one must extrapolate
to significantly higher densities, which constitutes a highly uncertain oper-
ation. Conservatively, the observed transmission requires only a very small
neutral fraction,xH I < 10−4 at the mean density.38 Thus, the increasing
optical depth of the forest with redshift isnot necessarily a flag of the tail
end of reionization; careful modeling of the forest is required to reach such
a conclusion.

A few options can help to improve this measurement and extendthe use-
fulness of the Lyman-α forest to higher redshifts. The first is to use a dif-
ferent aspect of the forest: one probe that appears promising is to use large-
scale variations in the optical depth of the forest, which may be modulated
by the contrast between neutral and ionized regions in the IGM. For ex-
ample, some lines of sight atz > 6 show completely saturated absorption
even in deep spectra, while others show clear transmission.Unfortunately,
as described in§4.3.4, fluctuations in the absorption are dominated by the
aliasing of small-scale modes in the density field, which tend to mask the un-
derlying large-scale fluctuations. Moreover, the extremely underdense voids
that allow transmission tend to lie in large-scale underdensities, which exag-
gerates their variance (i.e., they cluster just like rare, massive halos). Thus
it is so far difficult to use these variations to constrain theneutral fraction
quantitatively.

A second option is to use a higher Lyman-series line: so far, Lyman-β
(with λβ = 1026 Å) and Lyman-γ (with λγ = 972 Å) have been used.
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Figure 4.16 Logarithmic integrandy(1 + δ)p(δ) ∝ 〈y〉 in a simple model of the IGM den-
sity distribution; here∆ = 1 + δ. The three solid curves use the optical depth
in the Lyman-α, Lyman-β, and Lyman-γ transitions (from left to right) fory;
they thus show the integrands in equation (4.27) and its analogs for the higher-
order transitions. The dashed lines show a similar calculation for the neutral
fraction, with both volume and mass weighting (the latter peaks to the right of
the plot). All curves assume a uniformΓ12 = 0.04 at z = 6.15 and an isother-
mal temperature-density relation. Figure credit: Oh, S. P.& Furlanetto, S. R.,
Astrophys. J., 620, L9 (2005). Reproduced with permission of the American
Astronomical Society.



154 CHAPTER 4

From equation (4.11), in a uniform mediumτ ∝ foscλi; for Lyman-β and
Lyman-γ, these factors giveτα/τβ = 6.25 and τγ/τα = 17.9 – which
on their face could provide a huge boost to the transmission.However, in
practice, the observableτeff changes much less, because the inhomogeneous
IGM moderates the difference – in most models,τeff only increases by a few
times.39 However, Figure 4.16 does show that these transitions do require
less extrapolation to moderate densities.

Of course, this improvement has a price. The primary difficulty is that
the higher transitions are visible only atλobs < λβ,γ(1 + zs), which is
inside the Lyman-α forest of the same source (albeit at a lower redshift,
z < λβ,γ/λα(1+ zs), where the transmission is larger). One must therefore
account for this unknown foreground absorption, which introduces extra
errors. Nevertheless, the higher Lyman-series lines do appear to be more
sensitive than Lyman-α, and they indicate a steepening in the effective ab-
sorption of the IGM and hence possible stronger evidence foran increasing
neutral fraction atz > 6. Figure 4.15 shows this explicitly – the open
circles and filled squares represent inferences from Lyman-β and Lyman-
γ, respectively (converted to the expected Lyman-α optical depth using a
simple model for the IGM). The lower limits or measurements provided by
these transitions are significantly more sensitive than Lyman-α on its own.

One complication regarding these lines is that, because they probe slightly
different densities than Lyman-α, they may also sample different temper-
atures if the gas is no longer isothermal (γ 6= 1). Indeed, as discussed in
§4.3.1, the IGM is expected to have such a density-temperature relation once
the gas relaxes after being heated during reionization. Because the tempera-
ture also affects the optical depth, this makes inferences aboutΓ more diffi-
cult (see equation 4.26). On the other hand, it also offers a route tomeasure
this temperature-density relation and constrain the time of reionization that
way (with the complication that denser regions may have reionized earlier
than underdense regions; see§9.9.1).

Finally, instead of choosing weaker Lyman-series lines onecan study
rarer elements – the metal lines. With the forest saturated,it is no longer
possible to associate these lines with H I features; however, they can still
be detected individually as long as they appear redward ofλα(1 + zs) (see
equation 4.54). Of course, one must then determine which species causes
the observed line, e.g. by detecting multiple absorbers from the same red-
shift. Although this wavelength range pushes into near-infrared wavelengths
for z > 6, such surveys are possible with modern instruments and present
an exciting frontier for pushing into the cosmic dawn.

Two other probes of the ionization state of the IGM are usefulas more
direct measurements of the reionization process: the so-called red damping
wing (which refers to the Lyman-α absorption profile far to the red of line
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center, where the optical depth is of order unity even in a completely neutral
medium) and theproximity effect(which refers to the highly-ionized zone
surrounding individual bright sources). We discuss these probes in chapter
11.





PART 2

The First Structures





Chapter Five

The First Stars

The formation of the first stars hundreds of millions of yearsafter the Big
Bang marks a crucial transition in the early Universe. Before this point, the
Universe was elegantly described by a small number of parameters. But
as soon as the first stars formed, complex chemical and radiative processes
entered the scene. Today, 13.7 billion years later, we find very complicated
structures around us. Even though the present structures inside galaxies are a
direct consequence of the simple initial conditions in the early Universe, the
relationship between them was irreversibly blurred by complex processes
over many decades of scales that cannot be fully simulated with present-day
computers. Complexity reached its peak with the emergence of biology out
of astrophysics.

The next section of this book considers the emergence of thiscomplexity
during the first stages of galaxy formation. We will study theappearance of
the first stars, their feedback processes, and the resultingionization struc-
tures that emerged during and shortly after the cosmic dawn.We start with
a brief outline of the prevailing (though observationally untested) theory for
this cosmological phase transition in the next couple of pages, and then flesh
out its details over the next two chapters.

As we have seen in chapters 3 and 4, the development of large scale cos-
mic structures occurs in three stages, as originally recognized by the Soviet
physicist Yakov Zel’dovich. First, a region collapses along one axis, mak-
ing a two-dimensional sheet. Then the sheet collapses alongthe second axis,
making a one-dimensional filament. Finally, the filament collapses along the
third axis into a virialized halo. A snapshot of the distribution of dark matter
at a given cosmic time should show a mix of these geometries indifferent
regions that reached different evolutionary stages (owingto their different
densities). The sheets define the boundary of voids from where their ma-
terial was assembled; the intersection of sheets define filaments, and the
intersection of filaments define halos – into which the material ultimately
drains. The resulting network of structures, shown in Figure 4.1, delineates
the so-called “cosmic web.” Gas tends to follow the dark matter (except
within shallow potential wells, owing to its finite pressure).

Computer simulations have provided highly accurate maps ofhow the
dark matter is expected to be distributed since its dynamicsis dictated only
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by gravity, but unfortunately, this matter is invisible. Assoon as ordinary
matter is added, complexity arises because of its cooling, chemistry, and
fragmentation into stars and black holes. Although theorists have a diffi-
cult time modeling the dynamics of visible matter reliably,observers can
monitor its distribution through telescopes. The art of cosmological studies
of galaxies involves a delicate dance between what we observe but do not
fully understand and what we fully understand but cannot observe. The next
several chapters will describe this methodology.

When a dark matter halo collapses, the associated gas falls in at a speed
comparable toVc in equation (3.31). When multiple gas streams collide and
settle to a static configuration, the gas shocks to the virialtemperatureTvir

in equation (3.32) – at which it is supported against gravityby its thermal
pressure. At this temperature, the Jeans mass equals the total mass of the
galaxy. In order for fragmentation to occur and stars to form, the collapsed
gas has to cool and get denser until its Jeans mass drops to themass scale of
individual stars.

Cooling of the gas in the Milky Way galaxy (the so-calledinterstellar
mediumor ISM) is controlled by abundant heavy elements, such as carbon,
oxygen, or nitrogen, which were produced in the interiors ofstars. How-
ever, before the first stars formed there were no such heavy elements around
and the gas was able to cool only through radiative transitions of atomic and
molecular hydrogen. Figure 5.1 illustrates the cooling rate of the primor-
dial gas as a function of its temperature. Below a temperature of∼ 104 K,
atomic transitions are not effective because collisions among the atoms do
not carry sufficient energy to excite the atoms and cause themto emit radi-
ation through the decay of the excited states. Since the firstgas clouds had
a virial temperature well below104 K, cooling and fragmentation of the gas
had to rely on an alternative coolant with sufficiently low energy levels and
a correspondingly low excitation temperature, namely molecular hydrogen,
H2. Hydrogen molecules could have formed through a rare chemical reac-
tion involving the negative hydrogen (H−) ion in which free electrons (e−)
act as catalysts. After cosmological recombination, the H2 abundance was
negligible. However, inside the first gas clouds, there was asufficient abun-
dance of free electrons to catalyze H2 and cool the gas to temperatures as
low as hundreds of degrees K (similar to the temperature range presently on
Earth). In this chapter, we will focus on how this cooling takes place and
the properties of the stars that form out of primordial gas.

However, this is far from the entire story, because once the first stars form
the initial conditions forother stars immediately become more complex.
The feedback processes that set these conditions will be themain subject of
the next chapter. In particular, the hydrogen molecule is fragile and can eas-
ily be broken by UV photons (with energies in the range of 11.26–13.6 eV),
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Figure 5.1 Cooling rates as a function of temperature for a primordial gas composed of
atomic hydrogen and helium, as well as molecular hydrogen, in the absence
of any external radiation. We assume a hydrogen number density nH =
0.045 cm−3, corresponding to the mean density of virialized halos atz = 10.
The plotted quantityΛ/n2

H , whereΛ is the volume cooling rate (in erg/sec/cm3),
is roughly independent of density (unlessnH > 10 cm−3). The solid line shows
the cooling curve for an atomic gas, with the characteristicpeaks due to colli-
sional excitation of hydrogen and helium. The dashed line shows the additional
contribution of molecular cooling, assuming a molecular abundance equal to1%
of nH . Figure credit: Barkana, R. & Loeb, A.,Phys. Rep349, 125 (2001).
Copyright 2001 by Elsevier.
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to which the cosmic gas is transparent even before it is ionized. The first
population of stars was therefore suicidal. As soon as the very early stars
formed and produced a background of UV light, this background light dis-
sociated molecular hydrogen and suppressed the prospects for the formation
of similar stars inside distant halos with low virial temperaturesTvir.

In order to understand how structures proceed from the first stars to sub-
sequent generations, we must therefore understandfeedback processes– in
this case, UV and X-ray radiative feedback. We will therefore examine in
some detail the growth of these radiation backgrounds (in chapter 6) and
how they may affect star and galaxy formation. In this chapter, we will also
discuss how the chemistry of cooling changes dramatically when halos with
Tvir > 104 K formed. In such objects, atomic hydrogen was able to cool the
gas and allow fragmentation even in the absence of H2 – such halos are thus
immune to the radiation background.

The youngest stars in the Milky Way galaxy, with the highest abundance
of elements heavier than helium (referred to by astronomersas ‘metals’) –
like the Sun, were historically categorized as Population Istars. Older stars,
with much lower metallicity, were called Population II stars, and the first
metal-free stars are referred to as Population III.

Of course, because these same stars also produce heavy elements, which
affect the chemistry and cooling of the gas, we must also track chemi-
cal feedback: how these elements were generated inside darkmatter halos
and how mechanical processes, most likely from supernovae or AGN, dis-
tributed these heavy elements within their parent halos andthroughout the
intergalactic medium (and hence the halos that assemble from it). We will
also discuss this enrichment process in chapter 6.

When these feedback mechanisms are included, the first structures to
form stars likely cannot continue to do so, at least for a time: only later,
possibly when atomic cooling becomes possible, will largerhalos develop
in which self-sustaining “galaxies” can form. These long-lived objects will
be much easier to observe than their predecessors and hence provide an im-
portant marker in structure formation, especially for observers.

Unlike the previous chapters, in which much of the physics isclearly un-
derstood with reference to observations at low or moderate redshifts, the
first stars and galaxies – and their immediate descendants – have yet to be
observed. We will therefore focus in this section on the fundamental physi-
cal processes that shaped early star formation, but only sketch a preliminary
picture of how these processes fit together in producing the first luminous
objects in the real Universe.
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5.1 FROM VIRIALIZED HALOS TO PROTOSTARS

We have already seen that gravity drives the bottom-up hierarchy of struc-
ture formation characteristic of CDM cosmologies; however, at lower masses,
gas pressure delays the collapse. The first baryonic objectsto collapse to are
those just above the mass scale that allows accretion, the Jeans scale. Such
objects reach virial temperatures of several hundred degrees and can frag-
ment into stars only through cooling by molecular hydrogen,whose rate
depends upon the initial temperature (and hence mass) of theobject. If this
occurs faster than the dynamical time, the halo gas will collapse rapidly
to form stars. In other words, there are two independent minimum mass
thresholds for star formation: the filter mass (related to accretion and dis-
cussed in§3.2) and the cooling mass (related to the ability of the gas tocool
over a dynamical time). For the very first objects, the cooling threshold is
somewhat higher and sets a lower limit on the halo mass of∼ 5 × 104 M⊙

at z ∼ 20. In this section, we will examine this cooling process in detail.
Specifically, in this section we will consider stars formingout of primor-

dial gas inside low-mass dark matter halos (in which the virial shock is not
sufficient to ionize the infalling gas) without any influencefrom other stars
or black holes in the Universe. These initial conditions lead to what are now
called Population III.1 stars; we will consider an alternative pathway for
primordial star formation in the next section. The basic steps described here
are illustrated in Figure 5.2.

5.1.1 Chemistry of the Primordial Gas

The primordial gas out of which the first stars were made had 76% of its
mass in hydrogen and 24% in helium, lacking any elements heavier than
lithium. This is fundamentally because the cosmic expansion rate was too
fast to allow the synthesis of heavier elements through fusion reactions dur-
ing Big Bang nucleosynthesis.

Before elements heavier than helium were produced in stellar interiors,
the primary species to reach sufficient abundance to affect the thermal state
of the pristine cosmic gas was molecular hydrogen, H2.40 The dominant H2
formation process is

H + e− → H− + hν, (5.1)

H− + H → H2 + e−, (5.2)

where free electrons act as catalysts. We let the ionized fraction of hydrogen
be xHII = nHII/nH , wherenH = nHI + nHII is the total abundance of
hydrogen nuclei, and write the molecular fraction asfH2

= nH2
/nH . Then,

considering only these two reactions and hydrogen recombination, we can
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Figure 5.2 Basic stages in Population III.1 protostar formation. (a) A dark matter halo
passes the filter mass threshold and begins to accumulate baryons. The virial
shock (dashed line) heats the gas to the halo’s virial temperature. (b) Inside the
warm, dense gas, free electrons catalyze H2 formation until those electrons dis-
appear thanks to recombinations, when the H2 fraction saturates.(c) The H2

fraction remains roughly constant while the gas cloud cools(via the rotational
and vibrational transitions of H2) and condenses to higher density until it reaches
a critical density and temperature at which gas cooling becomes inefficient.(d)
Finally, runaway collapse begins once the dense clump’s mass exceeds the local
Jeans mass. Further fragmentation may then occur due to gravitational instabil-
ity, turbulence, or chemical processes.
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write rate equations for a simplified reaction network as

ẋHII =−αBnHx
2
HII (5.3)

ḟH2
= k̃n(1 − xHII − 2fH2

)xHII, (5.4)

where the first equation follows recombinations (and hence the free elec-
tron fraction) and the second includes the steps of molecular hydrogen for-
mation, which occurs at a net ratẽk. This net rate coefficient actually in-
cludes both equation (5.1), whose rate we shall callk2 (see below) and equa-
tion (5.2), whose rate we shall callk3. However, H− is fragile and can be
destroyed by CMB photons; we must therefore include a secondchannel in
which the H− doesnot lead to molecular hydrogen. This occurs at a rate41

k11 ≈ 0.114T 2.13
γ exp(−8650 K/Tγ) s−1. (5.5)

Thus, the net rate of H2 formation is

k̃ ≈ k2

[

k3

k3 + k11/[(1 − xHII)nH ]

]

, (5.6)

where the second factor is the fraction of H− that eventually forms H2.
In reality, there are other channels to produce (and destroy) molecules.

The set of important chemical reactions leading to the formation of H2 is
summarized in Table 5.1, along with the associated rate coefficients.i De-
tailed calculations require numerical integration of thisnetwork, but equa-
tions (5.3) and (5.4) provide some useful insight.

First, note that the ionized fraction is independent offH2
, since the elec-

trons only act as catalysts. Thus, becauseẋHII ∝ x2
HII, recombination will

be very slow, and the reservoir of electrons will remain substantial for long
periods of time (much longer than the recombination timescale): the solu-
tion with constantT andnH (i.e., the inefficient cooling limit) is

xHII(t) =
xi

HII

1 + t/tirec
, (5.7)

wherexi
HII is the initial ionized fraction (taken from cosmological calcula-

tions, as in Fig. 2.5) and

tirec = (xi
HIIαBnH)−1 ≈ 2.2×108

(

1 + z

20

)−3( ∆

200

)−1( xi
HII

2 × 10−4

)−1

yr

(5.8)

iTable 5.2 in§5.3.2 shows the same for deuterium mediated reactions. Eachline shows
the rate coefficient for one particular reaction; in the text, we will refer to these aski, where
i refers to the appropriate line in Table 5.1. These should be included in detailed calculations
but have only minor effects on the star formation picture described in this section.



166 CHAPTER 5

Table 5.1 Important reaction rates for Hydrogen species as functions of temperatureT in K
[with Tξ ≡ (T/10ξK)]. In the text, we refer to these rate coefficients aski, where
i refers to the appropriate line in this table. For a comprehensive list of additional
relevant reactions, see Haiman, Z., Thoul, A. A., & Loeb, A.,Astrophys. J.464,
523 (1996); Haiman, Z., Rees, M. J., & Loeb, A.Astrophys. J.467, 522 (1996);
and Abel, T. Anninos, P., Zhang, Y., & Norman, M. L.Astrophys. J.508, 518
(1997).

Reaction Rate Coefficient
(cm3s−1)

(1) H+ + e− → H + hν 8.40 × 10−11T−1/2T−0.2
3 (1 + T 0.7

6 )−1

(2) H + e− → H− + hν 1.65 × 10−18T
0.76+0.15 log10 T4−0.033 log2

10 T4

4
(3) H + H− → H2 + e− 1.30 × 10−9

(4) H− + H+ → 2H 7.00 × 10−7T−1/2

(5) H2 + e− → H + H− 2.70 × 10−8T−3/2exp(−43, 000/T )
(6) H2 + H+ → H+

2 + H 2.40 × 10−9exp(−21, 200/T )
(7) H2 + e− → 2H + e− 4.38 × 10−10exp(−102, 000/T )T 0.35

(8) H− + e− → H + 2e− 4.00 × 10−12T exp(−8750/T )
(9) H− + H → 2H + e− 5.30 × 10−20T exp(−8750/T )

(10) H +e− → H+ + 2e− 5.85 × 10−11T 1/2exp(−157, 809.1/T )(1 + T
1/2
5 )−1

is the recombination time at the initial ionized fraction and ∆ ≡ ρ/ρ̄. In
the second part, we have assumed the gas has an overdensity of∼ 200
(typical of virialized objects), used the residual ionizedfraction following
recombination (Fig. 2.5), and adopted a temperatureT ≈ 103 K.

We can now substitute this expression into equation (5.4). The factor
(1−xHII−2fH2

) remains near unity for the initial conditions and timescales
of interest. Further approximating̃k as roughly constant in this regime, the
equation is integrable and yields

fH2
≈ f i

H2
+

k̃

αB
ln(1 + t/tirec), (5.9)

wheref i
H2

is the initial molecular fraction when the cloud forms (typically
the IGM value after recombination,∼ 6 × 10−7, provided that there is not
yet a radiation background from luminous sources).42 The molecular frac-
tion therefore increases linearly with time whent/tirec ≪ 1, but it slows to
logarithmic growth past that point: the transition occurs when the electrons
are incorporated into hydrogen atoms, removing the population of catalysts
and hence dramatically slowing down H2 formation. It occurs at a critical
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molecular fraction

fH2,s ≡
k̃

αB
≈ 3.5 × 10−4(T/1000K)1.52 , (5.10)

where the “s” indicates saturation (though in actualityfH2
does continue to

increase slowly). In practice, the nominal recombination time at∆ ∼ 200
inside these objects is rather close to the Hubble time, so the electrons are
used up quickly in the denser centers of the halos, where molecule formation
is also fastest. Thus most virialized objects reach this “saturation” limit after
reasonably short timescales.

The upper two panels of Figure 5.3 illustrate this process ina numerical
simulation of the formation of the first stars, which have proved instrumental
in understanding the process.43 Panel(a) shows the free electron fraction in
a collapsing gas cloud as a function of density, but one can crudely also
consider it a function of time, since the density of a typicalgas parcel will
increase as it falls further into the dark matter potential well. The electron
fraction remains near the initial value (shown by the horizontal dashed line)
for a period before falling rapidly atnH > 103 cm−3, where recombinations
become efficient. Panel(b) shows the molecular fraction, which increases
steadily at low densities (and therefore early times in the collapse process)
before reaching a limiting value nearfH2,s in the densest part of the clump.

5.1.2 Cooling and Collapse of Primordial Gas

The tools in§5.1.1 allow us to follow the chemistry of the gas accreting onto
a virialized halo. The next question is how much H2 is required to allow the
gas to cool and form stars. Cooling proceeds when an H2 molecule is ro-
tationally or vibrationally excited through a collision with another particle
(see§6.1.1 for a detailed discussion of the energy levels of the H2 molecule).
If the subsequent de-excitation is radiative (and the cloudis optically thin),
the cloud will lose energy and cool; if it is de-excited through another col-
lision, the cloud retains the energy, so no cooling occurs. In low density
gas, collisions are sufficiently rare that the first channel dominates, and the
cooling rate is proportional ton2

H because all of the molecules occupy low
excitation states. Once collisions become important, the level populations
shift to local thermodynamic equilibrium (LTE), and the cooling rate be-
comes proportional tonH because the emergent intensity approaches the
blackbody value. The transition occurs at thecritical density, which is only
a function of temperature; it corresponds toncr ≈ 104 cm−3 for the tem-
peratures of interest to primordial star formation. Figure5.4 shows how
the cooling rates depend on density and temperature: note how the higher
density rates approach the LTE value nearncr. The initial stages of cloud
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Figure 5.3 Gas properties during dense cloud collapse in a numerical simulation of first
star formation. (a) Free electron abundance; note the rapid decline atnH ∼
103 cm−3, thanks to efficient recombinations.(b) Molecular fractionfH2

.
The fraction increases rapidly during cloud collapse untilthe saturation value
(eq. 5.10) is reached, when recombinations remove the free electron catalysts.
(c) Gas temperature as a function of number density. Note the strong clump at
T ∼ 500 K andnH ∼ ncr, when radiative cooling becomes inefficient so the
evolution stalls.(d) The Jeans mass for this gas; note thatMJ ≈ 103 M⊙ for gas
in the aforementioned stalling stage. Figure credit: Bromm, V. et al. Astrophys.
J. 564, 23 (2002). Reproduced with permission of the American Astronomical
Society.
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Figure 5.4 Cooling rate from H2 per molecule. The solid lines shown = 10−1, 101, 103,
and105 cm−3, from bottom to top. The diamonds show the cooling rate in LTE;
note how the cooling function approaches this limit whenn > ncr due to the
transition to LTE. Figure credit: Bromm V., et al.,Astrophys. J., 564, 23 (2002).
Reproduced with permission of the American Astronomical Society.

formation therefore lie in the low-density regime where cooling is efficient.
A halo can collapse from the overdensities characteristic of virialization

to those characteristic of stars only if cooling can occur much faster than
the timescale over which the halo grows (and therefore accumulates more
thermal energy). The latter is comparable to the Hubble time. The cooling
time depends on the reaction networks discussed in the previous section.
But the characteristic temperature to which H2 radiation can drive gas is
hundreds of K, because the two lowest rotational energy levels in H2 have
an energy spacing ofE/kB ∼ 512 K. A reasonable approximation to the
cooling time in a virialized halo is44

tcool ≈ 5×104fH2

(

1 + z

20

)3( ∆

200

)

(

1 +
10T

7/2
3

60 + T 4
3

)−1

exp

(

512 K

T

)

yr,

(5.11)
whereT3 = T/(103 K) and the temperature factors result from quantum
mechanical calculations of the H2 collisional excitation rates.

The relevant comparison to determine whether a gas cloud will collapse
rapidly to form stars is the dynamical time of the system,tdyn ≈ 1/

√
Gρ

(with ρ ∼ mpnH), which describes how rapidly gravity can adjust the con-
figuration of the system. Iftcool > tdyn, the cloud can adjust to the (slow)
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cooling quasi-statically. It will contract slowly, maintaining a constant Jeans
mass, so thatT ∝ ρ1/3. If, on the other hand,tcool < tdyn, the gas cloud
will lose all its thermal energy much faster than gravity canadjust the con-
figuration. As the pressure support vanishes, the cloud willcollapse to much
higher densities in roughly the free-fall time.ii

In the present case, the relevant dynamical time is the Hubble time,tH ,
because the cooling begins as soon as the cloud reaches high densities (or
over a virialization time). Even after the halo forms, it will continue to
accept gas (and thermal energy) and grow over roughly the same timescale.
Using equation (5.11), the critical molecular fraction forrapid cooling to
occur is45

fH2,c ≈ 1.6×10−4

(

1 + z

20

)−3/2( ∆

200

)

(

1 +
10T

7/2
3

60 + T 4
3

)−1

exp

(

512 K

T

)

.

(5.12)
If a halo is able to form enough H2 so thatfH2

> fH2,c, it will cool rapidly
and form dense, highly molecular clouds. If not, it will remain a moderately
dense, virialized clump until it can surpass that threshold. We term such
clumpsminihalos.

Figure 5.5 shows that detailed numerical simulations of theearly stages
of structure formation confirm this picture. Each circle represents a single
virialized object in the simulation; the filled circles contain dense, cooling
clouds, while the open ones do not. The dashed line shows the saturation
limit for the molecular fraction,fH2,s: clearly the simulated halos lie re-
markably close to this estimate, with the scatter likely dueto variations
in the accretion history of halos. The solid line shows the critical cool-
ing threshold required at each virial temperature,fH2,c. The intersection
of these two curves determines the critical threshold for star formation in
molecular clouds, with the analytic argument providing a remarkably accu-
rate criterion to determine which halos can host dense, star-forming clouds.
As with Figure 5.5, the simplest way to think of this criterion is as a mini-
mum mass threshold for cold cloud formation, becausefH2,s is an increas-
ing function of temperature (and hence halo mass), whilefH2,c is a decreas-
ing function of mass. The transition from minihalo to star-forming halo is
therefore fairly sharp.

However, these simulations find that a fraction of halos lying above the
nominal threshold still do not host star-forming clouds (the open circles in
the upper right of Fig. 5.5), while some that lie below the nominal curve
do have such clouds. These can be understood in terms of the accretion

ii This argument is much broader than this particular application: it provides a useful
minimal criterion for galaxy formation in a wide range of contexts.
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Figure 5.5 Molecular hydrogen fraction as a function of virial temperature for virialized
halos inside a cosmological simulation atz = 17. The circles show results
for individual halos; the filled circles contain dense (presumably star-forming)
clouds, while the open circles do not. The dashed line shows the saturation limit
fH2,c of eq. (5.10), while the solid line shows the critical molecular fraction for
cooling to be rapid (see equation 5.12). The vertical dottedline shows the critical
virial temperature to host star-forming clouds. Figure credit: Yoshida, N. et al.,
Astrophys. J., 592, 645 (2003). Reproduced with permission of the American
Astronomical Society.
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histories of the halos: recall that the cooling must balancethe thermal en-
ergy gained throughout (ongoing) halo growth. Those halos accreting gas
very rapidly may not be able to form dense clouds even if they are massive
enough to havefH2,s > fH2,c.

5.1.3 The Collapse of Dense Clouds

Cloud collapse via H2 radiation continues until cooling becomes inefficient
and thermal pressure significant. The minimum temperature achievable by
H2 cooling isT ∼ 200 K, because the energy spacing of the first two ro-
tational levels of that molecule is∼ 512 K (the limit is somewhat smaller
than that nominal value because of the high-velocity tail ofthe Maxwell-
Boltzmann distribution). The characteristic density whencooling becomes
inefficient is the critical densityncr ≈ 104 cm−3 defined in the previous
section, where collisions become frequent enough to maintain local thermo-
dynamic equilibrium. At yet higher densities, the radiative intensity must
follow the blackbody law, so the cooling rate is only linearly proportional to
density (see Fig. 5.4).

With the decrease in the cooling rate, the gas cloud stalls or“loiters” at or
nearncr. This stage is illustrated in panel(c) of Figure 5.3, which shows a
phase diagram of the gas in a numerical simulation of coolingin high-z dark
matter halos. In the early stages (i.e., gas at low density inthis diagram),
cooling is inefficient (with a rate proportional ton2

H), so the temperature

roughly obeys the adiabatic relationT ∝ n
2/3
H (shown by the dotted line

here). Once the density increases enough for H2 cooling to become efficient,
the temperature falls toT ∼ 200 K, where it stalls as LTE is reached near
the critical density.

Further collapse requires enough mass to accumulate for gravity to over-
come the roughly constant pressure of this growing clump – inother words,
for the clump mass to exceed the local Jeans mass,MJ ≈ cstcoll (see§3.2).
For gas in this clump, that is

MJ ≈ 700

(

T

200 K

)3/2
( n

104 cm−3

)−1/2
M⊙. (5.13)

Once the clump grows beyond this point, gravity drives further, rapid col-
lapse on the cloud’s dynamical timescaletcoll.

To this point in the collapse, “first star formation” poses a physics prob-
lem with well specified initial conditions that can be solvedon a computer.
Starting with a simulation box in which primordial density fluctuations are
realized (based on the initial power spectrum of density perturbations), one
can reliably simulate the collapse by including the chemistry, gravitational
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dynamics, and thermodynamics of the gas. The top two panels in Fig-
ure 5.6 show these stages of collapse in a typical cosmological minihalo
with ∼ 106M⊙ in such a numerical simulation. Generically, the collapsing
region makes a central massive clump with a typical mass of hundreds of
solar masses, where the clump lingers because its H2 cooling time is longer
than its collapse time.

5.2 FROM PROTOSTARS TO STARS

Although the journey that led to humanity’s existence was long and compli-
cated, one fact is clear: our origins are traced to the production of the first
heavy elements in the interiors of the first stars. Their formation is therefore
a crucial milestone in the Universe’s history. The last section has put us
on the cusp of understanding these objects – but, unfortunately, the evolu-
tion from that point is much more difficult to understand and still has many
uncertainties.

Numerical simulations show that the protostellar core, with T ∼ 200 K,
gradually contracts at roughly constant temperature (owing to H2 cooling)
until nH > 108 cm−3.46 At that point, the density becomes large enough
for three-body processes to form H2 through the reactions

H + H + H→H2 + H, (5.14)

H + H + H2 →H2 + H2. (5.15)

The rate for the first of these reactions isk3b = 5.5 × 10−29 cm6 s−1; the
second is 1/8 as large. The timescale for this reaction to proceed,t3b =
(k3bn

2
H)−1, equals the free-fall time at a critical density

nc,3 ≈
(

f2
H2
Gmp

4k2
3b

)1/3

, (5.16)

which is ∼ 108 cm−3 for fH2
∼ fH2,s. At higher densities, three-body

H2 formation proceeds rapidly and the core collapses again. The molecu-
lar fraction then increases rapidly until it is near unity bythe timenH ∼
1012 cm−3, which one can estimate by settingfH2

∼ 0.5 in equation (5.16).
A simulated image of his stage is also shown in panelc in Figure 5.6.

At this point, the large molecular fraction rapidly increases the cooling
rate, allowing dynamical collapse. Numerical simulationsshow that a hy-
drostatic core of mass< 10−2M⊙ forms when the gas becomes optically
thick to its own cooling radiation (paneld in Figure 5.6). This core forms the
seed for a Population III star, but its subsequent evolutionhas proven much
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Figure 5.6 Projected gas distribution around a primordial protostar from a numerical simu-
lation (see alsoColor Plate 4for a color version of this figure). Shown is the gas
density of a single object on different spatial scales:(a) the large-scale gas distri-
bution around the cosmological mini-halo;(b) the self-gravitating, star-forming
cloud; (c) the central part of the fully molecular core; and(d) the final proto-
star. Figure credit: Yoshida, N., Omukai, K., & Hernquist, L. Science321, 669
(2008). Copyright 2008 by the American Association for the Advancement of
Science.
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more difficult to predict robustly in numerical simulations. Not only is the
dynamical time within the core very short, but radiative feedback from the
protostar couples to the gas, making the cooling processes more complex.
Thus, the final products of even the well-posed problem of Population III
star formation still have a fair amount of uncertainty. Herewe will content
ourselves with identifying the key issues in these final stages of formation.

5.2.1 A Single Protostar: No Feedback

We begin by considering the simplest case, in which the clumpis assumed
to form a single protostar. Theorists have made a good deal ofprogress
in understanding how such a protostar would grow using a combination of
numeric and analytic tools.

Star formation typically proceeds from the inside out, through the accre-
tion of gas onto a central hydrostatic core. Whereas the initial mass of the
hydrostatic core is very similar for primordial and present-day star forma-
tion, the accretion process – ultimately responsible for setting the final stel-
lar mass – is expected to be rather different. It is common to parameterize
the accretion rate as

ṁ⋆ = φ⋆
m⋆

tff
, (5.17)

whereφ⋆ is a dimensionless parameter that depends upon the properties
of the medium andm⋆ is the mass of the protostar. For a self-gravitating
clump, the massm⋆ ∼MJ ∼ c3s/

√

G3ρ, the Jeans mass, so

ṁ⋆ ∼ c3s/G ∝ T 3/2. (5.18)

A simple comparison of the temperatures in present-day starforming re-
gions, in which heavy elements cool the gas to a temperature as low as
T ∼ 10 K, with those in primordial clouds (T ∼ 200 − 300 K), already
indicates a difference in the accretion rate of more than twoorders of mag-
nitude. This suggests that the first stars were probably muchmore massive
than their present-day analogs. The key questions are to determine the ac-
cretion rate itself and estimate the duration over which it persists before
radiative (or mechanical) feedback from the central protostar (or star) shuts
it off.

In order to estimate the accretion rate quantitatively, we need to determine
φ⋆. The simplest interesting analog is spherically symmetricaccretion in a
uniform medium onto a point mass, so-calledBondi accretion. A simple
way to estimate how the accretion rate scales is to note that the protostar’s
gravity will overcome the pressure of the medium if the free-fall time tff ∼
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1/
√
Gρ is smaller than the sound-crossing timetsc ∼ r/cs. This condition

implies that infall will occur within a radius

Racc ∼
Gm⋆

c2s
. (5.19)

The accretion rate will then be the surface area of a sphere atthis radius,
times the density of the medium, times the infall speed, which will be of
order the sound speed. Thus

ṁ⋆ ∼ G2m2
⋆ρ

c3s
. (5.20)

We therefore haveφ⋆ ∼ (m⋆/ρr
3)(tsc/tff)3 ∼ 1, as expected.

Population III star formation is of course considerably more complicated
than this simplest limit, as collapse proceeds in a virialized clump and is
regulated by H2 cooling. Nevertheless, it is possible to estimate the rate of
collapse by using the numerical simulations to calibrate more sophisticated
models.47 We take aself-similar solution, in which all relevant physical
quantities are power laws, because there is no characteristic length scale in
the problem. We assume that the density field followsρ ∝ r−kρ and that the
pressure followsp ∝ r−kp . It follows that the solution is a polytrope, with
p ∝ ργp .

The simulations show that the accretion process occurs subsonically and
nearly isentropically, with an adiabatic indexγ ≈ 1.1 set by the physics of
H2 cooling. In hydrostatic equilibrium, the configuration therefore assumes
a polytropic solution withP (r) ≈ Kρ(r)1.1, so thatγp = 1.1 as well.
Moreover, hydrostatic equilibrium

1

ρ

dp

dr
= −Gm⋆

r2
, (5.21)

demands thatkρ = 2/(2 − γp) ≈ 20/9 (i.e. the density structure is fairly
close to an isothermal sphere) andkp = γpkρ.

The constantK is set by the thermodynamics of the dense cloud during
its “loitering” phase, which we can regard as the initial conditions of this
stage of collapse. We take a fiducial valueK = 1.88 × 1012Kfid in cgs
units, whereiii

Kfid =

(

T

300 K

)(

104 cm−3

nH

)0.1

. (5.22)

iii In detail, the temperature here does not necessarily correspond to the gas temperature
in the cloud, if turbulence provides additional pressure support. We will consider the impor-
tance of turbulent motions later.
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This initial entropy, together with the initial density profile, ultimately de-
termines the accretion rate onto the protostar. The hydrostatic equilibrium
condition also requires that

ρ =

[

(3 − kρ)k
3
pK

3

4πG3m2
⋆

]1/(4−3kρ)

, (5.23)

Substituting into equation (5.17), we have

ṁ⋆ =
8φ⋆√

3

[

(3 − kρ)k
3
pK

3

2(2π)5−3γpG3γp−1

]1/2(4−3γp)

M ξ, (5.24)

≈ 0.026K
15/7
fid

(

m⋆

M⊙

)−3/7

M⊙ yr−1, (5.25)

whereξ = 3(1 − γp)/(4 − 3γp). In the second line we have usedγp =
1.1 and evaluatedφ⋆ using the closest known self-similar solution to the
early stages of accretion in simulations.48 There is in fact a fair amount
of uncertainty in this relation because the exponentξ (and hence them⋆

dependence in equation 5.25) is very sensitive toγp, with the latter ranging
from −0.37 to −0.49 for γp = 1.09–1.11; we have usedγp = 1.1 here for
concreteness. Nevertheless the solution clearly shows an important fact –
and a key difference from low-mass star formation – that the accretion rate
actually tapers off with time. The time required to build up agiven stellar
mass is

t =
m⋆

ṁ⋆
≈ 27K

−15/7
fid

(

m⋆

M⊙

)10/7

yr, (5.26)

which matches detailed numerical simulations to within a factor of two or so
in the early stages of protostar formation. Given that very massive Popula-
tion III stars live for only a few Myr, this provides amaximalupper limit to
the mass of the final star of∼ 103 M⊙, the accumulated mass over that time
period, which depends on both the main sequence lifetime andthe initial
entropy of the gas.

In detail, provided that the core has some initial rotation,the gas falls onto
an accretion disk rather than the star itself, and the resulting geometry may
drive winds or other outflows, so the accretion rate estimated above is only
accurate to a factor of order unity.

5.2.2 A Single Protostar: Radiative Feedback

The maximal mass estimate given above assumes that the protostellar (and
stellar) radiation field does not affect the accretion. In the presence of this
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feedback,can a Population III star ever reach this asymptotic mass limit?
The answer to this question is not yet known with any certainty, and it de-
pends on how that feedback manifests itself.

Before the onset of hydrogen fusion, the protostar must radiate away the
gravitational energy accumulated by accretion,Lacc ≈ Gm⋆ṁ⋆/R⋆, where
R⋆ is the radius of the protostar. The outward radiation pressure on the gas
can itself halt accretion if it balances the inward gravitational force. This
is theEddington luminosityLE , representing the maximal luminosity of an
accreting object. Assuming for simplicity a fully ionized medium, force
balance requires

Gm⋆mp

r2
=

LE

4πr2c
σT , (5.27)

whereσT = 0.677×10−24 cm2 is the Thomson cross-section for scattering
a photon off an electron. SettingLacc ≈ LE yields a critical accretion rate,

ṁ⋆,E ≈ LER⋆

Gm⋆
∼ 5 × 10−3

(

R⋆

5R⊙

)

M⊙ yr−1, (5.28)

where we have scaledR⋆ to a value typical of a very massive Population
III star on the main sequence. Comparison of equations (5.28) and (5.25)
suggests that radiative feedback can be crucial in halting accretion onto the
protostar as it approaches the main sequence with a mass∼ 50–100 M⊙.

However, radiative feedback is likely to be unimportant at much earlier
stages, because the protostellar radii are much larger at these times. For
example, in the very early stages, when the opacity is dominated by H−

bound-free processes, the photosphere temperature is fixedatT ∼ 6000 K
because the opacityκH− ∝ T 14.5. Assuming that the protostar radiates as a
blackbody, we then have

Gm⋆ṁ⋆

R⋆
= 4πR2

⋆σSBT
4, (5.29)

whereσSB is the Stefan-Boltzmann constant. This yieldsR⋆ ≈ 50(m⋆/M⊙)1/3 R⊙

for ṁ⋆ ∼ 0.005 M⊙ yr−1. Thus, we naively expect that radiative feedback
will kick in only relatively late in the star formation process.

There are four distinct aspects of feedback exerted by a staron its gaseous
environment:49

• Photodissociation of H2: As the protostar heats up it produces ultra-
violet radiation that photodissociates H2 (see§6.1 below for a detailed
discussion). Once molecular cooling turns off, the adiabatic index of
the gas increases toγ = 5/3 (i.e., monatomic gas). This decreases the
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accretion rate (because the pressure increases more rapidly as the gas
gets compressed), but numerical estimates and semi-analytic models
show that the decline is rather modest. (This is not surprising given
that the simple Bondi accretion problem described above also permits
steady accretion whenγ = 5/3.)

• Lyman-α radiation pressure:As we will discuss in detail in§11.1.1,
the radiative transfer of Lyman-α photons is typically a very complex
process when the optical depth is very large, as occurs near acol-
lapsing protostar surrounded by large quantities of neutral gas. The
Lyman-α photons provide a substantial outward pressure, because
they are trapped by the optically thick gas (and, on average,scatter-
ing off infalling gas blueshifts the photon, reducing the infall velocity
of the gas). Indeed, they do not even escape by scattering through
the gas column – rather, they escape when their frequency wanders
so far from line center that the gas becomes effectively transparent.
Because of these frequency shifts, the geometry of the flow plays an
important role – as soon as a low-column density channel opens up in
one direction, photons can easily escape along that channel. Provided
that accretion occurs through a disk, Lyman-α escape is most likely
to occur along the polar direction, where the accretion rateis already
quite small. Analytic estimates show that Lyman-α scattering can be-
gin to slow the accretion when the core hasMc ∼ 20 M⊙, but that
the overall effect is small. We consider this process in moredetail in
§6.3.2, where we examine its effects on larger scales.

• Ionization: Once the protostar begins to produce ionizing photons, it
will carve out an H II region in which the temperature is much larger
than the surrounding neutral gas (typically> 2 × 104 K; see§9.9
for a detailed discussion). This dramatically increases the pressure
of the gas, which can cause the H II region to expand and drive off
gas that would otherwise accrete onto the protostar. The dynamics
of the region depend upon the expansion velocity of the ionization
front. If the front moves faster than about twice the ambientsound
speed (of the neutral gas), then it has essentially no dynamical effect
on the gas. This is known as an “R type” (or rarefied) front. Near a
Population III protostar, the H II region begins in this regime, because
it is expanding through gas falling inward at the free-fall velocity vff ,
which is highly supersonic.

Eventually, the front reaches the radius wherevff ∼ 2cs, where the
gas can respond to the ionization front, and a shock forms (this is a
“D type,” or dense front). Typically, the shock leads the ionization
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front, creating a dense shell of neutral gas into which the front prop-
agates, with a bulk kinetic energy density comparable to thepres-
sure inside the ionization front. A simple estimate for the point at
which this shock halts accretion is thus when the thermal pressure
gradient at the front exceeds the inward gravitational force. This is
roughly the accretion radiusRacc defined in equation (5.19), but us-
ing T ∼ 20, 000 K for the ionized gas. Estimates of the ionizing
luminosity of these protostars indicate that this limit is reached when
m⋆ ∼ 100 M⊙.

As before, the disk geometry of the accretion flow will play anim-
portant role in how this feedback mechanism occurs. The front will
propagate fastest through the lowest column density of gas,which is
along the polar axis, so accretion will first be suppressed there. In
contrast, along the direction of the disk, the extreme column density
of the disk “shadows” the flow, allowing accretion to continue. Pro-
vided that most of the accretion occurs through such a disk, the H II
region will therefore not entirely halt the protostar’s growth.

Photoionization heating can have substantial effects on the gas even
far outside of the protostar’s immediate environment. We examine
this in more detail in§6.3.1.

• Photoevaporation of the Accretion Disk:However, the same ion-
izing photons will heat the disk itself, evaporating gas from it and
eventually shutting off accretion entirely. The rate at which this oc-
curs depends upon the geometry of the disk and the spectrum ofthe
protostar, but some calculations show that the disk evaporates when
m⋆ ∼ 150 M⊙. As we will see below, this is very near the mass
threshold for direct black hole formation when such stars die, so the
details of the process may be very important.

Because these radiative feedback processes only affect accretion late in
the evolution of the first stars, they must generally be studied with simplified
analytic models rather than incorporated directly into ab initio simulations
of Population III star formation. We therefore only have approximate esti-
mates of their importance, and observations of these stars may be necessary
to settle the physical uncertainties.

5.2.3 Multiple Protostars: Fragmentation

The models described above make one key assumption: that thecollapsing
material accretes onto a single object, the central protostar. However, in the
presence of angular momentum the accretion flow will generically organize
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itself into a disk. Can this disk then fragment into multiple high-density
clumps, or multiple protostars?There are several possible mechanisms for
fragmentation – gravitational instabilities, turbulence, and thermodynamic
instabilities. All have now been implicated in numerical simulations show-
ing fragmentation, but it is far from clear whether these aregeneric pro-
cesses, or how severe the fragmentation is.

The classic way to gauge the importance of gravitational instability is
the Toomre criterion. We sketch its significance here. Consider a small
patch inside a rotating gaseous disk. Let the patch have a radius r and mass
M = πΣr2 (whereΣ = ρ/∆z is the surface density and∆z is the disk
thickness). If we compress the patch by a factorδ, sor → r(1 − δ), the
pressure increases by an amount

∆p ∼ c2sδρ0 ∼ δc2sΣ(∆z)−1. (5.30)

Thus, the excess pressure force per unit mass is

∇(∆p)

Σ(∆z)−1
∼ c2sδ

r
, (5.31)

where we have assumed thatr is the characteristic scale over which the
system varies. Meanwhile, the increase in the gravitational force per unit
mass is−GMδ/r2 ∼ GΣδ. Thus, the outward pressure counteracts gravity
if

r <
c2s
GΣ

≡ Rpr. (5.32)

This is just the classical Jeans analysis (§3.2) applied to a two-dimensional
system: small wavelength modes are stabilized by pressure,while large
wavelength modes are unstable to gravitational collapse.

However, in a rotating disk the angular momentum can stabilize these
long wavelength modes. Assuming that our perturbation involved no exter-
nal force (and hence torque), the internal spin angular momentum (gener-
ated by differential rotation across the patch) must be conserved. IfΩ is the
rotation speed, this isJs ∼ Ωr2.

As we compress the patch, conservation of angular momentum increases
the rotation speed and thus creates a centrifugal barrier tofurther compres-
sion. To gauge how effective this is, we write the centripetal force per unit
mass in terms of the conserved quantityJs:

v2

r
∼ Ω2r2

r
∼ J2

s

r3
. (5.33)
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Figure 5.7 Density evolution in a 120 AU region around the first protostar in a numerical
simulation of Population III star formation, showing the buildup of the protostel-
lar disk and its eventual fragmentation at the times labeledin the diagram (see
Color Plate 5for a color version of this figure). Figure credit: Clark, P. C. et al.,
Science331, 1040 (2011). Copyright 2008 by the American Association for the
Advancement of Science.

Thus, the excess force as we compress the patch isd(J2
s /r

3)/dr×δr, which
overcomes gravity and prevents further collapse if

r >
GΣ0

Ω2
≡ Rcen. (5.34)

We can only have an instability ifRcen > Rpr, so that there exists a
range of moderate wavelength perturbations cannot be stabilized by either
pressure or rotation. A more exact derivation shows that instability sets in if
theToomre criterion

Q ≡ csκe

πGΣ
< 1 (5.35)

Hereκe is the epicycle frequency, or the rotation frequency for small per-
turbations around the equilibrium disk. For a Keplerian disk, κe = Ω =
√

GM(r)/r, whereM(r) is the mass enclosed within a radiusr. If the
disk is unstable, fragmentation will generically occur as positive density
perturbations grow rapidly.

Figure 5.7 shows this kind of gravitational fragmentation in a numerical
simulation of the accretion disk around a Population III star.50 The disk very
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quickly exhibits spiral structure, common in self-gravitating disks, develop-
ing non-axisymmetric features and becoming locally unstable just∼ 100 yr
after the formation of the first protostellar core. The disk soon forms a sec-
ond core separated by∼ 20 AU from the first. Figure 5.8 shows why: the
top two panels show that the surface density and temperatureof the disk
remain roughly constant over time, except near its outskirts. This means the
rate at which the disk can transport angular momentum (and hence material)
inwards stalls, and the outer disk builds up more and more mass, quickly be-
coming gravitationally unstable (Q ∼ 1 at r ∼ 20 AU).

To continue fragmentation, the clump must still be able to rid itself of
the thermal energy generated during collapse. At the characteristic densities
of these disks (nH ∼ 1012–1014 cm−3) a new cooling process dominates:
collision-induced emission(CIE). This occurs when H2 interacts with an-
other species (H, He, or H2) in a collision. The interacting pair briefly
forms a “supermolecule” with a non-zero electric dipole, from which pho-
tons can be emitted or absorbed efficiently. Because the collision times are
very short, the uncertainty principle demands that the resulting radiation is
emitted nearly in a continuum. This CIE radiation allows thegas to cool
during the early stages of fragmentation, because the cooling time is sub-
stantially shorter than the dynamical time.

The continuum opacity of these same molecules prevents CIE cooling at
nH > 1016 cm−3. At this point, the gas does begin to heat up. However,
at temperatures much above theT ∼ 103 K characteristic of the disk (see
the upper right panel in Fig. 5.8), H2 begins to dissociate. Each such dis-
sociation removes 4.48 eV from the gas, which keeps it near its original
temperature because it is so highly molecular (see the lowerleft panel in
Fig. 5.8).

Turbulence appears to be a third factor triggering instabilities and frag-
mentation. Such turbulence can be generated by “cold” accretion onto the
host minihalo, where gas is funneled into the halo along filamentary chan-
nels and is not initially shock heated to the virial temperature of the halo.
Instead, it collides with the central gas clump supersonically, triggering (typ-
ically subsonic) turbulent motions. Turbulence is known tobe important
in “normal” star formation at low redshifts, leading to fragmentation of
giant molecular clouds into protostellar cores with a wide range of initial
masses. Some numerical simulations indicate that similar processes could
cause fragmentation in the Population III regime.51

5.2.4 The Initial Mass Function

Currently, we have no direct observational constraints on how the first stars
formed at the end of the cosmic dark ages, in contrast to the wealth of ob-
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Figure 5.8 Radial profile of disk physical properties from the same simulation shown in
Fig. 5.7, centered on the first protostellar core to form. Clockwise from upper
left, the panels show the surface density, temperature, Toomre-Q parameter, and
molecular fraction. Note how the disk parameters do not evolve strongly with
time (shown with the different curves in each panel). The second core to form in
the simulation forms within the region nearr ∼ 20 AU whereQ < 1. Figure
credit: Clark, P. C. et al.,Science331, 1040 (2011). Copyright 2008 by the
American Association for the Advancement of Science.
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servational data we have on star formation in the local Universe.52 Pop-
ulation I and II stars form out of cold, dense molecular gas that is struc-
tured in a complex, highly inhomogeneous way. The molecularclouds are
supported against gravity by turbulent velocity fields and are pervaded by
magnetic fields. Stars tend to form in clusters, ranging froma few hundred
up to ∼ 106 stars. It appears likely that the clustered nature of star for-
mation leads to complicated dynamical interactions among the stars. The
initial mass function (IMF) of Population I stars is observed to have a bro-
ken power-law form, originally identified by Ed Salpeter,53 with a number
of starsN⋆ per logarithmic bin of star massm⋆,

dN⋆

dlogm⋆
∝ m⋆

−Γ. (5.36)

Figure 5.9 shows some data in nearby star-forming regions, the only en-
vironment in which the IMF can be reliably measured, and the effective
power-law index in these regions. The data are consistent with a broken
power law,

Γ ≃
{

1.35 for m⋆ > 0.5M⊙

0.0 for 0.008M⊙ < m⋆ < 0.5M⊙
. (5.37)

We shall take this as our fiducial model in the discussion, though we note
that the form of the IMF at low masses is still unsettled. The lower cutoff
in mass corresponds roughly to the minimum fragment mass, set when the
rate at which gravitational energy is released during the collapse exceeds
the rate at which the gas can cool.54 Moreover, nuclear fusion reactions do
not ignite in the cores of proto-stars below a mass of∼ 0.08M⊙, so-called
“brown dwarfs”. The most important feature of this IMF is that ∼ 0.5M⊙

characterizes the mass scale of Population I and II star formation, in the
sense that most of the stellar mass goes into stars with masses close to this
value.

The ultimate goal of studies of the formation of Population III stars is to
determine the analogous mass function for primordial stars. Unfortunately,
we are far from converging on any robust predictions. Until recently, models
of single protostar formation seemed to suggest that accretion would con-
tinue untilm⋆ ∼ 100 M⊙, with the details determined by the initial entropy
of the gas (Kfid in equation 5.25) and by radiative feedback, with a plausi-
ble mass range from∼ 20–300 M⊙. These masses – obviously much larger
than the characteristic mass of present day stars – suggested that the first
generation of stars to light up the Universe would be truly exotic objects.

However, the more recent studies of fragmenting disks suggest that the
characteristic masses may be much smaller. Gravitational instability leads
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Figure 5.9 Upper panel:The derived power-law index,Γ, of the IMF in nearby star forming
regions, clusters and associations of stars within the Milky Way galaxy, as a
function of sampled stellar mass (points are placed in the center of the logm⋆

range used to derive each index, with the dashed lines indicating the full range of
masses sampled). The colored solid lines represent three analytic IMFs. Bottom
panel: The present-day IMF in a sample of young star-forming regions, open
clusters spanning a large age range, and old globular clusters. The dashed lines
represent power-law fits to the data. The arrows show the characteristic mass
of each fit, with the dotted line indicating the mean characteristic mass amongst
the clusters in each panel, and the shaded region showing thestandard deviation
of the characteristic masses in that panel. The observations are consistent with a
single underlying IMF. SeeColor Plate 6for a color version of this figure. Figure
credit: Bastian, N., Covey, K. R., & Meyer, M. R.,Ann. Rev. Astr. & Astrophys.
48 (2010). Copyright 2010 by Annual Reviews.
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to several cores, each competing for the accreting gas. Turbulence may lead
to an even wider range of initial protostar sizes. These cores themselves
can interact, much as the stars in nearby open clusters do. Inparticular,
three-body interactions tend to speed up smaller cores and move them into
the outskirts of the core, where there is less gas to accrete.Meanwhile, the
larger cores tend to sink to the center of the cloud, accreting more rapidly.
This picture of “competitive accretion” may be important for high-mass star
formation in the nearby Universe; if so, it may suggest that Population III
star formation may also follow a power-law IMF with a broad range of stel-
lar masses.

Nevertheless, it seems likely that the characteristic massof high-redshift
starsmustbe significantly larger than the present-day value of∼ 0.5 M⊙.
The present-day value can be understood relatively easily as the minimum
mass for collapse in the∼ 8 K molecular gas out of which these stars
form (the minimum temperature is set by the cooling physics in molecu-
lar clouds). The Jeans mass provides a reasonable estimate of this value, but
a more exact choice is theBonnor-Ebert mass,55

MBE = 1.18
(kT/µmp)

2

p
1/2
0 G3/2

, (5.38)

which is the largest mass that an isothermal gas sphere with atemperature
T can have in hydrostatic equilibrium with an external gas pressurep0. A
Bonnor-Ebert sphere has a finite central density and size as it is confined
by external pressure. Its maximum massMBE is 4.7 times smaller than the
Jeans mass but otherwise has the same scaling with density and temperature.

The temperature floor is expected to evolve with redshift, because ra-
diative cooling cannot bring the temperature below the CMB temperature,
to which all of the relevant lines couple. Atz = 30, TCMB = 82 K,
many times larger than the present day value (which is actually well above
the z = 0 CMB temperature). The quantitative change in the Bonner-
Ebert mass is not trivial to estimate, because it depends on the temperature-
density relation in the clouds: for example, if the density structure is fixed,
MBE ∝ T 3/2, but if cooling proceeds isobarically, withnT = constant,
thenMBE ∝ T 2. This suggests that the characteristic fragmentation mass
would increase to at least∼ 16–50 M⊙ at z = 30 (or even10–20 M⊙ at
z = 10), well into the range of “high mass” stars by present-day standards,
though far smaller than the maximal estimates if fragmentation is ineficient.

We will discuss the IMF in a more general context in§8.8 below as well.
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5.3 THE SECOND GENERATION OF STARS: “POPULATION III.2”

The picture we have described so far assumes that the star formation process
begins with the initial conditions characteristic of the high-redshift IGM: gas
that is nearly neutral, with very little pre-existing H2. These are, of course,
the proper initial conditions for the first star-forming halos. But this picture
depends rather sensitively on those assumptions, and it is likely that later
generations of stars – still forming out of primordial gas – will begin with
very different conditions.

The key is the initial ionization state of the gas. There are three important
ways in which that can be much higher for these later stars. One possibil-
ity is that the first stars will produce a copious amount of ionizing radia-
tion, generating H II regions within and around their host dark matter halo.
Any clumps that collapse within the ionized region will collapse from fully-
ionized gas. Similarly, if these stars explode in supernovae, their powerful
blastwaves will ionize the nearby gas (and possibly even trigger collapse).
Finally, as larger halos form, star formation will shift to those more massive
objects. Above a virial temperature of∼ 104 K, the virialization shock it-
self will ionize the halo gas, again changing the initial conditions for cloud
chemistry and collapse.

These initial conditions result in a different formation mode for primor-
dial stars, often referred to asPopulation III.2, with a distinct initial mass
function from the classic Population III.1 mode described earlier. The basic
stages in this process are illustrated in Figure 5.10.

5.3.1 The Freeze-Out of Molecular Hydrogen

We showed in§5.1.1 that H2 formation is catalyzed by the presence of free
electrons. Thus, in gas that cools from a fully ionized state, molecule for-
mation can proceed rapidly – even though at the initially high temperatures
such molecules quickly dissociate.

Figure 5.11 shows numerical models of idealized isobaric cooling in pri-
mordial gas initially atT ∼ 104 K (and hence ionized). As the gas cools,
H2 begins to form through the usual free electron channel, until its abun-
dance saturates atfH2

∼ 2× 10−3, regardless of the initial conditions. This
“freeze-out” level indicates that the molecular fraction saturates at a non-
equilibrium value.

In particular,fH2
can no longer evolve once the timescales for H2 for-

mation (tform) and dissociation (tdiss) become longer than the cooling and
recombination timescales in the system, because the electron catalysts dis-
appear at that point. As in§5.1.1, the formation time can be approximated
by tform = fH2

/ḟH2
≈ fH2

/(xHIIk̃nH). The dominant H2 dissociation
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Figure 5.10 Basic stages in Population III.2 protostar formation. (a) A dark matter halo
passes the threshold to ionize infalling gas.(b) The accreted gas cools rapidly
due to H I line cooling. Because it begins highly ionized, a large fraction of
H2 and HD are formed in the process(c) Instead of stalling, HD line cooling
continues to function toT ∼ 100 K, substantially below the “loitering” temper-
ature for Population III.1 star formation.(d) Finally, runaway collapse begins
once the dense clump’s mass exceeds the local Jeans mass. Further fragmen-
tation may then occur due to gravitational instability, turbulence, or chemical
processes.
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Figure 5.11 H2 formation in initially ionized gas. The top panel shows the temperature
evolution of gas at three different initial pressures, assuming isobaric cooling
(the three models are offset in time for clarity of presentation). The bottom
panel shows the molecular fractions (solid curves) and the free electron frac-
tions (dashed curves) for the same three models. Note howfH2

approaches a
constant limit in all three cases. Figure credit: Oh, S. P. & Haiman, Z.,As-
trophys. J., 569, 558 (2002). Reproduced with permission of the American
Astronomical Society.
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process is reaction (6) in Table 5.1, whose rate we will denote byk6. (This
dissociation chain beginning with this charge-exchange reaction is more ef-
ficient than direct collisional dissociation.) Thentdiss = (k6xHIInH)−1.
The ratet−1

diss ∝ k6 decreases exponentially as the temperature drops, while
the rates for cooling, recombination, and formation decrease only as power
laws. This steep temperature dependence means thattdiss very suddenly be-
comes longer thantrec andtcool as the gas cools; the reaction rates demand
that the resulting temperature isTfreeze = 3700 K.56 Up to this point, the H2
abundance remains in equilibrium, and the ratio of the reaction rates yields
the value

fH2,freeze ≈
k̃(Tfreeze)

k6(Tfreeze)
≈ 2 × 10−3. (5.39)

This argument shows that, at lower temperatures, molecularhydrogen
will no longer be destroyed; thus at lower temperatures we must havefH2

>
fH2,freeze. Furthermore, atTfreeze equilibrium demands that the formation
and dissociation timescales be comparable to each other andto trec andtcool.
In order to show that the molecular fraction does not increase above this
freeze-out value, we only need to verify thattform is longer thantrec and
tcool at lower temperatures, which is straightforward. This further implies
that H2 formation will also cease so long as its rate increases less slowly
with temperature than cooling and recombination, which canbe readily seen
by comparing of the reaction rates in Table 5.1. Thus, whenT < Tfreeze,
the molecular hydrogen abundance remains fixed at its (non-equilibrium)
freeze-out valuefH2,freeze.

5.3.2 Deuterium and Cooling

The relatively high abundance of molecular gas already suggests that these
pre-ionized systems can also eventually cool and form stars. However, there
is an additional wrinkle that becomes important in these systems: deuterium.
Unlike H2, which is a symmetric molecule, HD has a permanent dipole
moment which allows strong dipole rotational transitions with ∆J = ±1,
of smaller energy than the∆J = ±2 quadrupole transitions of H2 (the
larger reduced mass of HD lowers this energy even further). TheJ = 1 →
0 transition has an equivalent temperature of∼ 130 K, about four times
smaller than the lowest energy transition of H2. Thus, in principle, HD
cooling can lower the temperature and hence mass scale of star formation
substantially (recall thatMJ ∝ T 3/2 at fixed density, equation 5.13).

The most efficient method for HD to form is via the reaction

H2 + D+ → HD + H+. (5.40)
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Figure 5.12 Molecular abundances in primordial gas coolingfrom high temperatures, rel-
ative to the total number density of H atoms. The calculationhere simulated
cooling in a 100 km s−1 shock atz = 20, characteristic of a supernova. Note
the large abundance of HD at low temperatures. Figure credit: Johnson, J. L.
& Bromm, V., Mon. Not. R. Astron. Soc., 366, 247 (2006). Copyright 2006 by
the Royal Astronomical Society.
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Table 5.2 Reaction rates for Deuterium species as functionsof temperatureT in K [with
Tξ ≡ (T/10ξK)]. Adopted from Haiman, Z., Thoul, A. A., & Loeb, A.,Astro-
phys. J.464, 523 (1996); and Galli, D., & Palla, F.,Astron. & Astrophys.335,
403 (1998).

Reaction Rate Coefficient
(cm3s−1)

(1) D+ + e− → D + hν 8.40 × 10−11T−1/2T−0.2
3 (1 + T 0.7

6 )−1

(2) D + H+ → D+ + H 3.70 × 10−10T 0.28exp(−43/T )
(3) D+ + H → D + H+ 3.70 × 10−10T 0.28

(4) D+ + H2 → H+ + HD 2.10 × 10−9

(5) HD + H+ → H2 + D+ 1.00 × 10−9exp(−464/T )

This of course requires the simultaneous presence of molecular hydrogen
and ionized deuterium. In the standard Population III.1 picture, which oc-
curs entirely at low temperatures, the latter is very rare, and very little HD
forms. However, in the present case, where all the deuteriumbegins ionized,
the abundance of D+ remains relatively large until very low temperatures.
Thus, a substantial abundance of HD can build up, as illustrated in Fig-
ure 5.12. As the Big Bang nucleosynthesis expectation is that the deuterium
abundance is only∼ 10−5 that of hydrogen, these calculations indicate that
nearly all of the deuterium can enter molecular form. Table 5.2 provides
reaction rates for the most important deuterium reactions.

Moreover, HD has several advantages as a coolant over H2. First, it has
a higher critical density,ncrit,HD ∼ 106 cm−3, so rapid cooling continues
to higher densities. Second, its dipole transitions are much more rapid, with
a spontaneous decay rateA10 ≈ 5 × 10−8 s−1. This allows rapid cooling
even at low abundances: at the levels shown in Figure 5.12, the gas can
easily cool to the CMB temperature over a relatively short time. To see this,
let us assume for simplicity that the gas, at temperatureT , is in LTE, so that
the level populations in the ground (n0) and first excited state (n1) are

n1

n0
= 3e−TD/T , (5.41)

where the ratio of statistical weights is 3 andTD = hν10/kB ≈ 130 K
is the equivalent temperatures for photons emitted in transitions from the
first excited state to the ground state. (We will take a two-level system for
simplicity, assuming that the gas has already cooled toT ∼ TD so that
higher levels are rare.)

The radiative cooling rate of gas at constant density is

hν10(n0B01Iν10
− n1A10 − n1B10Iν10

) =
3

2
nkB

dT

dt
. (5.42)
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HereB01 andB10 are the Einstein coefficients for stimulated emission and
absorption, respectively.n is the total number density of particles: this is
related to the density of HD moleculesnHD = n0 + n1 byXHD = nHD/n.
Finally, Iν10

is the CMB intensity at the frequency of the HDJ = 1 → 0
transition,

Iν10
≈ 2hν3

10

c2
e−TD/TCMB =

A10

B10
e−TD/TCMB , (5.43)

where we have used the fact thatTD ≫ TCMB. In that case the stimulated
emission term can also be neglected, so equation (5.42) may be written

dT

dt
≈ 2TDA10XHD(e−TD/TCMB − e−TD/T ). (5.44)

If we assume thatXHD remains constant, we can integrate this equation to
find that the time to cool fromT ∼ TD to T = TCMB is57

tHD,cool ∼ 1/(XHDA10), (5.45)

at z ∼ 10–30. Equating this to the Hubble time, we can determine the
critical HD abundance for cooling as

XHD,crit ∼ 4 × 10−9

(

1 + z

30

)3/2

. (5.46)

Figure 5.12 (and similar calculations for other scenarios)show that, when
cooling from high temperatures, the gas forms far more HD than this critical
value, implying very efficient HD cooling. On the other hand,the abundance
of HD in the “normal” Population III.1 scenario is well belowthis critical
value – because D+ is so rare in cold gas – so it is not an important coolant
for that star formation channel.

5.3.3 The Population III.2 IMF

The previous section showed that the characteristic temperature of star-
forming gas in this channel is much smaller than for Population III.1 stars,
with T ∼ TCMB. Such effective cooling will lead to Bonnor-Ebert masses
of ∼ 10–50 M⊙, depending on the physics of cooling (see§5.2.4). This
likely limits the masses of these Population III.2 stars to be just a few tens
of solar masses, considerably below the upper limits on Population III.1.

Numerical simulations58 show that a small protostar (withm⋆ < 0.5M⊙)
forms in the Population III.2 case, just as in the case without deuterium,
and subsequent stages proceed similarly to that case as well. However, in
the colder gas, fragmentation into smaller mass protostarsis much more
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likely, and the protostars are very unlikely to grow to the∼ 100 M⊙ scales
necessary to make radiative feedback relevant. Thus it appears plausible
that the Population III.2 IMF is skewed toward high-mass stars, but stars
that still lie within the mass range observed in the nearby Universe.

This second-generation process may therefore produce a much different
IMF than the first generation. However, we have seen that turbulence, chem-
ical processes, and gravitational instability may cause even Population III.1
protostellar systems to fragment into clumps of comparablesizes. It remains
to be seen how different these two formation channels reallyare.

5.4 PROPERTIES OF THE FIRST STARS

We have so far examined the formation mechanisms of primordial stars; we
now move on to discuss the stars themselves, and especially their radiative
outputs and observable characteristics. Note that once themass of a zero
metallicity star is set through its formation mechanism, its properties are
independent of that mechanism. Thus, we will refer to Population III stars
without specifying their subgroup (III.1 or III.2) in this section.

If fragmentation is inefficient, Population III stars appear to grow or-
ders of magnitude more massive than the Sun, probably ceasing accretion
only when radiative feedback becomes important (§5.2.2). Primordial stars
with m⋆ > 100M⊙ have an effective surface temperatureTeff approaching
∼ 105 K, with only a weak dependence on their mass.59 This temperature
is ∼ 17 times higher than the surface temperature of the Sun,∼ 5800 K.
These massive stars are held against their self-gravity by radiation pressure,
which maintains their radiation field at the Eddington luminosity (see equa-
tion 5.27 above, and the discussion in§7.4) which is strictly proportional to
their massm⋆,

LE = 1.3 × 1040

(

m⋆

100M⊙

)

erg s−1, (5.47)

and is 6–7 orders of magnitude more luminous than the Sun,L⊙ = 4 ×
1033 erg s−1. Because of these characteristics, the total luminosity and color
of a cluster of such stars simply depends on itstotal mass and not on the
mass distribution of stars within it.

The radii of these starsR⋆ can be estimated by equating their luminos-
ity to the emergent blackbody fluxσSBT

4
eff times their surface area4πR2

⋆

(whereσSB is the Stefan-Boltzmann constant). This gives

R⋆ =

(

LE

4πσSBT 4
eff

)1/2

≈ 4.3 × 1011 cm ×
(

m⋆

100M⊙

)1/2

, (5.48)
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which is only∼ 6 times larger than the radius of the Sun,R⊙ = 7×1010 cm.
The high surface temperature of the first stars makes them ideal facto-

ries of ionizing photons: liberating the electron from hydrogen requires an
energy of 13.6 eV, while helium requires 24.4 eV for the first electron and
54.6 eV for the second. These are coincidentally near the characteristic en-
ergy of a photon emitted by these very massive Population IIIstars but far
above the characteristic energy of the Sun.

If indeed they were this massive, the first stars had lifetimes of a few
million years, independent of their mass, becauseL ∝ m⋆. During its
lifetime, a very massive Population III star would have produced∼ 105 ion-
izing photons per proton incorporated in it; the precise efficiency depends
on mass and the model parameters of the star, but only to within a factor of
∼ 2 in them⋆ = 102–103 M⊙ range. This means that only a tiny fraction
(> 10−5) of all the hydrogen in the Universe needs to be assembled into
Population III stars in order for there to be sufficient photons to ionize the
rest of the cosmic gas, a fact which may be important during the reionization
process (see chapter 9). For comparison, Population II stars with a standard
Salpeter IMF (equation 5.37) produce on average∼ 4, 000 ionizing photons
per proton in them.60

If fragmentation is permitted, the masses may be considerably smaller
∼ 10–50M⊙, much larger than the characteristic mass today but still within
the range of “normal” stars. In this case, the Population IIIstars will not be
qualitatively different from their present-day analogs, although there are of
course some differences in detail.

Evolutionary models of Population III stars are fairly well-specified, with
the primary uncertainty at the high-mass end being the degree of mass
loss during stellar evolution. Figure 5.13 show some example calculations.
The solid lines show main-sequence evolutionary tracks forzero metal-
licity stars without mass loss, while the short-dashed lines assume strong
mass loss. Similar evolutionary tracks are shown for low-metallicity stars
(Z = 0.02 Z⊙) with the dotted lines, and the zero-age main sequence
for solar-metallicity stars is shown with the vertical solid line. Primordial
stars tend to be hotter (or bluer) than their enriched counterparts (as well
as slightly smaller). There are two reasons for this. First,the CNO cycle
is inefficient (only able to use the small amount of carbon built up during
the pre-main sequence phase). They thus have very hot cores.The lack of
heavy elements also reduces the opacity of the outer layers.Together these
factors imply hotter stellar surfaces.

For this reason, even lower mass Population III stars are therefore some-
what more efficient at producing ionizing photons than Population II (or
I) stars, but the difference is one of quantity rather than quality, emitting
∼ 50% more ionizing photons per unit mass. The overall efficiency of pro-
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Figure 5.13 Main sequence evolutionary tracks for Population III stars (solid lines: without
mass loss; short-dashed lines: with strong mass loss) andZ = 0.02 Z⊙ stars
(dotted lines). Isochrones at 2 and 4 Myr for theZ = 0 stars are also shown with
the long-dashed lines. The zero-age main sequence for solar-metallicity stars is
shown by the vertical solid line; note that Popuation III stars are significantly
hotter (bluer) than their higher-metallicity counterparts. Figure credit: Schaerer,
D., Astron. & Astrophys., 382, 28 (2002).
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Figure 5.14 Comparison of the observed flux per unit frequency from a cluster of Population
III stars at a redshiftzs = 10 for a Salpeter IMF (dotted line) and an IMF
composed purely of very massive stars (solid line). The flux in units of nJy per
106M⊙ of stars is plotted as a function of observed wavelength inµm. The
cutoff below an observed wavelength of1216 Å (1 + zs) = 1.34 µm is due to
hydrogen Lyman-α absorption in the IGM (the so-called Gunn-Peterson effect;
see§4.3). Figure credit: Bromm, V. Kudritzki, R. P. & Loeb, A.Astrophys. J.
552, 464 (2001); Salpeter curve from Tumlinson, J., & Shull, M. J. Astrophys.
J.528, L65 (2000). Reproduced with permission of the American Astronomical
Society.

ducing ionizing photons will therefore depend extremely sensitively on the
IMF: only if very massive stars are indeed able to form will Population III
stars be orders of magnitude more efficient than later generations of stars.
Figure 5.14 illustrates this very important point: it showsthe observed spec-
trum of two Population III star clusters, one with purely very massive stars
(solid line; in this case the spectrum is mostly independentof the mass distri-
bution of the stars) and a standard Salpeter IMF (dotted line). For the same
total stellar mass, the observable flux is larger by an order of magnitude for
stars biased toward having masses> 100M⊙.

5.4.1 Emission Lines: Signatures of Primordial Stars

The hotter temperatures and increased ionizing efficiencies of massive Pop-
ulation III stars imply that galaxies in which massive starsare prevalent will
have some interesting observational signatures. As the high-energy pho-
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tons escape into the interstellar media of their host galaxies, many of those
photons will encounter neutral hydrogen or helium and be absorbed. The
ionized gas will then recombine, emitting one or more line photons as the
atom returns to the ground state. The relative numbers of these line pho-
tons depend on the incident spectra and so can be used as diagnostics of the
stellar IMF.

Let us defineQ̇i,⋆ as the rate at which a star of massm⋆ produces pho-
tons capable of ionizing a speciesi. Because line emission is the result of
absorbing these photons, we have for a linem

Lm = fmhνm(1 − fesc)Q̇i,⋆, (5.49)

wherefesc is the fraction of photons that escape the galaxy without ab-
sorption, the choice of speciesi depends on the transitionm, hνm is the
energy of a photon emitted in transitionm, andfm describes how likely a
recombination of the appropriate species is to produce a photon in this line.iv

Because these last two factors depend only on atomic physics, the ratios of
different lines provide the ratios of ionizing photons and hence a measure of
the spectral hardness of the local stellar population, albeit modulated by the
factor(1 − fesc), which could in principle also depend on frequency.

In fact, if all of these ionizing photons are absorbed withinthe host galaxy,
the hot, dense nebulae create substantial continuum emission as well, through
free-free emission from the hot electrons, free-bound emission (by H I, He I,
and He II) from the recombinations themselves, and the two-photon contin-
uum of H I (generated when atoms recombine through the 2s level, which
is metastable but eventually decays to the ground state by emitting two pho-
tons; see§12.2.2 for more on this process). This redistributes a largefrac-
tion of the energy contained in ionizing photons to lower frequencies and
can substantially boost the brightness of the galaxies.

Figure 5.15 shows an example spectrum of a zero-age Population III star
cluster, in which the IMF contains high-mass stars but is notexclusively
made up of them. The solid curve shows the spectrum includingthe re-
processing from nebulae and recombination lines; the long-dashed curve
shows the stellar continua themselves. Because such a largefraction of the
energy is originally invested in ionizing photons, this reprocessing enhances
the rest-frame optical continuum by nearly an order of magnitude and cre-
ates very strong lines. Here H I lines are shown with solid lines, He I with
short-dashed lines, and He II with long-dashed lines.

The dotted curve shows the spectrum of a Population II cluster with
Z = 0.02 Z⊙ and a Salpeter IMF ranging from 1–150 M⊙ (normalized

ivThis expression assumes that recombinations instantaneously follow ionizations. At
the high densities characteristic of galaxies, this is a good approximation.
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Figure 5.15 Spectral energy distribution of a cluster of Population III stars with a Salpeter
IMF ranging from1–500 M⊙ (solid line), all of which have just entered the
main sequence. Nebular reprocessing and recombination line emission are in-
cluded assuming thatfesc = 0; emission lines are shown with solid, short-
dashed, and long-dashed lines for H I, He I, and He II, respectively. The pure
stellar continuum (neglecting nebular emission) is shown by the long-dashed
line. The contrasting case of a Population II cluster withZ = 0.02 Z⊙ and a
Salpeter IMF ranging from 1–150 M⊙ is shown by the dotted line. The vertical
dashed lines indicate the ionization potentials of H I, He I,and He II (from right
to left). Figure credit: Schaerer, D.,A & A, 382, 28 (2002).
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to the same total mass). The Population III case is somewhat brighter. More
striking is the presence of the He II recombination lines at 1640, 3203, and
4868 Å, which appear because the highest mass Population III stars are
extremely hot and so release a substantial fraction of theirenergy (up to
∼ 12%) above the He II ionization edge. In standard models, highermetal-
licity (or lower mass) stars produce almost no photons abovethis level, so
these recombination lines are very interesting signaturesof very massive
Population III stars. (However, note that these linesdo appear in some
special stellar populations like Wolf-Rayet stars, and in some star-forming
galaxies at lower redshifts.)

On the other hand, because the highest mass stars live for only a few
Myr, these He II recombination lines do not persist for long after an initial
burst of star formation. They are therefore notnecessarysignatures of zero-
metallicity stars, even if they are convenient markers.

5.5 THE END STATES OF POPULATION III STARS

The final result of the evolution of massive Population III stars is also im-
portant, both for observations and the future evolution of the host halos.
Several fates are possible, depending on the initial stellar mass.61 The states
themselves are easy to identify, but modeling supernovae issufficiently dif-
ficult that the dividing lines between the different scenarios are uncertain.
For example, rotation or strong magnetic fields can generally increase the
mass thresholds identified below, though the degree of increase is not well
quantified.

With these caveats in mind, the expected fates of PopulationIII stars, and
the rough divisions between them, are listed below and showngraphically
in Figure 5.16.

• For masses belowm⋆ < 8–10 M⊙, stars end their lives as white
dwarfs, just as present day low-mass stars do. These stars can pro-
duce light elements during their asymptotic giant branch phases, but
that occurs over much longer timescales than the< 1 Gyr Hubble
time atz > 6, so their fate is generally not considered important in
understanding the histories of early galaxies.

• For massesm⋆ ∼ 10–25M⊙, stars undergo Type II supernovae, leav-
ing a neutron star behind. Especially at low metallicities,where the
opacities are smaller, the hydrogen envelopes remain intact: these are
the “normal” supernovae that are thought primarily responsible for
the enrichment of very heavy elements in the nearby Universe.
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Figure 5.16 Likely fate of Population III stars based on their progenitor mass. Note that the
mass ranges are only estimates and depend upon both rotationand mass loss.
Many of these supernovae may have unique observational signatures as well,
such as gamma-ray bursts. See text for details.

• For massesm⋆ ∼ 25–40 M⊙, stars undergo relatively weak Type II
supernovae because much of the56Ni falls back onto the black hole
remnant. As a result, these supernovae are likely quite faint and leave
little iron behind.

• For massesm⋆ ∼ 40–100 M⊙, the stars collapse directly to a black
hole without producing a supernova (and hence without enriching
their surroundings), except through winds.

• For massesm⋆ ∼ 100–140 M⊙, the enormous core following he-
lium burning heats up rapidly, leading to the production of electron-
positron pairs as a result of collisions between atomic nuclei and en-
ergetic gamma-rays. This process reduces the thermal pressure inside
the star’s core, because some of that energy is lost in generating the
rest mass of the pairs. This instability creates violent mass-ejecting
pulsations, which can contain as much energy as a supernova (though
will be much fainter due to the lack of radioactive elements). The
entire hydrogen envelope of the star is likely ejected, relieving the in-
stability and allowing the remainder of stellar evolution to proceed as
for a lower-mass star, with the iron core eventually collapsing directly
to a black hole. These kinds of “explosions” would not significantly
enrich their galaxies because only the light envelopes are ejected.
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• For massesm⋆ ∼ 140–260 M⊙, stars are likely to explode aspair-
instability supernovae.62 A pair-instability supernova is triggered by
the same instability described above, when part of the core’s thermal
energy is invested in the rest mass of electron-positron pairs. The
pressure drop leads to a partial collapse and then greatly accelerated
burning in a runaway thermonuclear explosion, blowing the star up
without leaving a remnant behind. The kinetic energy released in
the explosion could reach∼ 1053 ergs, exceeding the kinetic energy
output of typical supernovae by two orders of magnitude. Although
the characteristics of these powerful explosions were predicted theo-
retically several decades ago, there has been no conclusiveevidence
for their existence so far. Because of their exceptional energy out-
puts, pair-instability supernovae would be prime targets for future sur-
veys of the first stars with the next generation of telescopes(§10.1.2).
Their unusual explosion mechanism also imprints distinct nucleosyn-
thetic signatures on pair instability supernovae. They produce a near
solar distribution of elements from oxygen to nickelexceptwith a
large deficit of nuclei with odd charges, because weak interactions
are unimportant throughout most of this mass range. They arealso
unable to make very heavy elements and eject no elements heavier
than zinc.

These pair instability supernovae also have very differentobserva-
tional properties than “normal” supernova, as shown in Figure 5.17.
The lines show three example light curves from modeling the explo-
sion and shock breakout, while the curves with symbols show ob-
served light curves of known supernovae. Pair instability events for
very massive stars occur over much longer timescales – of roughly
a year – and are exceptionally luminous compared to more normal
events. These long timescales will be further exaggerated by cosmic
time dilation as the photons travel through the expanding universe,
making high-redshift events very intriguing from an observational
point of view. The variations amongst the pair instability models also
show that careful observations can help to constrain the progenitor
mass, structure, and even metallicity.

• For massesm⋆ > 260 M⊙, the helium cores instead collapse directly
to black holes; nuclear burning of heavier elements is simply unable to
halt the implosion triggered by exhaustion of more efficientfuel, and
the entire star is swallowed up in the black hole, though possibly with
a transient accretion disk and accompanying electromagnetic signa-
ture. Above this mass threshold, Population III stars therefore donot
enrich their surroundings.
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Figure 5.17 ExampleR-band light curves of three representative pair instability supernovae
(curves without symbols). The solid and dot-dashed curves show the explosions
of blue and red supergiants withm⋆ = 250 M⊙, respectively. The dashed
curve shows the explosion of a bare helium core withm⋆ = 130 M⊙ (this star
is assumed to have lost its envelope through a wind and so is still subject to the
instability. For comparison, the curves with symbols show three light curves of
real supernovae. These are a normal Type Ia event (triangles), a normal Type IIP
event (squares), and the overluminous core-collapse eventSN 2006gy (circles).
Figure credit: Kasen, D., Woosley, S. E., & Heger, A.Astrophys. J.734, 102
(2011). Reproduced with permission of the American Astronomical Society.
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5.6 GAMMA-RAY BURSTS: THE BRIGHTEST EXPLOSIONS

Gamma-ray bursts (GRBs) were discovered in the late 1960s bythe Ameri-
canVelasatellites, built to search for flashes of high energy photons (“gamma
rays”) from Soviet nuclear weapon tests in space. The UnitedStates sus-
pected that the Soviets might attempt to conduct secret nuclear tests after
signing the Nuclear Test Ban Treaty in 1963. On July 2, 1967, the Vela 4
and Vela 3 satellites detected a flash of gamma radiation unlike any known
nuclear weapons signature. Uncertain of its meaning but notconsidering the
matter particularly urgent, the team at the Los Alamos Laboratory, led by
Ray Klebesadel, filed the data away for future investigation. As additional
Vela satellites were launched with better instruments, theLos Alamos team
continued to find unexplained GRBs in their data. By analyzing the differ-
ent arrival times of the bursts as detected by different satellites, the team was
able to estimate the sky positions of 16 bursts and definitively rule out either
a terrestrial or solar origin. The discovery was declassified and published
in 197363 under the title “Observations of Gamma-Ray Bursts of Cosmic
Origin.”

The distance scale and nature of GRBs remained mysterious for more
than two decades. Initially, astronomers favored a local origin for the bursts,
associating them with sources within the Milky Way. In 1991,theCompton
Gamma Ray Observatorysatellite was launched, and its “Burst and Tran-
sient Source Explorer” instrument started to discover a GRBevery day
or two, increasing the total number of known GRBs to a few thousand.
The larger statistical sample of GRBs made it evident that their distribu-
tion on the sky is isotropic. Such a distribution would be most natural if
the bursts originate at cosmological distances since the Universe is the only
system which is truly isotropic around us. Nevertheless, the local origin re-
mained more popular within the GRB community for six years, until Febru-
ary 1997, when the Italian-Dutch satelliteBeppoSAXdetected a gamma-ray
burst (GRB 970228) and localized it to within a few arcminutes using its
X-ray camera. With this prompt localization, ground-basedtelescopes were
able to identify a fading counterpart in the optical band. Once the GRB after-
glow faded, deep imaging revealed a faint, distant host galaxy at the location
of the optical afterglow of the GRB. The association of a hostgalaxy at a
cosmological distance for this burst and many subsequent ones revised the
popular opinion in favor of associating GRBs with cosmological distances.
This shift in popular view provides testimony to how a psychological bias
in the scientific community can be overturned by hard scientific evidence.

A GRB afterglow is initially brightest at short photon wavelengths and
then fades away at longer wavelengths, starting in the X-rayband (over
timescales of minutes to hours), shifting to the UV and optical band (over
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days), and ending in the infrared and radio (over weeks and months).v Among
the first detected afterglows, observers noticed that as theafterglow lightcurve
faded, long-duration GRBs showed evidence for a supernova flare, indicat-
ing that they are also associated with core-collapse supernova events. The
associated supernovae were classified as related to massivestars which have
lost their hydrogen envelope in a wind. In addition, long-duration GRBs
were found to be associated with star-forming regions wheremassive stars
are born and explode only a million years afterwards.

These clues indicated that long-duration GRBs are most likely associated
with massive stars. The most popular model for long-duration GRBs be-
came known as thecollapsarmodel.64 (see Figure 5.18). According to this
model, the progenitor of the GRB is a massive star whose core eventually
consumes its nuclear fuel, loses pressure support, and collapses. If the core
of the star is too massive to make a neutron star, it collapsesto a black hole.
As material is spiraling into the black hole, two jets are produced at a speed
close to that of light. So far, there is nothing spectacular about this setting,
since we see scaled-up versions of such jets being formed around massive
black holes in the centers of galaxies, as shown in Figure 7.3. However,
when jets are generated in the core of a star, they make their way out by
drilling a hole in the surrounding dense envelope. As soon asthe head of a
jet exits, the highly collimated stream of radiation emanating from it would
appear as a gamma-ray flash to an observer who happens to line up with
the jet axis. The subsequent afterglow results from the interaction between
the jet and the ambient gas in the vicinity of the progenitor star. As the jet
slows down by pushing against the ambient medium, the non-thermal radi-
ation from accelerated relativistic electrons in the shockwave in front of it
gets shifted to longer wavelengths and fainter luminosities. Also, as the jet
makes its way out of the star, its piston effect deposits energy in the stellar
envelope and explodes the star, supplementing the GRB with asupernova-
like explosion.

Because of their immense luminosities, GRBs can be observedout to the
edge of the Universe. These bright signals may be thought of as the cosmic
fireworks signaling the birth of black holes at the end of the life of their
parent massive stars. If the first stars produced GRBs (as their descendants
do in the more recent Universe), then they would be detectable out to their
highest redshifts. Their powerful beacons of light can be used to illuminate
the dark ages and probe the cosmic gas around the time when it condensed
to make the first galaxies. As this book was written, a gamma-ray burst was

vFor an extreme example of a GRB afterglow from a redshiftz = 0.94 that was bright
enough to be seen with the naked eye, see Bloom, J., et al.Astrophys. J.691, 723 (2009).
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Figure 5.18 Illustration of a long-duration gamma-ray burst in the popular “collapsar”
model (seeColor Plate 7for a color version of this figure). The collapse of
the core of a massive star (which lost its hydrogen envelope)to a black hole
generates two opposite jets moving out at a speed close to thespeed of light.
The jets drill a hole in the star and shine brightly towards anobserver who hap-
pens to be located within the collimation cones of the jets. The jets emanating
from a single massive star are so bright that they can be seen across the Universe
out to the epoch when the first stars formed. Figure credit: NASA E/PO.

discovered by theSwift satellitevi at z ∼ 9.4, representing the most distant
source known, originating at the time when the Universe was only ∼ 0.5
billion years old.65

It is unknown whether Population-III stars produce long-duration GRBs.
For that to happen, the angular momentum of the collapsing core massMc

needs to be larger than∼ 10GM2
c /c so that a stable disk would form outside

the resulting black hole and collimate the jets. The rotation of the pre-GRB
progenitor can be affected by mass exchange with a binary companion or
mass loss through a wind. If the final mass of the black hole from a Popu-
lation III progenitor is larger than usual, then the duration and total energy
output of the associated GRB is expected to increase (∝ m⋆) relative to low
redshift GRBs. For additional details about observing GRBs, see§10.2.4.

vihttp://swift.gsfc.nasa.gov/



Chapter Six

Stellar Feedback and Galaxy Formation

Chapter 5 described star formation in gas with a primordial composition,
assuming that the star-forming region is completely isolated from its sur-
roundings. However, as also discussed in the introduction to that chapter,
such isolation cannot last long: those very same stars generate radiation
fields that travel vast distances through the IGM. These photons can ionize
the surrounding gas, drive winds or shocks through it, heat it, or photodisso-
ciate the H2 or HD that is crucial for subsequent star formation. Moreover,
supernovae or winds produced by these stars can also enrich the ambient
gas with heavy elements. The second generation of stars thatform in any
given region will therefore be influenced by their predecessors, and we must
consider this influence. In this section, we will study radiative, mechanical,
and chemical feedback in the earliest gaseous clouds. Whilethe feedback
effects are sufficiently complex that a complete description of them is well
beyond the capabilities of present-day computer simulations, the general
principles that underly them are well-known. We will therefore focus on
these principles, and then briefly sketch the global picturein §6.6.

Feedback is important in all galaxies, and many of the principles that we
will discuss in this chapter apply on a much wider scale than just the first
stars and galaxies. We will therefore present them in this larger context
when appropriate, and return to their implications in chapters 7 and 8.

6.1 THE ULTRAVIOLET BACKGROUND AND H 2 PHOTODISSOCIATION

In the previous chapter, we found that star formation in primordial gas de-
pends crucially on molecular hydrogen to cool the cloud to densities high
enough for stars to form. In this section we will consider what is likely to
be the first important feedback process to affect this picture: how radiation
from those very same stars can destroy that coolant and so make subsequent
star formation even harder.
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6.1.1 Lyman-Werner Photons and the Solomon Process

Molecular hydrogen (H2) is fragile and can easily be photodissociated by
photons with energies of11.5–13.6 eV, to which the IGM is transparent
even before it is ionized. The photodissociation occurs notthrough a single
excitation step, as in the ionization of atoms, but instead through a two-
step process, first suggested by Phil Solomon in 1965.66 In practice, this
Solomon process is the only way to photodissociate H2 in interstellar (or
intergalactic) space, because the photodissociation continuum of H2 begins
at 14.7 eV, while the photoionization continuum begins at 15.4 eV.i Both of
these lie above the photoionization threshold of H I, so suchphotons would
be absorbed by H I long before they encountered H2.

The quantum mechanical configuration of the electronic ground state of
H2 is denotedX1Σ+

g . Uppercase Greek letters denote the total electronic
angular momentum of the system, projected onto the internuclear axis, with
Σ, Π, and∆ having values of 0, 1, and 2 in units ofh̄. The left superscript
(1 for the ground state) is2S + 1, whereS = 0 or 1 is the total spin angular
momentum. The right subscript (g or u) and superscript (+ or −, applica-
ble only toΣ states) describe the symmetries of the configuration; this one
asymptotes to two atoms with their electrons in the1s state at large sepa-
rations. The leftmost Roman letter describes the electronic states, withX
being the lowest level, and the relevant upper states for ourpurposes labeled
B andC (capitalized letters refer to singlets). Each of these electronic states
is further split into a large number of sublevels by the quantized rotational
and vibrational levels of the two nuclei, usually denoted byN andv. For
example, the ground state has 14 vibrational levels, each nominally with
an infinite number of rotational levels. Figure 6.1 shows a simplified level
diagram for H2, with these various splittings labeled.

The next two singlet states areB1Σ+
g andC1Πu, which asymptote to two

atoms with their electrons in the1s and2s or 2p states, respectively. These
can decay to the ground state via permitted electric dipole transitions, the
analog of the H I Lyman-α transition. However, for these molecules there
are a large number of sub-transitions owing to the rotational and vibrational
splittings. Thus, H2 has twobandsrepresenting these transitions. The first
band between the ground state andB1Σ+

g is known as theLymanband and
consists of many densely packed lines beginning at 1108Å (11.26 eV). The
second band between the ground state andC1Πu is known as theWerner
band and begins at 1040̊A (12.3 eV).

iThese are far above the dissociation energy of H2 (4.48 eV) because the direct transition
is forbidden.
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Figure 6.1 Energy level diagram for H2. The left side of the diagram shows the energy
level notation (such asX1Σ+

g ), with the leftmost column showing the atomic
hydrogen levels to which these molecular levels correspondat large separations.
Each of these electronic levels splits into vibrational levels (shown in the third
column), with a (dissociated) vibrational continuum abovethem. The electronic
ground state contains 14 such levels. Each of these vibrational levels then splits
into rotational levels, shown in the rightmost column. The Lyman (Werner) band
corresponds to transitions from the first (second) excited state to the ground
state; they are bands because of the many vibrational and rotational sublevels.
Photodissociation occurs if one of these transitions leaves the molecule in the
vibrational continuum.
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Now consider the following sequence:

H2(X
1Σ+

g , v = 0)+γ → H2(B
1Σ+

g , v = v′) → H2(X, v = v′′)+γ (6.1)

Here v labels the initial vibrational energy level. Crucially, inelectronic
transitions there are no sharp selection rules for the vibrational continuum.
Thus, the excited state’s vibrational quantum numberv′ is not restricted
to be small, and nor is the final valuev′′. It is therefore possible for the
final state to lie in the vibrational continuum of the molecule (v′′ > 14): in
other words, to dissociate the molecule. A similar process also occurs for
excitations and decays through the Werner band, as shown in Figure 6.1.

The rate at which these two steps occur depends on the cross-section
for absorbing Lyman-Werner photons (for which the oscillator strengths are
typically ∼ 1%) and the probability of decay into the dissociated continuum
(typically ∼ 15%). The small vertical lines in Figure 6.2 show the energies
of some of these transitions, where the initial configuration hasv = 0 and
J = 0, 1; the height of each line is0.01 × fosc. Theaveragecross-section
for this process between 11.26 eV and 13.6 eV (averaged over 76 allowed
lines) isσLW = 3.71 × 10−18 cm2.

6.1.2 The Suppression of H2 Cooling

Once Lyman-Werner photons appear, we must include this photodissocia-
tion process in the chemistry of the primordial clouds.67 The rate coefficient
for photodissociation is

kdiss = 1.38 × 109JLW s−1, (6.2)

whereJLW is the specific intensity (in units ergs s−1 cm−2 Hz−1 sr−1) in the
Lyman-Werner band (specifically, here we have takenhν = 12.87 eV for
concreteness, in the middle of the relevant energy range). It is convenient
to normalizeJLW = 10−21 × JLW,21. The timescale for dissociation is
therefore

tdiss = k−1
diss ≈ 3 × 104J−1

LW,21 yr, (6.3)

which is very short compared to the relevant cosmological timescales. Thus,
if the Lyman-Werner background approaches this fiducial value, we would
expect it to destroy all of the molecular hydrogen inside star-forming clouds.

In that case, if the radiation background and local gas properties remain
constant on longer timescales, the H2 fraction will approach an equilibrium
where the formation rate (approximately proportional tok̃ in equation 5.6)
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Figure 6.2 The “sawtooth” modulation of a uniform, spectrally flat radiation background in
the Lyman-Werner frequency band when the IGM is still predominantly neutral
(seeColor Plate 8for a color version of this figure). The three curves are for
z = 19.2, 15.7, and 9.2, from top to bottom; the horizontal lines show the
unattenuated spectrum, while the curves with features showthe effect of Lyman-
series absorption. The vertical lines at the bottom of the figure show some of the
Lyman-Werner transitions, with the height equal to 1% of theoscillator strength.
Figure credit: Ahn, K. et al.,Astrophys. J.695, 1430 (2009). Reproduced with
permission of the American Astronomical Society.
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balances the dissociation rate,

fH2,eq =
k̃

kdiss
xHIInH ∼ 4×10−8J−1

LW,21

(

xHII

2 × 10−4

)(

1 + z

20

)3( ∆

200

)

,

(6.4)
where we have takenT ∼ 1000 K and a typical electron fraction before any
cooling begins. This is far below the critical value required for H2 cool-
ing to be efficient (Eq. 5.12), soa substantial Lyman-Werner background
suppresses molecular hydrogen cooling inside collapsed objects.

The primary question is then whether a background of this amplitude can
reasonably penetrate the clouds in which primordial stars may form. In
the next section we will examine whether a sufficiently strong background
can be produced by the integrated stellar population, but before doing so
we note that any such metagalactic radiation field must penetrate to the re-
gions in which H2 actually forms – that is, to the centers of virialized halos.
Once H2 cooling becomes important, these halos host large masses ofthe
gas, and the outer layers of each halo can thenself-shieldthe inner layers
in which cooling actually occurs. If these outer layers are dense enough to
maintain an equilibrium H2 population that is optically thick in the Lyman-
Werner bands, this self-shielding is significant. A convenient numerical ap-
proximation for the effects of self-shielding in astatic medium is to take
kdiss → fshkdiss, with68

fsh = min

[

1,

(

NH2

1014 cm−2

)−0.75
]

, (6.5)

whereNH2
is the column density of molecular hydrogen. The dependence

at high column densities is steeper than expected from a naive curve-of-
growth analysis (see§4.3.3 for a related discussion about H I Lyman-α)
because of overlap within the various Lyman-Werner lines. (This estimate
is not accurate at very high column densities, but those are rarely important
in this context.)

Note, however, that self-shielding is more complex if the medium has
velocity gradients, because then the lines are shifted by different amounts
relative to their rest wavelengths in different parts of thecloud. This can
considerably reduce the effectiveness of self-shielding and is a critical ques-
tion in evaluating the importance of a Lyman-Werner background. In partic-
ular, virialized halos are continuosly accreting gas whichfalls toward their
center. The resulting velocity gradient helps keep the star-forming clouds at
the centers of halos more optically thin than one would naively expect.
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6.1.3 Photodissociation Feedback Inside Star-Forming Halos

It is conceptually convenient to divide the Lyman-Werner photodissociat-
ing background into two simple cases: one in which light froma given
star inside a collapsed halo acts upon gas inside the same halo, and a sec-
ond in which a metagalactic radiation background affects halos from their
exteriors. We will first consider the internal feedback case. We certainly
expect that, within some zone around an individual star, theLyman-Werner
background will dissociate enough H2 to render further cooling inefficient,
choking off later star formation. The critical question is the size of this zone
compared to the halo.

We suppose that a star sits at the center of such a halo. To gauge the
cumulative amount of H2 destroyed around the star, we must compare the
timescale for a star to photodissociate the halo’s H2 to its main-sequence
lifetime. Very massive Population III stars produceNLW ≈ 3400 photons
in the 11.2–13.6 eV range per baryon inside them; smaller stars produce
them at about double that rate. If we assume that a fractionfLW,abs ∼ 0.01
of these photons are absorbed by the Lyman-Werner bands (a reasonable
approximation for the relevant column densities and expected line widths),
and that aboutfLW,diss ∼ 0.15 of these absorptions lead to dissociations (see
§6.1.1), the total number of dissociations from a star (or setof stars) with
massm⋆ is ∼ fLW,absfLW,dissNLWm⋆/mp. Comparing this to the total
number of H2 molecules in a halo,∼ fH2

Mg/mp (whereMg is the total gas
mass), we find that the fraction of molecules expected to be photodissociated
is

fdestroy ∼ 104

(

fLW,abs

0.01

)(

fLW,diss

0.15

)(

NLW

3400

)(

fH2,s

3.5 × 10−4

)−1(m⋆

Mg

)

.

(6.6)
Thus, provided that the star formation efficiency is not extremely small, the
first generation of stars can easily photodissociate all of their halo’s diffuse
H2, shutting down further cooling at least temporarily.

However, gas clumps already in the process of collapse may bedense
enough to maintain their H2 populations in the presence of this radiation
background. The relevant question for clumps is whether theradiation field
can dissociate the H2 both before collapse completes (over∼ tdyn) and
faster than the clump can form H2 to replace it (equation 6.4). Analytic esti-
mates show that clumps that have already passed the “loitering stage” (with
nH > 104 cm−3) are suppressed only very close to the source star.69 Thus,
the total rate of star formation within halos may depend on the degree to
which clumps are synchronized across the entire halo: thosecollapsing at
nearly the same time will be unaffected by the Lyman-Werner background,
but the collapse of those that are delayed may be halted completely. In par-
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ticular, gas clumps fragmenting from the same disk are very unlikely to be
affected by each other’s Lyman-Werner photons, because they are synchro-
nized.

6.1.4 The Metagalactic Lyman-Werner Background

Because the IGM is mostly optically thin to photons in the Lyman-Werner
bands (and the small amount of intergalactic H2 is quickly dissociated as
the first sources appear), a metagalactic radiation field will quickly build up
in this energy range. If the background is intense enough, the rate at which
H2 is destroyed inside collapsed objects will exceed the rate at which such
molecules form, preventing cooling in newly forming halos –and causing a
strongnegativefeedback effect on star formation.

The magnitude of this feedback will depend upon how these Lyman-
Werner photons propagate through the IGM. In fact, the IGM isnot perfectly
optically thin to them, as absorption by the H I Lyman-serieslines processes
the background below the Lyman limit, causing the sawtooth shape shown
in Figure 6.2. For any photon energy above Lyman-α at a particular red-
shift, there is a limited redshift interval beyond which no contribution from
sources is possible because the corresponding photons are absorbed by one
of the (extremely optically thick) Lyman-series resonances along the way.ii

Consider, for example, an energy of 11 eV at an observed redshift z = 10.
Photons emitted just below the 12.1 eV Lyman-β line from z = 11.1 would
be received at 11 eV atz = 10. Thus, sources in the redshift interval 10–
11.1 could be seen at 11 eV, but radiation emitted by sources at z > 11.1
would have passed through the 12.1 eV Lyman-β energy at some interme-
diate redshift, and would have been absorbed.

It follows that an observer viewing the universe at any photon energy
above Lyman-α would see sources only out to some horizon, and the size of
that horizon would depend on the photon energy. The number ofcontribut-
ing sources, and hence the total background flux at each photon energy,
would depend on how far this energy is above the nearest Lymanresonance:
photons with energies just below a Lyman resonance will be contributed by
only a small number of sources, while those just above one of these ener-
gies will be sourced out to relatively large distances. Mostof the photons
absorbed along the way would be re-emitted either at Lyman-α or in the
2p → 1s two-photon continuum and then redshift to lower energies. The
result is a sawtooth spectrum for the UV background before reionization,
with an enhancement below the Lyman-α energy due to reprocessing.

ii The Lyman-α optical depth is given in equation (4.11), and higher Lyman-series tran-
sitions fall proportionally to the ratios of the oscillatorstrength times frequency.
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Quantitatively, the specific intensity at a frequencyν and redshiftz is (see
equation 4.43)

Jν(z) =
c

4π

∫

dz′
dt

dz′

(

1 + z

1 + z′

)3

ǫν′(z′)e−τ(z), (6.7)

whereǫν′(z′) is the proper emissivity from sources at a redshiftz′ and a fre-
quencyν ′ = ν(1+z′)/(1+z) and the factorτ(z) is the accumulated optical
depth as the photon travels through the IGM. This is negligible so long as
the photon stays between the Lyman-series lines, but it becomes very large
whenever the photon crosses such a line. An excellent approach is there-
fore to use a “screening approximation” in which the integral is truncated at
a maximum redshift determined by the nearest Lyman linei (of frequency
νi > ν) via

1 + zmax

1 + z
=
νi

ν
, (6.8)

while the optical depth factor can otherwise be ignored.
Figure 6.2 shows this modulation in detail for a set of uniform emissivity

sources with flat spectra at three different final redshifts (the normalizations
are arbitrary; the horizontal lines show the spectra beforeattenuation by
the Lyman-series). As the frequency increases and the spacing between
the Lyman-series lines decreases, the absorbing screens get closer together
and the total background decreases. Thus, the uppermost Lyman-Werner
transitions experience a weaker background.

Unfortunately, the direct detection of the redshifted sawtooth spectrum as
a remnant of the reionization epoch is not feasible due to themuch higher
flux contributed by foreground sources at later cosmic times. However, a
similar process does occur before He II is completely reionized atz < 3,
with the Lyman-series transitions of He II creating a sawtooth spectrum
in the far-ultraviolet. This may be indirectly detectable through its effects
on metal-line absorbers, some of whose ionization potentials lay inside the
sawtooth region of the spectrum. This is barely visible in the higher-redshift
panels of Figure 4.13.

Estimating the spectrum in more detail, and as a function of redshift,
requires a model for the emissivityǫν(z). Clearly that will depend on the
galaxy formation processes that we will examine over the next several chap-
ters, but for a very simple estimate we can assume that the star formation
efficiencyf⋆ within halos is zero below a minimum halo massMmin and
constant above that mass (which could be set either by accretion – the filter
mass – or efficient cooling to form stars). Then we can write

ǫν(z) =
1

4π
f⋆
dfcoll

dt

ρ̄b

mp
ǫLW(ν), (6.9)
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where the first factor converts from total emissivity to emissivity per solid
angle and the last factor is the energy produced by the stars per frequency
per baryon in the Lyman-Werner region. Approximating the latter byǫLW ≈
hνLWNLW/∆νLW, equation (6.7) gives

Jν,21 ∼ 2.4

(

NLW

3400

)(

f⋆

0.1

)(

∆fcoll

0.01

)(

1 + z

10

)3

, (6.10)

where∆fcoll is the fraction of gas that collapses onto star-forming halos
over the redshift range(z, zmax). Radiation backgrounds of this magnitude
are easily large enough to strongly suppress H2 cooling in just-virialized gas
(see equation 6.4).

Figure 6.3 shows a more careful calculation of the background spectrum
amplitude, though still in the context of a model with the star formation
rate proportional todfcoll/dt and f⋆ = 0.1. Here we show theaverage
amplitude over the entire Lyman-Werner frequency interval– the sawtooth
absorption typically reduces this from the emitted amplitude by about an
order of magnitude. We show several different mass thresholds, increasing
from the filter mass (top curve) to masses near the atomic cooling threshold
(bottom curve). The amplitude increases rapidly with decreasing redshift
because these halos are initially on the exponential tail ofthe mass func-
tion; the turnover at lower redshifts is where the corresponding halos are
well below the cutoff in the mass function so that the growth slows down.
Equation (6.10) appears to provide a reasonable estimate ofJLW,21.

The choice off⋆ is highly uncertain in these models, so Figure 6.3 is only
a very rough guide to expectations. If the first cluster of Population III.1
stars shuts down further star formation in a halo, then one might expect only
a few hundred solar masses of stars to form inside each one. Inthat case,
f⋆ = m⋆,tot/Mg ∼ 0.003(m⋆,tot/500 M⊙)(Mh/10

6 M⊙)−1, whereMh is
the total halo mass. Fortunately, these curves are all strictly proportional to
the star formation efficiency, so their amplitude can easilybe rescaled.

This mean background is relatively easy to compute, but in reality the
clustered halos that source the background induce inhomogeneities in it.
Fortunately, at least in the standard structure formation model, these inho-
mogeneities are mild. Consider the lower edge of the Lyman-Werner band,
with 11.2 eV. Photons redshift into this band out to the Lyman-β transition
at 12.1 eV, which corresponds to a redshift of∆z ∼ 0.1(1 + z), or about
100 comoving Mpc. Each point therefore samples a huge volumeof sources
around it, which averages out the fluctuations (although themore closely-
spaced higher Lyman-series transitions weight the effective volume to more
nearby sources). The Lyman-Werner background will therefore be nearly
uniform except very close to individual sources or unless the halo popula-
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Figure 6.3 Evolution of the specific intensity of the metagalactic radiation field in the
Lyman-Werner band at high redshifts. The solid lines show the amplitude of the
radiation field over time, taking several different mass thresholds for star-forming
halos:Mmin = MF (z) (the filtering mass),106, 107, and108 M⊙, from top to
bottom. The curves assumef⋆ = 0.1; all of the curves are proportional to this
value.
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tion itself has fluctuations on∼ 100 Mpc scales,iii which may indeed be
possible due to a strong source bias and the velocity offset between dark
matter and baryonic material (see§2.1.2 and 3.2.2). In that case, the back-
ground may vary strongly, leading to substantial variations in the halos able
to cool and form stars efficiently across very large scales.

6.1.5 External Feedback on H2 Inside Virialized Halos

With a model for the Lyman-Werner background in hand, it is now straight-
forward to gauge the metagalactic background’s effects on H2 cooling inside
collapsing dark matter halos. As a simple estimate of the column density of
a virialized halo, we assume a uniform density sphere at the typical virial
overdensity and with a radiusrvir. Then a halo of massMh has

NH2
∼ 1017

(

fH2

3.5 × 10−4

)(

Mh

106 M⊙

)1/3(1 + z

20

)2

cm−2, (6.11)

where we have inserted the saturation value for the H2 fraction from equa-
tion (5.10) as a fiducial estimate. In fact, simulations showthat the effective
column density is typically a few times smaller than this since much of the
gas in the outskirts of the halo remains optically thin, but they confirm that
it provides a reasonable estimate for a stationary halo in which velocity gra-
dients are insignificant (though that may not be a good approximation in
reality).

This column density is well above the self-shielding threshold in equa-
tion (6.5), implying that much of the halo will be shielded from the meta-
galactic background. Therefore, we write the effective background asfshJLW,21(z).
We can then insert this radiation field into equation (6.4) todetermine the H2
fraction in the presence of feedback. Finally, comparison of this fraction to
the critical value required for cooling,fH2,c in equation (5.12), determines
whether the halo is able to continue cooling and form stars.

Figure 6.4 provides a schematic illustration of these effects, based on
fits to numerical simulations (c.f. Figure 5.5). The solid line showsfH2,c,
the critical fraction required for efficient cooling. The dashed line (marked
a) showsfH2

in the absence of radiative feedback; this lies very near the
saturation levelfH2,s of equation (5.10). The thick dotted line (markedb)
showsfH2

if self-shielding is neglected andJLW,21 = 0.01. This markedly
reducesfH2

and quantitatively matches the estimates described in thissec-
tion. However, the dot-dashed line (markedc) shows the same, but with
self-shielding approximately included (and ignoring velocities). Halos near

iii We will explicitly compute fluctuations in the background atthe Lyman-α frequency
based a very similar calculation in§12.3.1.
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Figure 6.4 Schematic illustration of molecular hydrogen fraction as a function of virial tem-
perature for halos inside a cosmological simulation atz = 17. The solid line
showsfH2,c, the critical fraction required for efficient cooling. The dashed line
(markeda) showsfH2

∼ fH2,s in the absence of radiative feedback (see Fig-
ure 5.5). The thick (markedb) and thin dotted lines showfH2

if self-shielding is
neglected andJLW,21 = 0.01 or 0.1, respectively. The dot-dashed line (marked
c) shows the same, but with self-shielding approximately included. Figure credit:
Yoshida, N. et al.Astrophys. J.592, 645 (2003). Reproduced with permission of
the American Astronomical Society.
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the critical cooling threshold are already very optically thick, so in prac-
tice the radiation background has significantly less of an effect than naively
expected.

Nevertheless, the growing Lyman-Werner background will most likely
“self-regulate” the earliest stages of star formation. Within each star-forming
halo, the first few stars create a strong Lyman-Werner background and pre-
vent any protostars not already far along in their collapse from proceeding.
The same stars create a metagalactic background that reduces the efficiency
of cooling in other, newly forming gas clouds, raising the mass threshold for
star formation. But as the abundance and mass scale of dark matter halos in-
creases, the larger gas clouds more effectively self-shield their inner regions,
allowing the background to increase, which in turn raises the mass thresh-
old, and so on. Eventually the Lyman-Werner background willbecome so
intense that star formation is only possible through atomiccooling in halos
with Tvir ∼ 104 K, for which photodissociation is unimportant. However,
recall that these halos ionize their own gas at the virial shock and so likely
form stars through the Population III.2 (deuterium-mediated) channel de-
scribed in§5.3. This Lyman-Werner background may therefore regulate the
transition from very high mass primordial stars to the lowermass channel.

6.2 THE X-RAY BACKGROUND: POSITIVE FEEDBACK

The radiative feedback on H2 need not be entirely negative, however. In
the dense interiors of gas clouds, the formation rate of H2 could be acceler-
ated through the production of free electrons by X-rays.70 This effect could
counteract the destructive role of H2 photo-dissociation. Unlike UV pho-
tons, X-rays can penetrate huge distances across the Universe, even at high
redshifts. The comoving mean free path through the mean IGM density of
an X-ray photon with energyE is:

λX ≈ 11 x̄
1/3
HI

(

1 + z

10

)−2( E

300 eV

)3

comoving Mpc; (6.12)

thus, photons withE > 1.5[(1 + z)/15]1/2x̄
1/3
HI keV propagate an entire

Hubble length before interacting with the IGM. Similarly, they can penetrate
large columns of dense neutral gas inside of collapsed halos. Thus, an X-ray
background may be pervasive at high redshifts.

X-rays interact with primordial gas by ionizing either helium or hydro-
gen. The resulting free electron can gain a large kinetic energy (equal to the
difference between the photon energy and the ionization potential), which it
then deposits as a mixture of heat, collisional ionization,and collisional ex-
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citation. Typically, a fractionfi ∼ xHI/3 of the energy is deposited in ioniz-
ing other atoms. Thus, a 1 keV photon can result in∼ 25 free electrons (we
discuss this secondary ionization process further in§9.8.2). Because these
free electrons catalyze H2 formation, X-rays can exertpositivefeedback on
primordial star formation.

An X-ray background seems almost inevitable at high redshifts,71 with a
number of possible sources: (1) Very massive Population IIIstars are hot
enough for their blackbody spectra to extend into the soft X-ray regime. (2)
Quasars or “miniquasars” must begin to form at very high redshifts in order
to produce the extremely luminous quasars seen atz ∼ 6 and likely have
nonthermal spectra extending to very high energies. (3) Supernova blast-
waves may accelerate fast electrons, which can in turn scatter CMB photons
to X-ray energies. The associated cooling rate of relativistic electrons in-
creases dramatically with redshift since the CMB energy density scales as
uCMB ∝ (1+z)4. (4) X-ray binaries, in which a massive black hole accretes
gas from a companion, are often produced when a massive star explodes in
a binary system; if massive stars are more abundant at high redshifts, then
such binaries may be more common then. We will see later (§12.3.2) that
these contributions to the X-ray background significantly affect the IGM
temperature and ionization history, and they also present an important po-
tential positive feedback mechanism for the first stars.

Simple scaling laws suggest, however, that this positive feedback will
only overcome the negative Lyman-Werner feedback in unusual circum-
stances. Let us suppose that the electron fraction inside a cool cloud is
in ionization equilibrium with an X-ray background. We willassume that
the X-rays are sourced by the same population of galaxies as the ultraviolet
background (though the sources themselves may differ, suchas high mass
stars and the X-ray binaries they become after dying).

For an X-ray background amplitudeJX , ionization equilibrium implies
ne ∝ (JXnH)1/2, where we have ignored the temperature dependence of
the recombination coefficient. Equation (6.4) therefore yields (withxHIInH =
ne)

fH2,eq ∝ n
1/2
H J

1/2
X /JLW. (6.13)

In other words, the equilibrium molecular fraction dependsmore weakly on
the X-ray background than on the UV background. Assuming these are tied
to the same underlying physical processes (i.e., are both ultimately driven by
gas accretion onto halos and star or black hole formation), X-rays can only
make a substantial difference whenJLW is still relatively modest. (More-
over, they only matter at all if the equilibrium electron fraction is larger than
the value obtained from the usual chemistry described in§5.1.1.)
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More detailed investigations have shown that ifJX = ǫXJLW at the H I
ionization edge, X-rays exert mild positive feedback on dense gas clouds
when0.1 < ǫX < 1.72 At smaller fluxes, the X-rays are relatively unimpor-
tant. At larger fluxes, the heating generated by the X-rays counteracts the
additional cooling, negating the boost to the free electronfraction.iv

6.3 RADIATIVE FEEDBACK: MECHANICAL EFFECTS

As discussed in§5.2.2, radiative feedback from the first stars may be crucial
for choking off accretion and setting their final mass scale.But the high-
energy photons responsible for that process likely reach well outside the
accretion disk, into the source halo and the surrounding IGM, once the star
enters the main sequence. The same processes mentioned previously can
dramatically affect these larger scales and subsequent star formation in the
star’s environment, because the radiation can influence themotion of the
surrounding gas more than gravity does. In this section we will consider
some of the relevant processes in more detail.

6.3.1 The First H II Regions: Photoevaporation

The most dramatic effects result from the high luminosity ofionizing pho-
tons produced by the first stars. We discussed briefly in§5.2.2 how ion-
ization fronts can have powerful effects on gas dynamics, and these effects
extend far beyond the protostellar region once the star enters the main se-
quence. For example, consider an ionizing front expanding inside a gravitationally-
bound halo, where the baryon density declines with radius. For pedagogical
purposes, we adopt a simple density profile:

nH(r) =

{

nc r < rc,
nc(r/rc)

−w r ≥ rc,
(6.14)

wherew is a power-law index that encapsulates the steepness of the den-
sity run in the cloud’s outskirts andnc andrc are a core density and radius,
respectively. Numerical simulations show that primordialgas clouds have
w ∼ 2–2.2 (see also§5.2.1). The average density of virialized (uncooled)
gas inside dark matter halos at redshiftz is ∼ 1 cm−3[(1 + z)/30]3, inde-
pendent of halo mass.

The properties of the ionization front can be characterizedwith reference
to theStrömgren radiusRs, the outer boundary of the H II region around

ivA similar negative feedback effect functions even at lower X-ray fluxes in the diffuse
IGM, where X-ray heating creates an “entropy floor” that prevents gas from collapsing onto
virialized objects. We discuss this effect in detail in§9.9.
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the source out to which the total rate of recombinations are equal to the total
rate of ionizations (see also§9.1). For a star producing ionizing photons at
a rateQ̇i in a constant density medium, this radius is

Rs =

(

3Q̇i

4πn2αB

)1/3

≈ 150

(

Q̇i

1050 s−1

)1/3
( n

1 cm−3

)−2/3
pc, (6.15)

where we have evaluated the recombination coefficientαB = 2.6×10−13 cm−3 s−1

at∼ 104 K (see equation 4.17). If the H II region reaches this size (or, alter-
natively, if within a fixed radius the density exceeds an equivalent threshold
value), then the ionizing photons themselves are consumed within mostly-
ionized gas.

Before this time, the front was only slowed by the rate at which photons
can ionize the medium. During the early, fast expansion phase, we refer
to the ionization front asR-type(also see§5.2.2). However, once this ex-
pansion velocity slows down to near the sound speed, the gas will be able
to react to its new thermodynamic properties. The Strömgren radius pro-
vides a simple maximal estimate when this transition occurs, because at
that point the expansion will have nearly zero velocity. In more detail, the
ionization front slows to becomeD-typewhen its expansion speed falls to
roughly twice the isothermal sound speed of the ionized medium, 2ci. At
this point, the increased temperature (and hence pressure)within the front
drives a shock into the surrounding medium. The front then propagates out-
ward at roughly the speed of sound. The H II region can therefore only
expand through hydrodynamic processes and the ionization front is said to
be trapped.

In the density profile given by equation (6.14), some algebrashows that
the Strömgren radius isRw ≡ g(w)Rs, whereRs is evaluated with equa-
tion (6.15) using the core density and73

g(w) =















[

3−2w
3 + 2w

3

(

rc
Rs

)3
]1/(3−2w) (

Rs
rc

)2w/(3−2w)
, w 6= 3/2

(

rc
Rs

)

exp

{

1
3

[

(

Rs
rc

)3
− 1

]}

. w = 3/2.

(6.16)
The front’s speed will depend on how far it extends: it canaccelerateat
r > rc if the density profile is steep enough. In particular, ifw > 3/2,
the total recombination rate (∝ n2

H times the volume) does not appreciably
increase as the front’s radius grows, allowing the front itself to escape to
infinity. To see this, it is straightforward to estimate the velocity at which
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the ionization front expands before theRw limit is met:

Ui−f =
Uc

(Rs/rc)3 − 1
u(w), (6.17)

whereUc is the typical speed within the uniform-density core,

Uc ≈ 90
( nH

103 cm−3

)( rc
1017 cm

)

[

(

Rs

rc

)3

− 1

]

km s−1, (6.18)

and

u(w) =















(

rc
R

)2−w
[

(

Rs
rc

)3
+ 2w

3−2w − 3(R/rc)3−2w

(3−2w

]

w 6= 3/2

(

rc
R

)1/2
[

(

Rs
rc

)3
− 1 − 3 ln(R/rc)

]

w = 3/2.

(6.19)
The ionization front will remain R-type all the way to infinity if

w > wtrap =
3

2

[

1 −
(

rc
Rs

)3
]−1

, (6.20)

or w > 3/2 for ionization fronts able to reach well outside the core before
striking the Strömgren limit.

The front will shift to D-type, driving a shock into the surrounding gas, if
w < wtrap. This allows the ionization front to grow (slowly), even though
it has nominally reached its Strömgren limit, because the hydrodynamic
motions of the gas decrease the average density behind the shock. In a
typical halo, the density profile steepens as one moves outward, usually
with w > wtrap in the outskirts. Therefore, the front will eventually reach a
point where it is no longer trapped. At this time it will revert to R-type and
expand rapidly, with no immediate hydrodynamic effect on gas outside of
the H II region itself. Numerical simulations show that thistransition point
is well approximated by the Strömgren radius of the initialdensity profile,74

using equation (6.15) with the average density set to its value insideRs.
Figure 6.5 shows a cartoon of this evolution.

However, within the H II region, the gas rapidly acceleratesoutward. The
temperature structure of the cloud is set by photoheating: each ionization
leaves the residual electron with some extra energy that depends upon the
spectrum of the ionizing source (see§9.9 for more details on this process),
typically with T ∼ 104 K. The pressure profile will be set by the density
profile – which also has not had time to adjust to its new state.A strong
pressure gradient therefore develops, producing an acceleration (again, with
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Figure 6.5 Cartoon of an ionization front propagating through a cosmological halo. The
dashed and solid lines show the locations of the ionization front and shock, re-
spectively. After an initial R-type phase (not shown), recombinations in the high-
density core trap the front, making it D-type, in which a shock slightly leads the
ionization front. As the density falls through the hlao, therecombination rate also
falls, eventually freeing the front to expand much faster than the sound speed.
The shock is left behind and lags the front, often eventuallytransforming into a
simple pressure wave.
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ρ ∝ r−w)

a =
1

ρ

dp

dr
∼ wc2i

r
, (6.21)

which is strongest in the center of the halo. A pressure wave therefore de-
velops, pushing the gas ahead of it out of the halo – this regime is often
referred to as thechampagne phase. Behind the wave, the gas will have
roughly constant density and hence reach pressure equilibrium; ahead of it
the gas will still be in its original configuration.

The characteristic speed of this wave is a few times the soundspeed of the
ionized gas,cioni ∼

√

kT/mp ∼ 10(T/104 K)1/2 km s−1. In comparison,
the escape speed from a dark matter halo is roughly

vesc(M) ≈
√

2Vc(rvir) = 24.0

[

Ωm

Ωm(z)

∆c

18π2

]1/6( Mh

108M⊙

)1/3(1 + z

10

)1/2

km s−1 .

(6.22)
where we have used equation (3.31) and assumed an isothermaldensity pro-
file truncated at the virial radiusrvir, for simplicity. Thus, the gas inside the
H II region becomes strongly unbound and flows outward for halos of a suf-
ficiently low mass. The ionization front will only slow down when it reaches
a region with a shallower density gradient in the IGM, allowing it to return
to the Strömgren limit. But by this point the bound gas had already escaped.

Numerical simulations of thisphotoevaporationprocess show that, in the
limit of a smooth, spherical halo, the radiation pressure from a single very
massive Population III.1 star can evacuate the gas from an entire halo of
mass∼ 106 M⊙.75 Figure 6.6 shows an example from a detailed numerical
calculation. The simulation takes a single200 M⊙ star atz = 18.2 in a
halo of total mass7 × 105 M⊙. Clockwise from top left, the panels show
the ionized fraction, the temperature, the (outward) velocity, and the density
profile. Each panel shows snapshots at63, 82, 95, 127, 317, and 2200 kyr
(left to right in all panels except bottom left, where they are top to bottom).
In the last panel, the dashed line shows the density requiredto enforce the
Strömgren criterion in equation (6.15); if the density exceeds this value, the
ionization front will be limited by recombinations and be D-type. Clearly,
the high core density will trap the front, from which it will emerge when
it reaches∼ 1 pc. In the upper panels, the large jump in the ionization
front location from 82–95 kyr involves the transition from D-type to R-type.
The large outward gas velocities, at 2–3 times the sound speed of the gas,
are nearly∼ 10 times as large as the escape speed from the minihalo (2–
3 km s−1).

Thus, the first stars can easily empty their halos of gas, decreasing the
local baryon fraction to just a few percent. However, the picture is less
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Figure 6.6 Evolution of a cosmological halo as an ionizationfront propagates through it.
The simulation takes a single200 M⊙ star atz = 18.2 in a halo of total mass
7 × 105 M⊙. Clockwise from top left, the panels show the ionized fraction, the
temperature, the (outward) velocity, and the density profile. Each panel shows
snapshots at63, 82, 95, 127, 317, and 2200 kyr (left to right in all panels except
bottom left, where they are top to bottom). In the bottom left, the dashed line
shows the minimum density required to trap the ionization front. Figure credit:
Whalen, D. et al.Astrophys. J.610, 14 (2004). Reproduced with permission of
the American Astronomical Society.
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clear if the gas filling the source halo is clumpy, containingother collaps-
ing cores (or in nearby halos also en route to forming their own stars).
If these neighboring clumps have modest densities, they toowill be com-
pletely evaporated. However, if their central densities are sufficiently high,
nH > 2000 cm−3, the core will remain neutral via self-shielding, the ra-
diation will have little effect. In this case, the collapse will continue until
new stars are formed. Indeed, the passage of an ionization front (and ac-
companying shock) through surviving cores may actually aidcollapse and
encourage further star formation. Whether more than one star can form in a
low-mass halo (or in a halo with nearby neighbors) thus crucially depends
on the degree of synchronization of clump formation.

As an example of the complex implications of the photoevaporative flow,
consider the shocked gas that lies ahead of the front during its D-type phase.
This shocked region is partially ionized by high-energy photons and so its
ionized fraction is typically appreciable (> 10−3; see§9.8.2 for more on this
process). The extra free electrons catalyze the formation of H2, potentially
making self-shielding effective. The cooling induced by H2 can trigger thin
shell instabilities that quickly develop into new star-forming clumps.

The long-term effects of this radiation pressure are also not obvious and
depend on the details of the halo’s neighborhood. Although the gas has a
very high velocity as it leaves the halo, it can still be reincorporated into the
halo (or into one of its nearby neighbors) through hierarchical structure for-
mation. Numerical simulations show that this fallback can take∼ 100 Myr,
a substantial fraction of the age of the Universe at these high redshifts.76

This could lead to a long delay in later star formation or accretion onto any
remnant black holes. The pre-ionization would also change the mode of any
future star formation to Population III.2 stars, possibly with a somewhat
lower mass scale than the first generation of Population III.1 stars.

6.3.2 Radiation Pressure From Lyman-α Photons

Interestingly, the radiation can also exert a substantial force on the neutral
gas surrounding the H II region.77 The Lyman-α photons, generated pri-
marily by recombinations within the H II regions, scatter off the neutral gas
outside those regions, imparting their net outward momentum and driving
the gas away from the central source. We can gauge the possible dynami-
cal effect of these photons by comparing the gravitational binding energy,
EB ∼ (Ωb/Ωm)GM2/rvir (see equation 3.33), with the energy in the ra-
diation field,Eα = Lα × ttrap, whereLα is the line luminosity of H II
region andttrap is the typical timescale over which Lyman-α photons are
trapped inside the cloud. Numerical calculations of line transfer suggest
that ttrap ∼ 15tlight,78 wheretlight = rvir/c is the light travel time across
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the halo (see more discussion of this complex problem in§11.1.1). The
conditionEα > EB requires

Lα > Lα,crit ∼ 1040

(

M

106 M⊙

)4/3(1 + z

30

)2(15tlight

ttrap

)

erg s−1.

(6.23)
Note that∼ 2/3 of recombinations produce a Lyman-α photon, so this
translates to a direct constraint on the ionizing luminosity; the fiducial lu-
minosity shown here corresponds to only∼ 500 M⊙ (perM ∼ 106M⊙) in
very massive Population III.1 stars, assuming that the H II region reaches its
Strömgren limit.

For a nearly isotropic radiation field (a valid approximation in this case
because of the large number of scatterings each Lyman-α photon experi-
ences), the acceleration induced by Lyman-α radiation pressure may be
written as

aLyα =
1

3ρ

dUα

dr
, (6.24)

whereρ = mpnH , andUα is the energy density of the Lyman-α photons.
If the gas were optically-thin, thenUα would have beenLα/(4πr

2c), but
the scattering process traps Lyman-α photons near the source and steepens
the1/r2 scaling. The total impulseaLyα∆t therefore depends on the total
Lyman-α fluence of the source, which in turn is dictated by the number of
ionizing photons produced by the stars.

The simple solution described in§11.6, for scattering around a point
source in a uniform IGM expanding at the Hubble flow, hasU ∝ r−2/3 at
moderate distances from the source. In a more realistic calculation, the H II
region surrounding the central star, the infall region surrounding the halo,
and the details of Lyman-α scattering must be taken into account, but this
simple solution provides a reasonable gauge of the importance of Lyman-α
radiation pressure. Assuming very massive Population III.1 stars, the cor-
responding final velocity of an atom at a distancer from the central source
is

vα ∼ 6

(

1 kpc
r

)10/3 ( 15

1 + z

)3( f⋆

10−3

M

106 M⊙

)

km s−1. (6.25)

While the final velocity is small, the escape speed at the virial radiusrvir =
0.2 kpc of a 106 M⊙ halo atz = 14 is ∼ 6 km s−1. Thus, Lyman-α
scattering through the neutral gasoutsideof any H II region can eject the
gas from the vicinity of the source halo, also slowing down accretion.

This same effect can also operate in larger galaxies later onin the his-
tory of structure formation, many of which are observed to have substan-
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tial Lyman-α fluxes. However, numerical simulations show that the effects
are modest unless the galaxy also drives a wind that creates aneutral “su-
pershell” that can multiply the radiation force through repeated scatterings.
This is largely because these galaxies are able to ionize such a large region
around them that the near region, where the force is strongest, is still ionized
and cannot trap the photons.

6.4 GALACTIC SUPERWINDS AND MECHANICAL FEEDBACK

6.4.1 Star Formation and Wind Energetics

As stars live and die, they inject large amounts of energy into their surround-
ings, through a number of channels. First, while they are luminous, their
radiation couples to the interstellar medium as UV photons scatter off of
dust grains (which are usually coupled to the neutral or ionized gas through
collisions and magnetic fields). Just as in the Lyman-α scattering case de-
scribed above, the pressure of the radiation field can therefore eject gas from
the galaxy. Second, in the late stages of stellar evolution,many stars drive
powerful winds into the ISM, and supernova explosions when massive stars
die injectE ∼ 1051 ergs of energy into the ISM, typically accelerating
∼ 10 M⊙ of material per explosion to∼ 3 × 103 km s−1.

The energy and momentum flux from these mechanical interactions can
unbind the gas from the host halo. These outflows, when they span a large
fraction of a galaxy, are known assuperwinds. By removing gas from the
galaxy, these mechanisms choke off the fuel supply for further star forma-
tion and may ultimately be responsible for regulating the pace of star for-
mation over time. A clear understanding of the role of feedback is therefore
essential to understand not only the first galaxies but theirmore massive
descendants later on.

We begin with some plausibility arguments showing that winds are likely
to be important for the small galaxies most common at high redshifts. We
first ask the question of how much star formation is necessaryto unbind the
gas inside of a virialized halo. The total binding energy of ahalo with mass
M is given by equation (3.33), but for thegaswe must multiply this by the
mass fraction in gas (fg ∼ Ωb/Ωm). Moreover, we have already seen that
in order to form stars the gas must collapse to high densities. To describe
this simply, we assume that the gas is confined to a region< λrvir (see§8.4
below), where the spin parameterλ ∼ 0.05 is set by the angular momentum
of the halo. Thus, the gas binding energy isEb,g ∼ (fg/λ)GM2/rvir.

Meanwhile, the energy injected by supernovae isESN ∼ f⋆fgMωSN,
wheref⋆ is the fraction of gas that is turned into stars andωSN is the super-
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nova energy input per unit mass of star formation. Typical supernova models
and “normal” Population II IMFs yieldωSN ∼ 1049 ergM−1

⊙ . However, we
expect that some fraction of this energy will be radiated away as the hot,
dense supernova remnant plows through the galaxy into the IGM around it.
We assume that a fractionξ of the total energy is available for mechanically
removing gas from the galaxy. Then the energy input by supernovae ex-
ceeds the binding energy of the gas if the star formation efficiency surpasses
a critical value

f⋆ > f⋆,E ∼ 0.01

(

0.05

ξλ

)(

M

108 M⊙

)2/3(1 + z

10

)

(

ωSN

1049 erg M−1
⊙

)−1

.

(6.26)
Even if the supernova remnants do lose their thermal energy,they will

still inject a great deal of momentum into the ISM. If this momentum is
large enough, it can carry the gas outside of the halo withoutthe “push”
from the thermal energy inside each remnant (i.e., feedbackcan be much
more effective than suggested by equation 6.26 ifξ ≪ 1).v The rate at
which momentum is injected by supernovae,dPSN/dt, is

dPSN

dt
∼ 2 × 1033

(

ω′
SN

300 km s−1

)

(

Ṁ⋆

M⊙ yr−1

)

g cm s−2, (6.27)

whereω′
SN is the rate of momentum injection from supernovae per unit mass

of stars; the fiducial value takes one explosion per100 M⊙ of stars, each
accelerating10 M⊙ of material to3 × 103 km s−1.

Meanwhile, the rate at which stellarradiation injects momentum isdPrad/dt ∼
L⋆/c, whereL⋆ is the stellar luminosity that couples to the interstellar
medium (ISM) gas.vi We write it in terms of the rest energy asL⋆ =
ǫṀ⋆c

2, whereṀ⋆ is the rate at which mass is processed into stars and
ǫ3 ≡ (ǫ/10−3) ∼ 1 for typical IMFs. ThendPrad/dt ∼ ǫ3dPSN/dt, in-
dicating that both sources of momentum are likely importantin launching
winds. For convenience, we will writedP/dt ≡ L/c for the total rate of
momentum input, which defines an effective luminosityL that includes stel-
lar radiation and supernovae (as well as any other process, like winds from
evolved stars).

The acceleration equation for a parcel of gas with velocityv and position

vMurray, N., Quataert, E., & Thompson, T. A.,Astrophys. J.618, 569 (2005).
viWe assume here that the gas is optically thick to the radiation, so that it efficiently

absorbs the momentum flux. Ifτ < 1 (for example, because the metallicity is small and dust
is rare), then the momentum injection rate from radiation decreases∝ τ .
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r is79

dv

dt
= −GM(r)

r2
+

L

cMg(r)
, (6.28)

whereM(r) is the halo mass andMg(r) is the gas mass enclosed within
a radiusr. For a simple estimate, let us assume that the halo is a singular
isothermal sphere, withM(r) = 2σ2r/G andσ the velocity dispersion, and
that the gas traces the dark matter. Then we can rewrite equation (6.28) as

dv

dt
=

2σ2

r

(

L

LM
− 1

)

, (6.29)

where

LM =
4fgc

G
σ4. (6.30)

Clearly,LM represents the minimum luminosity for the net force on the gas
parcel to act outward, and hence it is the minimum luminosityrequired in
order to launch a wind. If we further assume a constant star formation effi-
ciencyf⋆ to convert gas into stars over a dynamical timetdyn ∼ rvir/σ, this
minimum luminosity translates into a minimum star formation efficiency
f⋆,p:

f⋆ > f⋆,p ∼ 0.1(ω′
SN,300 + ǫ3)

(

Mh

108 M⊙

)1/3(1 + z

10

)1/2

, (6.31)

whereω′
SN,300 = ω′

SN/(300 km s−1) and the(ω′
SN,300 + ǫ3) factor accounts

for both supernovae and radiation.
Comparing equations (6.26) and (6.31), it is clear that for the small halos

in which the first stars form, the energy reservoir is likely much more effec-
tive than the raw momentum, provided that it is not lost through radiative
cooling. It is also clear that the required star formation rate in these halos is
very small: this is fundamentally because the energy available in stars scales
with Mh (assuming a constantf⋆), while the binding energy scales asM2

h .
However, at higher masses the excess energy becomes less important,

with the momentum injection condition becoming more stringent when

M > Mp ∼ 1011(ω′
SN,300 + ǫ3)

3

(

0.05

λξ

)3(1 + z

10

)3/2

M⊙. (6.32)

Nevertheless, in order for the momentum to lift gas out of thehalo, star
formation must proceed very quickly - turning a substantialfraction of the
gas into stars over a single dynamical time. Such rates do appear in rapidly
star-forming galaxies at lower redshifts, but those systems are relatively rare.
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These two types of winds,energy-drivenandmomentum-driven, are likely
to have very different characters. The condition thatESN > Eb,g does not
place any restrictions on the rate at whichmassis ejected from the galaxy;
in fact, numerical simulations of star-forming disk galaxies typically show
that the energy is “blown-out” along low-column density channels (perpen-
dicular to the disk), carrying away only a fraction of the galaxy’s mass.80

On the other hand, the momentum must maintain its initial direction and
sweep up any gas it encounters as it propagates outwards, carrying with it
a significant fraction of the galaxy’s gas. The asymptotic velocity v∞ of a
momentum-driven wind is typically just a few times the escape speed of the
halo.vii Momentum conservation then demands that the mass loss rate in the
wind is

Ṁw =
dp/dt

v∞
∼ Ṁ⋆

(

300(ω′
SN,300 + ǫ3) km s−1

v∞

)

, (6.33)

comparable to the star formation rate for reasonably large halos.

6.4.2 Expanding Blastwaves: Simple Solutions

In order to better understand the dynamics of these winds, wewill review
here some simple models for expanding blastwaves followingpoint explo-
sions. Although oversimplified, these analytic scalings provide useful in-
sight into the more complex problem of winds inside and outside galaxies.

First consider a point explosion with energyE in a static, cold (or pres-
sureless) medium of mass densityρ. The explosion drives a shock into the
surrounding gas. Simple dimensional arguments show that the shock radius
must depend onρ,E, and timet through the form

Rsh = KSTV(Et2/ρ)1/5, (6.34)

whereKSTV is a constant.
It is easy to show from energy conservation thatKSTV ∼ 1. The total

mass that has been swept up by the shock is∼ (4π/3)ρR3
sh. Because a

supersonic shock forms in the ambient medium, the post-shock gas velocity
must be subsonic in the frame of the shock. Thus, most of the bulk veloc-
ity of the material will be from the shock itself, and the net fluid speed is
∼ Ush = (2/5)Rsh/t. The kinetic energy of the swept-up material is there-
fore ∼ (4π/3)ρR3

sh × U2
sh/2 ∼ 0.3R5

sh/t
2. There is also, of course, the

vii This can be seen, for example, by integrating equation (6.29) under the assumption
that L is constant to obtainv(r). Writing (dv/dt) = (dr/dt)/(dv/dr) = v(dv/dr) =
d( 1

2
v2)/dr and integrating both sides overr > r0, yields v(r) = 2σ × [(L/LM −

1) ln(r/r0) + v2(r0)/4σ2]1/2.
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thermal energy stored in the hot gas behind the shock, but this is typically
comparable to the kinetic energy of the shock because the gasflows subson-
ically past the shock. Energy conservation impliesE = κρR5

sh/t
2, whereκ

is a constant of order unity that accounts for summing the kinetic and inter-
nal energies. By comparison to equation (6.34), we see thatKSTV = κ−1/5,
which we expect to be very close to unity. In fact, this problem can be solved
analytically, giving the exact value ofKSTV = 1.17 for a pure monatomic
gas with an adiabatic indexγ = 5/3. The solution is known as aSedov-
Taylor-von Neumann blastwave, after the three physicists to derive it in-
dependently at the dawn of the nuclear age. Since there is no characteristic
timescale or length scale in the setup of a point explosion, the hydrodynamic
equations admit aself-similarsolution in which the hydrodynamic variables
of the gas (pressure, density, and velocity) depend only on the combination
r/Rsh(t) instead of depending separately onr andt.

The Sedov-Taylor-von Neumann solution imposes three restrictions on
the blastwave. First, it requires that the mass of the material behind the
shock is much greater than the explosion ejecta themselves.In an earlier
phase, the ejecta expan ballistically, encountering negligible resistance by
the ambient medium. Second, it assumes a strong shock, or that the ejecta
velocity greatly exceed the sound speed of the ambient medium. Finally,
it assumes that all the explosion energy is contained eitherin the kinetic
energy or thermal energy of the shocked gas. In fact, the strong shock jump
conditions require that the density just behind the shock is(γ + 1)/(γ − 1)
times that of the ambient medium (which is a factor of four ifγ = 5/3),
decreasing rapidly inwards. This overdense shell will coolradiatively; once
a substantial fraction of the energy has been lost, the energy conservation
condition no longer applies and the character of the solution changes. In
particular, as the gas in the shell cools its density must increase to maintain
pressure equilibrium with the interior of the blastwave, and so a dense shell
develops at the leading edge of the blastwave.

This second phase is known as apressure-driven snowplow, because the
low-density interior of the gas remains hot (and hence has a finite pressure
p pushing outward on the shell). In this phase, the shell sweeps up gas as
it expands, increasing its mass at a rateṀs = 4πR2

shρUsh. Meanwhile,
so long as the hot interior does not cool, the internal pressure obeys the
adiabatic conditionpV γ =constant, pushing the shell outward with a force
4πR2p. The equation of motion for the shell is then

R̈sh +
3Ṙ2

sh

Rsh
=

3pi

ρRsh

(

Ri

Rsh

)3γ

, (6.35)

wherepi is the internal pressure as this phase begins whenRsh = Ri. For
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pi 6= 0 andγ = 5/3, this equation requires thatRsh ∝ t2/7, slightly shower
than in the “adiabatic” Sedov-Taylor-von Neumann phase.viii

The pressure-driven snowplow phase ends when either one of two con-
ditions is fulfilled. First, if the hot bubble interior can cool radiatively, it
loses the pressure support. Second, if the interior pressure approaches the
pressure of the ambient medium, there will be no net driving force. In either
case,pi → 0 in equation (6.35). Then,Rsh ∝ t1/4, which follows strictly
from momentum conservation,(4π/3)ρR3

sh(dRsh/dt) = constant. This fi-
nal phase is therefore known as amomentum-conserving snowplow. Obvi-
ously, it is the proper solution for the momentum-driven winds described in
the previous section.

So far we have assumed that the blastwave propagates into a uniform
medium. While this describes the ISM of normal galaxies reasonably well
(at least on average), the gas making the first stars had not settled into disk-
like configurations; instead, these stars were surrounded by uniform density
cores inside roughly power law envelopes, withρ ≈ ρ0(R0/R)α. Dimen-
sional arguments similar to those above then show that

Rsh = Kiso

(

Et2

ρ0Rα
0

)1/(5−α)

. (6.36)

In particular, for an isothermal density profileα = 2, close to the envelopes
of the first stars,Rsh ∝ t2/3. The blastwave propagates faster in this case
because the declining ambient density presents considerably less drag.

Similarly, it is straightforward to modify the equation of motion for the
snowplow shell: sinceṀs = 4πR2ρ(R)Ush, the momentum equation reads

R̈sh +
(3 − α)Ṙ2

sh

Rsh
=

(3 − α)pi

ρRsh

(

Ri

Rsh

)3γ

. (6.37)

For γ = 5/3, this equation admits the solutionRsh ∝ t2/(7−α) when the
pressure is important, andRsh ∝ t1/(4−α) during the momentum-conserving
snowplow phase. Again specializing to an isothermal density profile,Rsh ∝
t2/5 andRsh ∝ t1/2 in these two phases.

Table 6.1 briefly summarizes these different stages for quick reference.

6.4.3 Supernovae in the First Star-Forming Halos

The first supernovae occur in the halos described in chapter 5. Although
the basic properties of these halos are well-understood, the mass spectrum

viii Here the term “adiabatic” is standard in the literature. Note that it refers to a blastwave
that conserves energy without radiative losses; obviously, the shock itself still increases the
entropy of the gas.
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Name Condition Growth Rate (Uniform) Growth Rate (Power-Law)
STvN No shell cooling Rsh ∝ t2/5 Rsh ∝ t2/(5−α)

PDS No interior cooling Rsh ∝ t2/7 Rsh ∝ t2/(7−α)

MCS Cooled remnant Rsh ∝ t1/4 Rsh ∝ t1/(4−α)

Table 6.1 Blastwaves in static media. Each line shows a single phase in its evolution. The
first column gives the abbreviated name (STvN for Sedov-Taylor-von Neumann,
PDS for pressure-driven snowplow, and MCS for momentum-conserving snow-
plow), the second the most important condition for the solution to apply, the third
the time dependence in a uniform medium, and the last the timedependence in a
medium whereρ ∝ r−α.

of stars and efficiency of star formation are highly uncertain as they depend
on the complex fragmentation process, the degree of synchronization of the
resulting protostellar clumps, and the dynamical impact ofthe surrounding
H II region.

For these reasons, the overall impact of the first supernovaeon their host
halos is difficult to assess. Nevertheless, numerical simulations have begun
to explore these events and their implications for subsequent star formation,
at least in some simple cases. Figure 6.7 provides an example, showing a
simulated supernova explosion of a200 M⊙ star atz ≈ 20 in a halo with
M = 5 × 105 M⊙ andrvir ≈ 100 pc (the box measures150h−1 comoving
kpc across). We will examine this result in some detail because it illustrates
much of the important physics of high-redshift supernovae.

The colorscale shows the gas temperature. The large, roughly spherical
region filling most of the box in all four panels is the H II region; its inter-
nal structure is a result of the filamentary cosmic web surrounding the halo.
By the time of the star’s death (2 Myr after its formation), ithas photoe-
vaporated the gas inside∼ rvir/2, reducing its density tonH ∼ 0.5 cm−3.
Meanwhile, the escaping photons ionize a large region around the halo, ini-
tially heating it and causing pressure-driven expansion ofthe remnant into
the low-density, cool IGM surrounding it.

The supernova then expands into this ionized environment. Figure 6.7
shows snapshots of its evolution, while Figure 6.8 presentsthe evolutionary
phases of its (spherically-averaged) radius. The four major phases of the
expansion are marked in the latter figure. The explosion here, which is
assumed to completely blow apart the star via a pair-instability supernova,
carries a substantial massMej in ejecta. Until the swept-up mass dominates
the explosion, it expands freely (‘FE’ in Figure 6.8). The simulation does
not follow this short phase explicitly; instead it initializes the calculation at
the end of this phase.

After that point, the Sedov-Taylor-von Neumann phase begins (marked
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Figure 6.7 Temperature maps from a numerical simulation of asupernova explosion (see
Color Plate 9for a color version of this figure). The supernova of a200 M⊙ star
is set off atz ≈ 20 in a halo withM = 5 × 105 M⊙ andrvir ≈ 100 pc. The
snapshots are 1, 10, 50, and 200 Myr after the explosion. In the first panel on the
top left, the supernova is the central hot region; the star’sH II region fills most
of the box (fading with time as the gas recombines and cools).The supernova
remnant expands over the four panels, gradually becoming more anisotropic as
it encompasses the filamentary structure surrounding the halo. Figure credit:
Greif, T. et al.Astrophys. J.670, 1 (2007). Reproduced with permission of the
American Astronomical Society.
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Figure 6.8 Evolution of the simulated supernova explosion described in Fig. 6.7. The black
dots indicate the spherically-averaged mass-weighted shock radius, while the
dashed line shows the analytic estimate using the models of§6.4.2. The different
phases in the evolution of the remnant are labelled: ‘FE’ forfree expansion (not
resolved by the simulation), ‘ST’ for Sedov-Taylor-von Neumann phase, ‘PDS’
for pressure-driven snowplow, and ‘MCS’ for momentum-conserving snowplow.
The shaded gray region shows the radial dispersion of the shock, which increases
dramatically once the shock leaves its host halo thanks to anisotropies in the cos-
mic web. Figure credit: Greif, T. et al.Astrophys. J.670, 1 (2007). Reproduced
with permission of the American Astronomical Society.
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‘ST’). The blastwave initially propagates through a roughly constant den-
sity interior (the remnant gas after photoevaporation), soRsh ∝ t2/5. Once
the remnant reaches∼ rvir/2 (at t ∼ 105 yr), it catches up to the photoevap-
oration shock, and the character of its surroundings change. However, at just
about this time the gas in the dense shell accumulating behind the shock is
able to cool. Several processes allow cooling: atomic (and molecular) line
radiation, bremsstrahlung, and inverse Compton scattering of CMB pho-
tons. Ignoring any possible chemical enrichment from the supernova itself,
the atomic cooling rates are shown in Figure 5.1. Because these are driven
by collisions, their rate scales asn2. This mechanism is thus particularly
important in dense gas, where it dominates over the other processes within
the remnant shell. The cooling time is thereforetcool ∼ nHkT/Λ ∼ 105 yr,
where the initial temperature isT ∼ 106 K.

Thus, at about the same time the remnant reaches the photoevaporation
shock, the shell gas cools, and the blastwave transitions toa pressure-driven
snowplow solution (‘PDS’ in the figure). Now it propagates through the
roughly isothermal spherical profile of the unperturbed halo, soRsh ∝ t2/5

– coincidentally the same dependence as in the previous phase. This phase
continues until either (1) the low-density interior gas is able to cool or (2) the
postshock pressure reaches equilibrium with the ambient medium. At the
very low densities characteristic of the remnant’s interior, atomic cooling
is inefficient. On the other hand, the cooling time due to inverse Compton
scattering is independent of density (see equation 2.37),

tcool = 8

(

20

1 + z

)4

Myr, (6.38)

which puts an upper limit on the duration of this phase. However, the post-
shock pressure reaches a valuepsh ∼ ρU2

sh ∼ pHII, wherepHII is the pres-
sure inside the H II region, after only∼ 105 yr. (This is easy to show using
the analytic scalings of the previous section.)

Thus, the blastwave transitions to its final phase, the momentum-conserving
snowplow (marked ‘MCS’ in Figure 6.8), at∼ 105 yr. At the beginning of
this phase, the density profile is still roughly isothermal,soRsh ∝ t1/2; in
the simulationRsh maintains this scaling even after passing into the IGM
(see§6.5.2 for a discussion of solutions in this limit).

The net effect of this single supernova is to completely disrupt the gas in
the host halo, expelling much of it (∼ 95%) and forcing the rest to high tem-
peratures and low densities where star formation is inefficient. The lack of
star formation will persist until the high-entropy gas can be reincorporated
through hierarchical build-up of higher mass halos. Supernovae may there-
fore be efficient in quenching star formation within the firststar-forming
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halos.
However, as in so many other aspects of feedback, there are a number

of subtleties to this simple picture, some of which may actually promote
further star formation. These include:

• First, the supernova itself is a source of heavy elements. Asmany of
these elements are much more efficient low-temperature coolants than
H or H2, their presence could promote future star formation, particu-
larly in combination with some of the mechanisms mentioned below.
The primary uncertainty is the degree of mixing of the enriched ma-
terial with the ambient medium, which is likely driven by instabilities
in the shocked layers. We discuss the physics of this change in star
formation mode in more detail in§6.5.

• Second, if the host halo remains largely neutral, the remnant will plow
through much denser gas, even approaching∼ 107 cm−3. (Bremsstrahlung
(free-free) cooling in such dense environments is extremely fast, and
the supernova loses its thermal energy long before escapingthe halo.
Nevertheless, the impulse provided by the explosion can efficiently
stir up the gas, possibly triggering further fragmentationas shells col-
lide and most likely dispersing heavy elements throughout the halo.
This could happen, for example, if the characteristic mass scale of
Population III.1 stars is only∼ 10 M⊙, and they form in massive ha-
los, so that the explosion energy is lower than the gravitational bind-
ing energy of the halo gas.

• The blastwave itself may have very different effects on dense clumps
(either inside the host galaxy or in nearby minihalos) than on the dif-
fuse gas we have discussed. In particular, the shock compresses the
gas, which increases the density, speeding up the later stages of col-
lapse provided that the gas can efficiently cool (which is a precondi-
tion for star formation). Furthermore, the ram pressure of the shock
will likely not be able to move entire clumps along with the flow. The
resulting configuration – a fluid stream flowing by a stationary cloud
– can be unstable to Kelvin-Helmholtz modes. If so, the resulting
mixing may allow metals to penetrate the outer layers of the pristine
minihalo gas, triggering a change in the mode of star formation.

• Finally, the dense shell that accumulates behind the leading shock
can itself be unstable and fragment through gravitational or cooling
instabilities into protostellar clumps. The condition forsuch frag-
mentation is similar to the classical Jeans instability: collapse occurs
when the self-gravity of the shell operates faster than its restoring
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pressure forces, which occurs on scales> cs/
√
Gρ. For a given am-

bient density, the shell therefore eventually becomes unstable once
the sound speed (or temperature) falls far enough, which of course re-
quires efficient radiative cooling. In the case described inFigures 6.7
and 6.8, no fragmentation occurred because the low-densityambient
medium both increased the dynamical time and inhibited molecule
formation, maintaining relatively high temperatures. However, frag-
mentation can be much more efficient if the blastwave propagates
through a denser neutral medium. In this case, the shell can trigger
a second-generation of stars. Because these stars form out of ionized
gas (either from a pre-existing H II region, or one produced by the
passing shock), they will be similar to Population III.2 stars discussed
in §5.3, with lower characteristic masses.

6.5 METAL ENRICHMENT AND THE TRANSITION TO POPULATION

II STAR FORMATION

We have seen that the very first stars formed under conditionsthat were
much simpler than the highly complex birth places of stars inpresent-day
molecular clouds. As soon as the first stars appeared, however, the situation
became more complicated due to their feedback on the environment. In
particular, supernova explosions dispersed the heavy elements produced in
the interiors of the first generation of stars into the surrounding gas. Atomic
and molecular cooling became much more efficient after the addition of
these metals.

Early metal enrichment and dispersal by the primordial supernovae de-
scribed in the previous section triggered a change in the fundamental mode
of star formation, because heavy elements can radiatively cool the gas much
more efficiently than H2. To see this, consider a primordial cloud at the
“loitering” phase withn ∼ 104 cm−3 andT ∼ 200 K. At this point, radia-
tive cooling by H2 becomes inefficient, so the gas contracts only slowly, and
fragmentation is suppressed at least until an accretion disk forms around the
first protostar. This is why the characteristic mass of Population III.1 stars
may be as high as∼ 100 M⊙ (see§5.1).

Now let us imagine that the gas instead has a small fraction ofmetals; if
these elements can efficiently cool the gas from this thermodynamic state,
they will induce fragmentation to smaller mass scales. We will use the com-
mon notation [X/H]= log10(NX/NH) − log10(NX/NH)⊙ to describe the
abundance of speciesX. Detailed calculations show that carbon and oxy-
gen are the most important elements at the relevant temperature and density,
at least for atomic cooling. Carbon is likely to be singly-ionized C II, be-
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cause the Universe is transparent to photons above the ionization potential
of C I (11.26 eV), though it is sufficiently close to the Lyman-Werner bands
that it may suffer some self-shielding by H2 in very dense clumps (see also
§4.6). Oxygen, on the other hand, has an ionization potentialvery near H I
(13.6 eV) and so it will remain neutral. Let us writeΛX(n, T ) for the radia-
tive cooling rate from speciesX andΛtot for the total rate. For these two
species at the relevant temperatures and densities, the cooling is dominated
by fine-structure lines of O I (wavelength of 63.1µm) and C II (157.7µm).

Fragmentation requires that the cooling time,tcool = 1.5nkBT/Λtot, be
smaller than the free-fall time in the gas,tff ≈ 1/

√
Gρ. For a given species,

this defines acritical metallicity [X/O] crit above which radiative cooling
suffices to induce fragmentation. Detailed calculations ofthe fine structure
transitions in these elements yield [O/H]crit ≈ −3.0 and [C/H]crit ≈ −3.5,
with a factor of∼ 2 uncertainty depending on the details of the thermody-
namic state of the loitering phase.81

The above considerations include only gas-phase cooling; many of the
ISM metals at low redshifts are contained in dust grains, which can also aid
cooling due to both thermal emission and H2 formation (which can occur
very efficiently on the surface of dust grains, since hydrogen atoms became
trapped in close proximity). Locally, dust formation is generally attributed
to winds in asymptotic giant-branch stars. At high redshifts, dust may be
mainly produced in the metal-rich ejecta of supernovae themselves. The
dust formed inside supernova ejecta is a very effective coolant, and some
models show that the critical metallicity falls to [Z/H]crit ≈ −6 if such dust
is produced efficiently.82

Regardless of its precise value, the small critical metallicity is easy to
achieve. We have seen that a single pair-instability supernova remnant
can easily fill an entire halo as well as some portion of the IGM. Typ-
ical explosions generateMSN,X ∼ 10 M⊙ of C or ∼ 30 M⊙ of O. A
single supernova therefore enriches its host to a carbon abundance∼ 3 ×
10−3(MSN,C/10 M⊙)(106 M⊙/Mh) times the solar value (and a compara-
ble level for oxygen). Thus, provided only that mixing is efficient, a single
supernova suffices to shift star formation in its host halo – and possibly its
close neighbors – into the Population II channel.

The above arguments show that fragmentation can occur in lowmetal-
licity environments, but they do not determine the actual spectrum of mass
fragments. That is highly uncertain, but it is still likely to be skewed to sig-
nificantly higher masses than today. The arguments as in§5.2.4, in which
the CMB sets the temperature floor for the cooling gas, will apply to these
enriched clumps as well, setting the characteristic mass scale to be a few
tens of solar masses – still well into the high-mass regime.

Nevertheless, the transition to Population II is a crucial milestone in the
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history of the Universe. The arguments in this section suggest that, if mixing
was efficient, it took place very soon after the first star in each virialized halo
exploded.

6.5.1 Blastwaves in an Expanding Universe

A crucial point to understand about metal enrichment is thatit must be
highly inhomogeneous, because the metals are produced at discrete sites
(star-forming halos) and must be advected with hydrodynamic flows, which
typically move rather slowly by cosmological standards. Thus, the transi-
tion from Population III to Population II is likely to have had large spatial
fluctuations; in principle, Population III star formation could persist to late
times, if the IGM enrichment timescales are very long and if new halos viri-
alize and cool in pristine gas. In this section, we will consider how galactic
winds (or other flows) can distribute this material around the Universe.

Although the simple models of§6.4.2 provide some intuition, they do not
directly apply to cosmological blastwaves, which propagate into an expand-
ing medium whose density decreases with time. However, it iseasy in this
case to estimate the maximum distance to which the shock can reach: as in a
uniform, static medium, the wave will sweep the matter before it into a thin
shell. But in the cosmological setting, the shell will continue to expand in
comoving coordinates only while its velocityrelative to the Hubble flowis
positive – after that, the shell will simply be dragged alongwith the expand-
ing Universe. The drag from swept up material will continue to decelerate
the blastwave until its velocity matches the Hubble flow, which occurs at
the asymptotic (proper) radiusRE; if the expansion occurs quickly, the final
kinetic energy is thenMs[H(zi)RE]2/2. (Herezi is the redshift correspond-
ing to the initial time of the explosion.)

Some of this energy comes from the explosion energyE, but in contrast
to the static medium, the initial configuration also contains some kinetic
energy from the Hubble flow. Integrating outward toRE, this initial energy
is 3Ms[H(zi)RE]2/10. If we assume that the expansion is rapid compared
to the Hubble time, the maximum comoving size is therefore

RE,com ∼
[

E

ρb(zi)H2(zi)

]1/5

(1 + z) (6.39)

=KE,cos

(

GE

H4
0ΩbΩ2

m

)1/5

(1 + zi)
−1/5, (6.40)

whereKE,cos ∼ 101/5 is a constant of order unity that depends on how
much energy is transformed into thermal or kinetic energy. Note the simi-
larity to the Sedov-Taylor-von Neumann scaling, witht ∼ 1/H(z).
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In fact, for a perfectly adiabatic shock in a matter-dominated Universe
with Ωb ≪ Ωm, a self-similar blastwave that mirrors the Sedov-Taylor-von
Neumann solution forms.83 In this limit, the constantKE,cos = (32π/3)1/5KSTV.
The blastwave also expands at a rateRcom ∝ τ2/5, where at high redshifts,

τ(z) ≈ 2√
ΩmH0

[(1 + zi)
1/2 − (1 + z)1/2] (6.41)

Once radiative cooling in the shell and eventually the bubble interior be-
come important, the expansion slows down. We can estimate the final size
of a bubble in which cooling is extremely efficient by repeating the above
argument, but with momentum conservation as our guiding principle rather
than energy conservation. Writing the total impulse asE/c, we obtain

Rp,com ∼Kcos,p

[

E/c

ρb(zi)H(zi)

]1/4

(1 + z) (6.42)

=Kp,cos

(

GE/c

H3
0Ωb

√
Ωm

)1/4

(1 + zi)
−1/8, (6.43)

whereKp,cos ∼ 81/4.
To put these estimates in the context of star-forming halos,we use the

notation of§6.4.1 and write the energy released by a halo of massM as
E = f⋆ωSNMg and the momentum input asE/c = (ǫf⋆Mgc

2)/c, where
the gas mass isMg = (Ωb/Ωm)Mh. Then

RE,com ∼ 1.2

(

ωSN

1049 erg M−1
⊙

f⋆

0.1

Mh

108 M⊙

)1/5

(1 + z)−1/5 Mpc,(6.44)

Rp,com ∼ 0.2

(

ǫ3
f⋆

0.1

Mh

108 M⊙

)1/4

(1 + z)−1/8 Mpc. (6.45)

It follows that the maximal comovingvolumeenriched by halos scales as
VE ∝ (f⋆M)3/5 or Vp ∝ (f⋆M)3/4. In either case, the scaling is sublinear,
showing that low-mass halos are much more efficient at enriching the IGM
than massive ones.

In practice, these maximal radii can be substantial overestimates for two
reasons. First, they neglect the gravitational attractionof the host halo. Sec-
ond, the expansion must occur slowly: if the deceleration ismodest, a shell
with an initial speedvi will take a timet ∼ R/vi ∼ (vi/H)/vi ∼ 1/H to
reach the radius at which that velocity matches onto the Hubble flow. Thus
usingH(zi) in the estimates is not formally correct.

To follow the time evolution in detail one must track the energy reser-
voir driving the wind. Numerical calculations show that cosmological blast-
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waves develop shells even more rapidly than their counterparts in static me-
dia. The equation of motion for a shell is then

R̈ =
4πR2

Ms
(p−pIGM)− G

R2
[M(R)+Ms/2]+ΩΛ(z)H2(z)R−Ṁs

Ms
(Ṙ−HR),

(6.46)
whereMs is the shell mass,Ṁs = 4πR2ρb(Ṙ − HR) is the rate at which
mass is swept up,p is the pressure of the bubble interior,pIGM is the am-
bient pressure of the IGM, andM(R) is the mass enclosed within the wind
(including both dark matter and any baryonic remnants). Thefirst term is
the pressure force from the hot interior, the second involves the gravitational
deceleration due to the interior mass (and the shell itself), the third is the ac-
celeration due to the cosmological constant (which can be ignored at high
redshifts), and the last is the drag force from swept-up material. This must
be supplemented with an equation for the energy of the bubbleinterior,

ṗ =
L

2πR3
− 5p

Ṙ

R
. (6.47)

Here the last term is thepdV work from expanding the shell, while the
first represents energy inputs or losses. These include the energy source
powering the wind and Compton cooling (which usually dominates at the
low bubble densities once the winds propagate into the IGM) or any other
radiative process.

There is one additional subtlety in the cosmological case: the shell treat-
ment assumes that the ambient gas is accelerated to the shellvelocity through
inelastic collisions of its particles. In reality,Lmust also account for the en-
ergy dissipated in this process. If the shell cooling time isshort, most of it
will be lost (the static medium solutions described in§6.4.2 implicitly take
this limit), but some may be transmitted to the bubble interior through tur-
bulence if it is not lost in cooling. We letfd be the fraction of this energy
transmitted to the bubble interior; thenL includes a term

Ld = fdṀs(Ṙ−HR)2/2. (6.48)

Figure 6.9 shows solutions to these shell expansion equations for halos
with Mh = 2 × 106 M⊙ beginning at a variety of redshifts (for ease of
comparison, the IGM is assumed neutral and cold in all of the curves). In
all cases we assume an instantaneous burst of star formationwith f⋆ = 1
and takefd = 1 andfd = 0 for the upper and lower curves, respectively.
Expansion is truncated when the bubble interior cools to lowtemperatures
(i.e., at the end of the pressure-driven snowplow phase). Note the fairly long
times for the bubbles to reach these limiting sizes.
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Figure 6.9 Shell sizes as a function of redshift, in comovingdistance, from galaxies with
Mh = 2 × 106 M⊙ forming at redshifts fromz = 29 to z = 1. The model
assumes a star formation efficiency near unity. The upper setof curves take
fd = 1, while the lower set takefd = 0. The expansion is assumed to stop when
the bubble interior falls belowT = 15, 000 K. Figure credit: Tegmark, M., Silk,
J., & Evrard, A.,Astrophys. J.417, 54 (1993). Reproduced with permission of
the American Astronomical Society.
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Figure 6.10 shows the proper radii of wind bubbles surrounding halos (as
a function of mass) at several different redshifts. The points use a Monte
Carlo model of each halo’s merger history (generated following the excur-
sion set formalism of§3.4.2) to trace the supernova histories of each halo;
the variations in the wind radius at a given mass therefore reflect variations
in the star formation histories of the galaxies. The model adoptsf⋆ = 0.1
andfd = 0, and also assumes that 75% of the supernova energy is radiated
away without contributing to the wind. The solid lines show the virial radii
of the host halos.

Clearly the final wind sizes are only a weak function of halo mass, with
R ∝ M0.2−0.25

h as expected from the analytic scaling. The magnitudes
are considerably below the maximal estimate from equation (6.44), because
much of the energy is assumed to be radiated away, the Hubble flow energy
is assumed unavailable, and because the energy is not injected at a single
instant. The results are, however, reasonably close to the momentum limit
of equation (6.45).

The numerical results turn over at high masses, because the gravitational
potential well of the host traps the wind. Typically this occurs before the
wind escapes far into the IGM, so there is a severe cutoff in the maximum
size – recall that the gravitational binding energy scales asM2

h , while the
available energy only goes likeMh. This, together with theV ∝ E3/5 ∝
(f⋆Mh)3/5 scaling of the enriched volume, mean that the smallest halos
are likely the most important ones for chemical enrichment,unless the star
formation efficiency itself decreases strongly at low halo masses.

6.5.2 Metals in the Intergalactic Medium

Given the fate of a wind bubble around any individual source,it is straight-
forward to estimate the fraction of space filled by these bubbles. Defining
V (Mh, z) to be the volume filled by a bubble blown by a halo of massMh

at redshiftz,ix we integrate over the halo mass function:

Q′
e(z) =

∫ ∞

Mmin

dM n(M,z)V (M,z), (6.49)

where the integration extends over all star-forming halos.The resultingQ′
e

is the total volume filled by all the bubbles, not accounting for overlap. If
the bubbles were randomly distributed, and if overlapping winds did not aid
each other’s expansion, the true filling fraction of wind material would be
Qe = (1 − e−Q′

e).

ix In reality, such a relationship will not be one-to-one, as halos (even of the same mass)
form and grow with different merger and star formation histories. Figure 6.10 demonstrates
this point explicitly.
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Figure 6.10 Proper radius of wind outflows at various redshifts, as a function of halo mass.
Each point is a realization of a merger-drivern star formation model (see text).
The solid line shows the virial radius of the host halo. All the points assume
f⋆ = 0.1, that 75% of the supernova energy is radiated away without contribut-
ing to the wind, and thatfd = 0. Note that the mass and radius scales change
between each panel. Figure credit: Furlanetto, S.R. & Loeb,A., Astrophys. J.
588, 18 (2003). Reproduced with permission of the American Astronomical
Society.
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This simple estimate has an important shortcoming: it ignores the clus-
tering of these galaxies. In reality, high-redshift galaxies form close to each
other along intersections of sheets and filaments in the cosmic web. Their
wind bubbles therefore tend to overlap rather than fill new space. Because
V ∝ E3/5, multiple sources contributing to a single bubble arelessefficient
than individual sources generating their own bubbles, so clustering will tend
to decrease the filling fraction of the enriched material.

Figure 6.11 shows some example enrichment histories following the same
methods as Figure 6.10. We consider two different sets of models: a max-
imal case that allows star formation in all halos withTvir > 400 K (solid
curves) and a more conservatve one in which star formation occurs only in
halos able to cool through atomic hydrogen transitions, with Tvir > 104 K.
Within each set, the three curves assumef⋆ = 0.5, 0.1, and 0.01, from top
to bottom. In the small-halo case – which would have to assumethat H2

cooling is extremely efficient – we also setωSN = 1050 erg M−1
⊙ , ten times

larger than the nominal value for normal star formation, to reflect the large
kinetic energy output expected from pair-instability supernovae (see§5.5).
We also takefd = 0 in this case; settingfd = 1 modestly increases the
filling factor. All these curves are generated through a Monte Carlo model
that accounts for the star formation histories of individual halos, and so they
are not necessarily smooth.

Figure 6.11 shows that, in order for a large fraction of spaceto be filled
with heavy elements byz ∼ 6, most of those metals must come from the
shallow potential wells of very small halos, which also mustproduce stars
very efficiently. Indeed, if supernova and photoionizationfeedback is as
efficient as our earlier estimates suggest, it seems implausible to expect such
halos to be able to convert even 10% of their baryons into stars. Thus,
metal enrichment in these early phases seems likely to be very patchy, with
important consequences for structure formation (see§6.6).

In the galaxies that were likely responsible for most of the metal en-
richment, both supernova winds and radiation pressure fromhot stars con-
tributed to powering the outflows. The former ultimately provide more en-
ergy for the outflow, but much of that energy may be lost as the supernova
blast waves propagate through the dense ISM of the galaxies.The momen-
tum inputs from the two channels are comparable for typical IMFs, so even
if supernova remnant cooling is efficient winds from starbursts should be
able to enrich a few percent of the IGM at high redshifts.

Unfortunately, numerical cosmological simulations currently lack the dy-
namic range to model self-consistently the launch of these winds and their
propagation through the IGM (partly because the shells cannot be resolved,
but more importantly because our physical understanding ofwinds is still
fairly crude), although simulations of individual galaxies are beginning to
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Figure 6.11 Filling factor of wind-enriched regions in different models of star formation and
wind expansion, using the same Monte Carlo methods as Figure6.10. The solid
and dotted sets of curves show models with and without efficient star formation
in halos below the atomic cooling threshold (in all halos with Tvir > 400 K);
otherwise we allow star formation only in halos above the atomic cooling
threshold (Tvir > 104 K). Within each set, the curves takef⋆ = 0.5, 0.1,
and 0.01, from top to bottom. For the H2 cooling case, we assume that
ωSN = 1050 erg M−1

⊙ to reflect the powerful supernovae of very massive Pop-
ulation III.1 stars. The dashed curve (nearly coincident with the lowest solid
curve) shows the H2 case withf⋆ = 0.1 andωSN = 1049 erg M−1

⊙ . Figure
credit: Furlanetto, S.R. & Loeb, A.,Astrophys. J.588, 18 (2003). Reproduced
with permission of the American Astronomical Society.
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examine outflow dynamics in detail. In large-scale structure simulations,
winds are launched by hand with a parameterized model; they are then
tracked as they propagate through the IGM in the momentum-dominated
limit. Such numerical simulations also show that plausiblemodels for winds
from halos above the104 K cooling threshold can enrich only a few percent
of the IGM. As the winds continue to expand at later times, this fraction
increases, but many models predict that much of the IGM remains pristine
even to late times.

The mean metallicity of these enriched regions follows easily from the
above models with only one additional parameter: the fraction fmet of the
galaxy’s metals that are ejected in the wind. This is usuallyparameterized
with themass-loading factorη which describes how much material escapes
the galaxy in units of the star formation rate,η = Ṁw/Ṁ⋆. According
to the model described in§6.4.1,η ∼ σ0/σ (see equation 6.33), assuming
that the momentum input rate simply scales with the star formation rate and
that the final velocity of the winds is just a few times the escape velocity
of the halo. Observations of low-redshift starbursts are consistent with this
simple relation ifσ0 ∼ 300 km s−1, though we note that the proportionality
constant depends on the IMF and may getlarger if the IMF is top-heavy
at high redshifts. On the other hand, this provides yet another reason why
small galaxies more efficiently enrich the IGM with metals, as η ∝ σ−1 ∝
M

−1/3
h .
If we then assume that the metals are perfectly mixed inside the galaxy,

this implies that a fractionηf⋆ of the metals produced in each galaxy are
ejected into the IGM. This material is then diluted by a factor ∼ Qefcoll as
it spreads into the IGM; thus, the mean IGM metallicity will be

ZIGM ∼ 10−3 〈η〉
(

f⋆

0.1

fcoll

0.01

)

Zgal, (6.50)

whereZgal is the mean metallicity of material inside of galaxies and〈η〉
is averaged over the entire galaxy population. The mean metallicity of en-
riched regions will be larger by∼ Q−1

e . BecauseQe should increase with
fcoll, this shows that the metallicity of enriched regions is likely to be above
the critical threshold for the transition to Population II star formation in most
plausible scenarios.

An alternative empirical estimate of the IGM metallicity follows by ob-
serving the total density of stars (which, assuming an IMF, translates into
a total metal yield). Type II supernovae from high-mass stars forming in a
typical Salpeter IMF process≈ 2.4% of the stellar mass into metals. Us-
ing the observed stellar mass estimates atz ∼ 2, this implies that the IGM
should haveZ ∼ (1/30) Z⊙ at that redshift.
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However, only∼ 10% of these metals predicted by measuring the stellar
mass of the Universe have actually been observed: the remainder may be
buried inside additional galaxy populations or in diffuse IGM systems where
the metal line optical depth is too small to resolve. In the latter case, the
enrichment may indeed be widespread, at least byz ∼ 2–3.

For a similar constraint at higher redshifts, we can calibrate the stellar
mass to the number of ionizing photons produced per baryon, which will let
us gauge the overall level of enrichment near the time of reionization (see
chapter 9). We letQH II be the number of ionizing photons reaching the
IGM per hydrogen atom,QH II ≈ Nγfescf⋆fcoll, whereNγ is the number of
ionizing photons produced per baryon in stars (∼ 4000 for a Salpeter IMF)
andfesc is the fraction of these photons that escape their host galaxy into the
IGM; we will discuss these parameters in more detail in chapter 9. Mean-
while, the mean metallicity implied by these stars isZ/Z⊙ ∼ 1.3f⋆fcoll,
where the factor1.3 is the conversion from the2.4% metal yield to solar
metallicity (which has1.89% of the mass in metals). Thus,

Z ∼ 3 × 10−3QH II

(

400

Nγfesc

)

Z⊙. (6.51)

Again, the mean metallicty in enriched regions will be a factorQ−1
e larger.

Our primary tools for constraining these winds are metal-line systems
in the Lyman-α forest (see§4.6). Metals seem nearly ubiquitous in the
high-column density systems that may be associated with virialized objects,
which implies that such halos are highly enriched. This is not surprising,
since the first stars in any halo are themselves likely enrichthe hosts’ mate-
rial to substantial levels. More interesting is the wide scatter in the metallic-
ity of lower-density regions. The estimate in equation (6.50) is reasonably
close to the observed metallicities of these systems (Z ∼ 10−3Z⊙), so care-
ful studies of IGM metal lines over time may shed light on winds and other
outflows. In particular, even atz > 6, these enriched regions will produce
measurable absorption in quasar or GRB spectra, although identifying each
line’s origin may be difficult (see§4.7).

As we will see in§8, these winds likely also play a crucial role in reg-
ulating star formation within galaxies, and their parameters can therefore
be estimated not only through IGM metallicity measurementsbut also by
comparison to galaxy luminosity functions, metallicities, and other proper-
ties. This provides another observational handle on winds and, indirectly,
chemical enrichment processes.
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Type Mechanism Effect
Radiative Lyman-α photons Pressure-driven winds

Lyman-Werner photons H2 Photodissociation/Pop III.2 stars
Ionizing photons Photoevaporation of halo gas,

Gas entropy increase (see§9.9)
X-ray photons Free-electron formation,

Gas entropy increase (see§9.9)
Mechanical Supernovae Halo disruption

Superwinds Gas suppression,
Metal pollution

AGN winds Gas suppression (see§7.5)
Chemical Enrichment Pop II stars

Table 6.2 Summary of feedback processes affecting the first stars and galaxies.

6.6 THE FIRST GALAXIES

In chapter 5, we discussed the physics of primordial star formation. Al-
though there are many unanswered questions, the problem of first star for-
mation is a tractable one: the initial conditions are well-posed and the physics
(dark matter and baryonic collapse, chemistry of the primordial gas, accre-
tion disk formation, and radiative feedback) is straightforward enough that
one can at least imagine solving the problem in full.

However, in this chapter we have examined the myriad feedback mech-
anisms generated by these stars and their descendants. As soon as the first
stars form, these processes complicate matters immensely,and it is ex-
tremely difficult to imagine building a picture of the subsequent generations
of star formation from first principles – there are simply toomany uncer-
tain parameters driving each one. Nevertheless, the underlying physics of
each process is relatively straightforward, and from detailed studies of each
individual process we can build some intuition for how the interplay may
proceed.

Such “global” formulations are coming into focus for the transformation
of the first stars to the firstgalaxies. We define a “galaxy” as a gravitationally-
bound system of stars embedded in a dark matter halo and exhibiting sus-
tainedstar formation (even if at a low level) over cosmological time periods
(i.e., a substantial fraction of the Hubble time), either inthe past or ongoing
at the present. This definition requires: (i) a virialized dark matter halo able
to accrete baryons (henceM > Mfil); (ii) efficient cooling in the baryons
(above a critical virial temperatureTmin that depends on the chemistry of
the constituent gas); (iii) sufficient mass to be stable against feedback from



STELLAR FEEDBACK AND GALAXY FORMATION 255

its own stars; and (iv) sufficient mass to be stable against feedback from
neighboring halos.

Here we will describe a plausible scenario for how such objects can ap-
pear at high redshifts. It should be obvious, however, that though this rep-
resents a “best guess” given present theoretical investigations, the lack of
observational constraints likely means that it is at best partially correct. Nev-
ertheless, it provides a coherent synthesis of the conceptswe have discussed
and is a useful baseline paradigm for future work. Figure 6.12 illustrates the
following evolutionary stages graphically and identifies some of their key
points:

1. The first stars form inside halos cooled by molecular hydrogen, with
characteristic masses determined by the chemistry of H2 cooling (see
§5.1.2 and Fig. 5.5) such thatTvir > 1000 K. Massive Population
III.1 stars form at the center of these halos after cooling tolow tem-
peratures. The key question is whether the gas cloud fragments before
the material accretes onto the protostar. If not, the final mass is likely
regulated by radiative feedback (withM⋆ > 100 M⊙); otherwise, the
first protostar’s accretion disk is the most likely site for fragmentation,
and the characteristic mass may be several times smaller.

2. The first star (or star cluster) exerts extremely strong feedback on its
host halo’s gas. The H II region created by a very massive Population
III.1 star evaporates any diffuse gas in the central regionsof the halo
(§6.3.1), and the star’s death as a supernova will trigger a blastwave
that quickly clears out the rest of the gas (provided, of course, that
the star does not collapse directly to a black hole without generating
an explosion;§6.4.3), and it enriches the entire halo with heavy ele-
ments. Dense clumps well on their way to star formation may survive
this feedback (and in fact the shock compression may even speed up
their collapse), but nothing else will. The feedback will beless se-
vere, but still substantial, if Population III.1 stars are less massive.
Nevertheless,Population III.1 star formation in any individual halo
may only occur in a single rapid burst.

3. These same feedback mechanisms also operate on somewhat larger
scales, as the H II region and supernova blastwave are able topen-
etrate to∼ kpc scales. Any nearby halos will therefore be subject
to the same effects: those that have not yet collapsed to highdensi-
ties will have their baryons evaporated at high entropies, while those
already dense enough to self-shield from the ionizing radiation will
likely have their star formation accelerated (§6.3.1). However, be-
cause these systems will form their stars from ionized gas, the en-
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Figure 6.12 Stages in a plausible scenario for the birth of the first stars and galaxies (see text
for details, andColor Plate 10for a color version of the figure).(1) The first
Population III.1 stars form in small halos via H2 cooling. (2) These stars empty
their hosts of gas via photoevaporation and supernova blastwaves. (3) This
feedback triggers Population III.2 star formation in nearby minihalos. (4) The
Lyman-Werner background from these stars suppresses star formation in small
minihalos, gradually increasing the characteristic mass scale of star-forming
objects.(5) The first self-sustaining galaxies eventually form in halosabove the
atomic cooling threshold,Tvir ∼ 104 K.
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Figure 6.13 Results from a numerical simulation of the formation of a metal-free stars and
their feedback on the surrounding environment (seeColor Plate 10for a color
version of the figure). Radiative feedback around the first star involves ion-
ized bubbles (light grey) and regions of high molecule abundance (medium
grey). The large residual free electron fraction inside therelic ionized regions,
left behind after the central star has died, rapidly catalyzes the reformation of
molecules and a new generation of lower-mass stars. Figure credit: Bromm, V.,
Yoshida, N., Hernquist, L., & McKee, C. F.Nature459, 49 (2009). Copyright
2009 by Nature Publishing Group.

hanced HD chemistry will lead to more efficient cooling and hence
(probably) a smaller characteristic mass of Population III.2 stars (see
§5.3). (Note that, because supernova blastwaves travel muchslower
than H II regions, it is very possible for this triggered starformation
to be metal-free.) Still, even with this positive feedback,the Popula-
tion III.1 and Population III.2 stars in a given cluster of minihalos will
form close together temporally (as otherwise the clumps would have
been photoevaporated), leading to “bursts” of Population III stars fol-
lowed by long pauses as the halos re-accrete their gas. Figure 6.13 il-
lustrates some of the complexity of this stage: note the several nearby
stars that form and the complicated morphology of the molecular gas
catalyzed by the presence of the H II regions.

4. Feedback also operates on larger scales. All Population III stars pro-
duce photons in the Lyman-Werner that photodissociate H2. As more
stars form, the Lyman-Werner background increases, gradually rais-
ing the critical virial temperature for cold gas formation inside mini-
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halos (§6.1.5 and Fig. 6.4). Because more massive halos are also more
rare, this will tend to self-regulate the global rate of starformation.

5. Eventually, the Lyman-Werner background will become intense enough
to choke off Population III star formation in pristine minihalos en-
tirely. Then star formation will shift to halos withTvir > 104 K,
where H I is ionized by the virial shock and atomic cooling is effi-
cient (see Fig. 5.1). Most likely these halos will have had progenitors
that formed Population III stars, in which case they will already be
pre-enriched with metals and begin to form Population II stars. It is
possible, however, that some such halos will form without stars in-
side their progenitors (perhaps because they form relatively late and
so have star formation suppressed by the Lyman-Werner background).
In that case, their pristine, initially-ionized gas will trigger Population
III.2 star formation.

6. Systems withTvir > 104 K can also maintain reasonable (though still
small) star formation rates without completely disruptingtheir gas
supplies (see Eq. 6.26).It is therefore this “second-generation” of
star-forming halos that host the first sustained galaxies.

7. Nevertheless, feedback continues to be important in regulating galaxy
formation at later times. Winds and outflows are likely crucial for
regulating star formation inside galaxies (see§8), and photoheating
from ionizing photons in the IGM will gradually increase theJeans
mass and thus the minimum mass scale for galaxy formation (see
§9.9, where we will discuss this topic in detail.)

The transition to star formation in long-lived galaxies likely occurred
long before the Universe was reionized. The intensity of theLyman-Werner
background can be estimated as

JLW ∼ cnLW

4π

(

hν

∆νLW

)

(6.52)

wherenLW is the number density of photons in the Lyman-Werner band
and∆νLW is the band’s width in frequency space. We then writenLW ∼
fLW/ionQH II/fescnH , wherefLW/ion is the number of Lyman-Werner pho-
tons produced per ionizing photon by stars (which is∼ 0.1 for very massive
Population III stars or near unity for Population II stars),QH II is the num-
ber of ionizing photons that escape into the IGM per hydrogenatom, and
fesc is the fraction of all ionizing photons that manage to escapein this way.
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Then

JLW,21 ∼ 100QH II

(

0.1

fesc

fLW/ion

0.1

)(

1 + z

20

)3

. (6.53)

Lyman-Werner photons suppress H2 cooling completely whenJLW,21 > 1
(see equation (6.4), which should occur long before enough ionizing pho-
tons are produced to reionize the IGM. Thus, it seems very likely that the
primary sources responsible for reionizing the Universe were long-lived
galaxies, rather than the bursty minihalos in which the firststars themselves
formed.

Although this is a very plausible picture consistent with detailed theoreti-
cal work, there are a number of points at which seemingly minor differences
may dramatically alter the results. We list several here to give a flavor for
the uncertainties:

• If fragmentation is efficient in accretion disks composed ofprimordial
stars, the first halos would form clusters of moderately sized stars
rather than single very massive stars. The resulting feedback would
be less efficient, potentially allowing gas to remain in halos somewhat
below the usualTvir ∼ 104 K atomic cooling threshold. The mass
scale of the first galaxies would shift downward.

• If Population III stars form in the mass ranges 40–100 M⊙ or 140–
260M⊙, they will die by exploding rapidly to black holes without ex-
plosions. This would allow their halos to retain more of their gas, with
only the photoevaporation feedback to contend with, and allow sus-
tained star formation to continue in low-mass halos. Moreover, they
would not enrich their environments (except perhaps weaklythrough
stellar winds), allowing Population III.1 and III.2 to persist for longer
timescales – possibly even to the atomic cooling threshold.

• If the shells that form at the edges of supernova blastwaves are grav-
itationally unstable, they can fragment and form stars as well. If the
fragmentation scale is small, these could even be long-lived stars that
exert relatively small feedback.

• If black holes form abundantly and accrete gas efficiently from bi-
nary star companions or the ISM (see§ 7), then their X-ray back-
ground increases the free electron fraction inside halos, promoting H2

formation and possibly counteracting photodissociation from Lyman-
Werner photons. This would allow much more rapid primordialstar
formation in low-mass halos.
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• The consequences of enrichment inside minihalos has been largely
unexplored, because the gas is expected to be expelled. But if some is
retained, the metals allow rapid cooling and hence more efficient star
formation than H2. This too could lead to smaller galaxies.

Obviously there is a great deal of uncertainty in how the firststars will
grow into the first galaxies – most likely, observations willbe necessary to
settle the question. However, in closing we stress that mostof the underlying
physics is well-understood in isolation and has many applications to other
areas of astrophysics. It is the complex interplay of the processes we have
described here that makes the problem challenging and exciting to explore
observationally.



Chapter Seven

Supermassive Black Holes

7.1 QUASARS AND BLACK HOLES: AN OVERVIEW

A black hole is the end product of the complete gravitationalcollapse of a
material object, such as a massive star. It is surrounded by ahorizon from
which even light cannot escape. Black holes have the dual virtues of being
extraordinarily simple solutions to Einstein’s equationsof gravity (as they
are characterized only by their mass, charge, and spin), butalso the most
disparate from their Newtonian analogs. In Einstein’s theory of gravity,
black holes represent the ultimate prisons: you can check in, but you can
never check out.

Ironically, black hole environments are the brightest objects in the uni-
verse. Of course, it is not the black hole that is shining, butrather the
surrounding gas heated by viscously rubbing against itselfand shining as
it spirals into the black hole like water going down a drain, never to be seen
again. The origin of the radiated energy is the release of gravitational bind-
ing energy as the gas falls into the deep gravitational potential well of the
black hole. As much as tens of percent of the mass of the accreting mate-
rial can be converted into heat (more than an order of magnitude beyond the
maximum efficiency of nuclear fusion). Astrophysical blackholes appear in
two flavors: stellar-mass black holes that form when massivestars die, and
the monstrous super-massive black holes that sit at the center of galaxies,
reaching masses of up to 10 billion Suns. The latter type are observed as
active galactic nuclei (AGN). It is by studying these accreting black holes
that all of our observational knowledge of black holes has been obtained.

A quasar – the most powerful type of AGN – is a point-like (“quasi-
stellar”) bright source at the center of a galaxy. There are many lines of
evidence indicating that a quasar involves a supermassive black hole, that is
accreting gas from the core of its host galaxy. The supply of large quanti-
ties of fresh gas is often triggered by a merger between two galaxies. The
infalling gas heats up as it spirals towards the black hole and dissipates its
rotational energy through viscosity. The gas is expected tobe drifting in-
wards in an accretion disk until it reaches the last possiblestable orbit ac-
cording to general relativity. Interior to this point, the gas plunges into the
black hole in such a short time that it has no opportunity to radiate most of
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its thermal energy. However, as will be described in detail in §7.2, the frac-
tion of the rest mass of the gas which gets radiated away just outside this
orbit is high, ranging between 5.7% for a non-spinning blackhole to 42.3%
for a maximally-spinning black hole (see Figure 7.5). This “radiative effi-
ciency” is far greater than the mass-energy conversion efficiency provided
by nuclear fusion in stars, which is< 0.7%.

Fortunately, quasars are very easy to see when the accretionoccurs through
a thin disk, and we have a great deal of demographic information on their
properties out to very high redshifts. Quasar activity is observed in a small
fraction of all galaxies at any cosmic epoch. Figure 7.1 shows the evolution
of the luminosity function of quasars at different observedwavelengths in
the redshift intervalz = 2–5. Mammoth black holes weighing more than
a billion solar masses were discovered at redshifts as high as z ∼ 6–7, less
than a billion years after the Big Bang. The highest redshiftquasar known
(as of winter 2012) is ULAS J1120+0641 atz = 7.085 (only 0.77 Gyr af-
ter the Big Bang), with a bolometric luminosity of6.3 × 1013 L⊙ and an
estimated black hole mass of2 × 109 M⊙; we show a partial spectrum of
this quasar in Figure 11.8, where we discuss this object in the context of the
reionization of the Universe.

There is clear and direct evidence for supermassive black holes, even be-
yond the AGN population. In our own Milky Way galaxy, stars are observed
to zoom around the Galactic center at speeds of up to ten thousand kilome-
ters per second, owing to the strong gravitational acceleration near the cen-
tral black hole (with a mass∼ 4 × 106 M⊙).84 But closer-in observations
are forthcoming. Existing technology should soon be able toimage the sil-
houette of the supermassive black holes in the Milky Way and M87 galaxies
directly (see Figure 7.2).

Nevertheless, many questions remain about black holes. If the accreting
material is organized into a thin disk, where the gas can efficiently radiate
its released binding energy, then its theoretical modelingis straightforward.
Less well understood are radiatively inefficient accretionflows, in which the
inflowing gas obtains a thick geometry. It is generally unclear how gas mi-
grates from large radii to near the horizon and how, precisely, it falls into the
black hole. For example, we presently have very poor constraints on how
magnetic fields embedded and created by the accretion flow arestructured,
and how that structure affects the observed properties of astrophysical black
holes. While it is beginning to be possible to perform computer simulations
of the entire accreting region, we are decades away from trueab initio calcu-
lations, and thus observational input plays a crucial role in deciding between
existing models and motivating new ideas.

More embarrassing is our crude understanding of black hole jets (see Fig-
ure 7.3) and other feedback mechanisms. These extraordinary exhibitions
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Figure 7.1 Redshift evolution of the luminosity function ofquasars at different observed
wavelengths:B-band (center-left panels), soft X-rays (0.5 − 2 keV) (center),
hard X-rays (2 − 10 keV) (center-right; red), and mid-IR (15 µm) (right; cyan).
The left panels show the distribution of bolometric luminosities (integrated over
all wavelength). Lines show the best-fit evolving double power-law model to data
points at all redshifts (solid), the best-fit model at the given redshift (dashed), and
the best-fit model that allows only the break luminosity to evolve (dotted). Figure
credit: Hopkins, P. F., Richards, G. T., & Hernquist, L.,Astrophys. J.654, 731
(2007). Reproduced with permission of the American Astronomical Society.
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Figure 7.2 Simulated image of an accretion flow around a blackhole spinning at half its
maximum rate, from a viewing angle of10◦ relative to the rotation axis (see
Color Plate 12for a color version of this figure). The coordinate grid in the
equatorial plane of the spiraling flow shows how strong lensing around the black
hole bends the back of the apparent disk up. The left side of the image is brighter
due its rotational motion towards the observer. The bright arcs are generated by
gravitational lensing. A dark silhouette appears around the location of the black
hole because the light emitted by gas behind it disappears into the horizon and
cannot be seen by an observer on the other side. Recently, thetechnology for
observing such an image from the supermassive black holes atthe centers of the
Milky Way and M87 galaxies has been demonstrated as feasible[Doeleman, S.,
et al.Nature455, 78 (2008)]. To obtain the required resolution of tens of micro-
arcseconds, interferometers operating at millimeter wavelengths across the Earth
are necessary. Figure credit: Broderick, A., & Loeb, A.Journal of Physics Conf.
Ser. 54, 448 (2006);Astrophys. J.697, 1164 (2009). Reproduced with permis-
sion of the American Astronomical Society.
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Figure 7.3 Multi-wavelength images of the highly collimated jet emanating from the super-
massive black hole at the center of the giant elliptical galaxy M87 (seeColor
Plate 13for a color version of this figure). The X-ray image (top) was obtained
with the Chandra X-ray satellite, the radio image (bottom left) was obtained with
the Very Large Array (VLA), and the optical image (bottom right) was obtained
with the Hubble Space Telescope (HST). Figure credit: CXO/NASA.

of the power of black holes are moving at nearly the speed of light and in-
volve narrowly collimated outflows whose base has a size comparable to
the solar system, while their front reaches scales comparable to the distance
between galaxies.85 Unresolved issues are as basic as what jets are made of
(whether electrons and protons, electrons and positrons, or primarily elec-
tromagnetic fields) and how they are accelerated in the first place. Both of
these rest critically on the role of the black hole spin in thejet-launching
process. The bright radiation and powerful jets of AGN can have dramatic
feedback effects on the black hole’s host galaxy.

If massive black holes grow at early cosmic times, should their remnants
be around us today?Indeed, searches for black holes in local galaxies have
found that every galaxy with a stellar spheroid harbors a supermassive black
hole at its center. This implies that quasars are rare simplybecause their
activity is short-lived. The inferred growth in the comoving mass function
of black holes along with its integral over all black hole masses (i.e. the
comoving mass density) are shown in Figure 7.4. Moreover, there appears
to be a tight correlation between the black hole mass and the gravitational
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Figure 7.4 Left panel:the black hole mass density of quasars from the data (circles) and the
best fit luminosity function (solid line). The inset shows the fraction of the mass
density relative to today’s value,ρBH(z)/ρBH(0), on a linear scale.Right: the
black hole mass function atz = 0 (thick black line) andz = 1, 2, 3 (from top
to bottom). The shaded region shows the1σ observational uncertainty. Figure
credit: Hopkins, P. F., Richards, G. T., & Hernquist, L.,Astrophys. J.654, 731
(2007). Reproduced with permission of the American Astronomical Society.

potential-well depth of their host spheroids of stars (as measured by the
velocity dispersion of these stars), as described in detailin §7.5.1.

This suggests that the black holes grow up to the point where the heat
they deposit into their environment or the piston effect from their winds
prevent additional gas from feeding them further, or else that the feedback
from star formation in the vicinity of the black holes affects or controls their
self-regulation. . The situation is similar to a baby who gets more energetic
as he eats more at the dinner table, until his hyper-activityis so intense that
he pushes the food off the table and cannot eat any more. Thisprinciple of
self-regulationexplains why quasars are short lived and why the final black
hole mass is dictated by the depth of the potential in which the gas feeding
it resides.86 Evidently, the growth of supermassive black holes is intimately
linked to the hierarchical growth of their host galaxies. Most black holes
today are dormant or “starved” because the gas around them was mostly
used up in making the stars, or because their activity heatedor pushed it
away a long time ago.

This state of affairs can be easily understood from the fact that the bind-
ing energy per unit mass in a typical galaxy correspond to velocities v of
hundreds ofkm s−1 or a fraction∼ (v/c)2 ∼ 10−6 of the binding energy
per unit mass near a black hole. Hence a small amount of gas that releases
its binding energy near a black hole can have a large effect onthe rest of the
gas in the galaxy.

Why did the collapsed matter in the Universe end up making galaxies and



SUPERMASSIVE BLACK HOLES 267

not black holes?One would have naively expected spherical collapse to end
with the formation of a point mass at its center. But, as it turns out, tides
from neighboring objects torque the infalling material andinduce aspheric-
ity and some spin into the final collapse. The induced angularmomentum
prevents the gas from reaching the center on a direct plunging orbit. After
the gas cools and loses its pressure support against gravity, it instead assem-
bles into a disk in which the centrifugal force balances gravity. The finite
size of the luminous region of galaxies is then dictated by the characteristic
spin acquired by galaxy halos, which typically correspondsto a rotational
velocity that is∼ 5% of the virial circular velocity, with a negligible depen-
dence on halo mass. In the previous two chapters, we have discussed how
this material forms stars and, eventually, galaxies.

But star formation does not imply that no gas accumulates at the center.
In fact, galactic spheroids are observed to generically harbor a central black
hole, whose formation is most likely linked to the small massfraction of
galactic gas (< 0.1%) with unusually small amount of angular momentum.
The small mass fraction of the central black holes implies that their gravita-
tional effect is restricted to the innermost cusp of their host galaxy.

In this chapter, we will study formation mechanisms for supermassive
black holes, their observable characteristics, and their interactions with their
host galaxies and the wider Universe. We begin with a short introduction to
the properties of black holes in general relativity.

7.2 BASIC PRINCIPLES OF ASTROPHYSICAL BLACK HOLES

In Newtonian gravity, the gravitational field at any radius outside a spherical
mass distribution depends only on the mass interior to that radius. This
results is also true in Einstein’s general relativity, where Birkhoff’s theorem
(see§1.2.2) states that the only vacuum, spherically symmetric gravitational
field is that described by the staticSchwarzschild metric,

ds2 = −
(

1 − rSch

r

)

c2dt2 +
(

1 − rSch

r

)−1
dr2 + r2dΩ, (7.1)

wheredΩ = (dθ2 + sin2 θdφ2). TheSchwarzschild radiusis related to the
massM of the central (non-spinning) black hole,

rSch =
2GM

c2
= 2.95 × 105 cm

(

M

1 M⊙

)

. (7.2)

The black hole horizon,rHor (= rSch here), is a spherical boundary from
where no particle can escape. [The coordinate singularity of the Schwarzschild
metric atr = rSch can be removed through a transformation to theKruskal
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coordinate system(r, t) → (u, v), whereu = (r/rSch − 1)1/2 er/2rSchcosh(ct/2rSch);
v = u tanh(ct/2rSch).] The existence of a spatial region into which par-
ticles may fall but never come out breaks the time reversal symmetry that
characterizes the equations of quantum mechanics. Any grander theory that
would unify quantum mechanics and gravity must remedy this conceptual
inconsistency.

In addition to its massM , a black hole can only be characterized by its
spinJ and electric chargeQ (similarly to an elementary particle). In astro-
physical circumstances, any initial charge of the black hole would be quickly
neutralized through the polarization of the background plasma and the pref-
erential infall of electrons or protons. The residual electric charge would
exert an electric force on an electron that is comparable to the gravitational
force on a proton,eQ ∼ GMmp, implying (Q2/GM2) ∼ Gm2

p/e
2 ∼

10−36 and a negligible contribution of the charge to the metric. A spin,
however, may modify the metric considerably.

The general solution of Einstein’s equations for a spinningblack hole was
derived by Kerr in 1963, and can be written most convenientlyin Boyer-
Lindquist coordinates:

ds2 =−
(

1 − rSchr

Σk

)

c2dt2 − 2jrSchr sin2 θ

Σk
cdtdφ+

Σk

∆
dr2

+ Σkdθ
2 +

(

r2 + j2 +
rSchj

2r sin2 θ

Σk

)

sin2 θdφ2, (7.3)

where the black hole is rotating in theφ direction,j = [J/Mc] is the nor-
malized angular momentum per unit mass (in units of cm),∆ = r2−rrSch+
j2, andΣk = r2 + j2 cos2 θ. The dimensionless ratioa = j/(GM/c2) is
bounded by unity, anda = 1 corresponds to a maximally rotating black
hole. The horizon radiusrHor is now located at the larger root of the equa-
tion ∆ = 0, namelyr+ = 1

2rSch[1+(1−a2)1/2]. The Kerr metric converges
to the Schwarzschild metric fora = 0. There is no Birkhoff’s theorem for a
rotating black hole.

Test particle orbits around black holes can be simply described in terms
of an effective potential. For photons around a Schwarzschild black hole,
the potential is simplyVph = (1−rSch/r)/r

2. This leads to circular photon
orbits at a radiusrph = 3

2rSch. For a spinning black hole,

rph = rSch

[

1 + cos

(

2

3
cos−1[±a]

)]

, (7.4)

where the upper sign refers to orbits that rotate in the opposite direction to
the black hole (retrograde orbits) and the lower sign to corotating (prograde)
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Figure 7.5 The left panel shows the radius of the black hole horizon rHor (dashed line) and
theInnermost Stable Circular Orbit (ISCO)around itrISCO (solid line), in units
of the Schwarzschild radiusrSch (see equation 7.2), as functions of the black
hole spin parametera. The limiting value ofa = 1 (a = −1) corresponds to a
corotating (counter-rotating) orbit around a maximally-spinning black hole. The
binding energy of a test particle at the ISCO determines the radiative efficiency
ǫ of a thin accretion disk around the black hole, shown on the right panel.

orbits. For a maximally-rotating black hole (|a| = 1), the photon orbit radius
is rph = 1

2rSch for a prograde orbit and2rSch for a retrograde orbit.
Circular orbits of massive particles exist when the first derivative of their

effective potential (including angular momentum) with respect to radius
vanishes, and these orbits are stable if the second derivative of the poten-
tial is positive. The radius of theInnermost Stable Circular Orbit (ISCO)
defines the inner edge of any disk of particles in circular motion (such as
fluid elements in an accretion disk). At smaller radii, gravitationally bound
particles plunge into the black hole on a dynamical time. This radius of the
ISCO is given by87

rISCO =
1

2
rSch

{

3 + Z2 ± [(3 − Z1)(3 + Z1 + 2Z2)]
1/2
}

, (7.5)

whereZ1 = 1+(1−a2)1/3[(1+a)1/3+(1−a)1/3] andZ2 = (3a2+Z2
1 )1/2.

Figure 7.5 shows the radius of the ISCO as a function of spin. The binding
energy of particles at the ISCO defines their maximum radiative efficiency
because they spend a short time on their plunging orbit interior to the ISCO.



270 CHAPTER 7

This efficiency is given by

ǫ = 1 −
r2 − rSchr ∓ j

√

1
2rSchr

r(r2 − 3
2rSchr ∓ 2j

√

1
2rSchr)1/2

. (7.6)

The efficiency ranges betweenǫ = (1 −
√

8/9) = 5.72% for a = 0, to
(1 −

√

1/3) = 42.3% for a prograde (corotating) orbit witha = 1 and
(1 −

√

25/27) = 3.77% for a retrograde orbit.

7.3 ACCRETION OF GAS ONTO BLACK HOLES

7.3.1 Bondi Accretion

Consider a black hole embedded in a hydrogen plasma of uniform density
ρ0 = mpnH and temperatureT0. The thermal protons in the gas are moving
around at roughly the sound speedcs ∼

√

kBT/mp. The black hole gravity
could drive accretion of gas particles that are gravitationally bound to it,
namely interior to the radius of influence,rinf ∼ GM/c2s . The steady mass
flux of particles entering this radius isρ0cs. Multiplying this flux by the
surface area associated with the radius of influence gives the supply rate of
fresh gas,

Ṁ ≈ πr2infρ0cs = 15

(

M

108 M⊙

)2 ( nH

1 cm−3

)

(

T0

104 K

)−3/2

M⊙ yr−1.

(7.7)
In a steady state this supply rate equals the mass accretion rate into the black
hole (see also§5.2.1).

The explicit steady state solution to the conservation equations of the gas
(mass, momentum, and energy), which is self-similar was first derived by
Bondi in 1952. This exact solution introduces a correction factor of order
unity to equation (7.7).88 Well inside the sonic radius (i.e., the point at
which the infall and sound speeds are equal), the velocity isclose to free-
fall u ∼ (2GM/r)1/2 and the gas density isρ ∼ ρ0(r/rinf)

−3/2. The
radiative efficiency is small, because either the gas is tenuous so that its
cooling time is longer than its accretion (free-fall) time or the gas is dense
and the diffusion time of the radiation outwards is much longer than the free-
fall time. If the inflowing gas contains near-equipartitionmagnetic fields,
then cooling through synchrotron emission typically dominates over free-
free emission.

A black hole that is moving with a velocityV relative to a uniform
medium accretes at a lower rate than a stationary black hole.At high ve-
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locities, the radius of influence of the black hole would now be∼ GM/V 2,
suggesting that the sound speedcs be crudely replaced with∼ (c2s +V 2)1/2

in equation (7.7). A similar suppression factor applies forthe accretion of
baryons onto dark matter halos when the baryons have a net bulk velocity
relative to the dark matter (see§2.1.2 and 3.2.2).

7.3.2 Thin Disk Accretion

If the inflow is endowed with rotation, the gas would reach a centrifugal bar-
rier from where it could only accrete farther inwards after its angular mo-
mentum has been transported away. This limitation follows from the steeper
radial scaling of the centrifugal acceleration (∝ r−3 if angular momentum
is conserved; see equation 5.33) compared to the gravitational acceleration
(∝ r−2). Near the centrifugal barrier, where the gas is held against gravity
by rotation, an accretion disk would form around the black hole, centered on
the plane perpendicular to the rotation axis. The accretiontime would then
be dictated by the rate at which angular momentum is transported through
viscous stress, and could be significantly longer than the free-fall time for
a non-rotating flow (as in the solution described by the Bondiaccretion
model). As the gas settles to a disk, the dissipation of its kinetic energy into
heat would make the disk thick and hot, with a proton temperature close
to the gravitational potential energy per proton∼ 1012 K(r/rSch)−1 in the
absence of radiative processes. However, if the cooling time of the gas is
shorter than the viscous time, then a thin disk would form. This latter regime
is realized for the high gas inflow rate during the processes (such as galaxy
mergers) that feed quasars. To better understand such objects, we start by
exploring the structure of thin disks that characterize thehigh accretion rate
of quasars.89

We imagine a planar thin disk of cold gas orbiting a central black hole and
wish to describe its structure in polar coordinates(r, φ). Each gas element
orbits at the local Keplerian velocityvφ = rΩ = (GM/r)1/2 and spirals
slowly inwards with radial velocityvr ≪ vφ as viscous torques transport
its angular momentum to the outer part of the disk. The associated viscous
stress generates heat, which is radiated away locally from the the disk sur-
face. We assume that the disk is fed steadily and so it manifests a constant
mass accretion rate at all radii. Mass conservation implies

Ṁ = 2πrΣvr = constant, (7.8)

whereΣ(r) is the surface mass density of the disk.
In the limit of a geometrically thin disk with a scale heighth ≪ r, the

hydrodynamic equations decouple in the radial and verticaldirections. We
start with the radial direction. The Keplerian velocity profile introduces
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shear which dissipates heat as neighboring fluid elements rub against each
other. The concept of shear viscosity can be easily understood in the one-
dimensional example of a uniform gas whose velocity along the y-axis
varies linearly with thex coordinate,V = V0 + (dVy/dx)x. A gas particle
moving at the typical thermal speedv traverses a mean-free-pathλ along
thex-axis before it collides with other particles and shares itsy-momentum
with them. They-velocity is different across a distanceλ by an amount
∆V ∼ λdVy/dx. Since the flux of particles streaming along thex-axis is
∼ nv, wheren is the gas density, the net flux ofy-momentum being trans-
ported per unit time,∼ nvm∆V , is linear in the velocity gradientηdVy/dx,
with a viscosity coefficientη ∼ ρvλ (in g cm−1 s−1), whereρ = mn is the
mass density of the gas. Since the excess kinetic energy density across a
mean-free-path,12ρ(λdVy/dx)

2 is dissipated every collision time∼ (λ/v),
viscosity heats the gas at a rate per unit volume ofHvis ∼ [η(dVy/dx)]

2/η.
Similar arguments show that within a Keplerian accretion disk, the flux

of φ-momentum that is transported in the positiver-direction is given by
the viscous stressfφ = 3

2ηΩ. This is expected to be effective down to the
ISCO, from where the gas plunges into the black hole over a free fall time.
We therefore set the inner boundary of the disk asrISCO, depicted in Figure
7.5. Angular momentum conservation requires that the net rate of its change
within a radiusr be equal to the viscous torque, namely

fφ × (2πr × 2h) × r = Ṁ
[

(GMr)1/2 − (GMrISCO)1/2
]

. (7.9)

The production rate of heat per unit volume by the viscous stress is given
by Hvis = f2

φ/η. Substitutingfφ and equation (7.9) gives

2hHvis =
3Ṁ

4πr2
GM

r

[

1 −
(rISCO

r

)1/2
]

. (7.10)

This power provides a local radiative flux that leaves the system vertically
from the top and bottom surfaces of the disk,

F =
1

2
× 2hHvis =

3Ṁ

8πr2
GM

r

[

1 −
(rISCO

r

)1/2
]

. (7.11)

The total luminosity of the disk is given by

L =

∫ ∞

rISCO

2F × 2πrdr =
1

2

GMṀ

rISCO
, (7.12)

where we have ignored general-relativistic corrections tothe dynamics of
the gas and the propagation of the radiation it emits.
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In the absence of any vertical motion, momentum balance in the vertical
z-direction yields

1

ρ

dp

dz
= −GM

r2
z

r
, (7.13)

wherez ≪ r andp andρ are the gas pressure and density. This equation
fixes the disk scale heighth ≈ cs/Ω wherecs ≈ (P/ρ)1/2 is the sound
speed.

Because of the short mean free path for particle collisions,the particle-
level viscosity is negligible in accretion disks. However,such disks are sus-
ceptable to the powerfulmagneto-rotational instability(MRI) that amplifies
magnetic turbulence over an orbital time. The origin of the instability can
be easily understood by imagining two fluid elements that arethreaded by a
single magnetic field line and are slightly displaced from each other in the
radial direction. The magnetic field acts as a spring owing toits tension. In a
Keplerian disc the inner fluid element orbits more rapidly than the outer el-
ement, causing the spring to stretch. The inner fluid elementis then forced
by the spring to slow down, reduce its angular momentum, and therefore
move to a lower orbit. The outer fluid element, meanwhile, is forced by the
spring to speed up, increase its angular momentum, and therefore move to
a higher orbit. The spring tension increases as the two fluid elements sepa-
rate farther, and eventually the process runs away. The magneto-rotational
instability90 is likely to develop turbulent eddies in the disk which are much
more effective at transporting its angular momentum than particle viscosity.
In this caseλ andv should be replaced by the typical size and velocity of an
eddy. The largest value that these variables can obtain are the scale heighth
and sound speedcs in the disk. This impliesfφ < (ρcsh)Ω ≈ ρc2s ≈ p. We
may then parameterize the viscous stress as some fractionα of its maximum
value,fφ = αp.

The total pressurep in the disk is the sum of the gas pressurepgas =
2(ρ/mp)kBT , and the radiation pressure,prad = 1

3aradT
4. We define the

fractional contribution of the gas to the total pressure as

β ≡ pgas

p
. (7.14)

In principle, the viscous stress may be limited by the gas pressure only; to
reflect this possibility, we writefφ = αpβb, whereb is 0 or 1 if the viscosity
scales with the total or just the gas pressure, respectively.

Since the energy of each photon is just its momentum times thespeed of
light, the radiative energy flux is simply given by the changein the radiation
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pressure (momentum flux) per photon mean free path,

F = −cdprad

dτ
, (7.15)

where the optical depthτ is related to the frequency-averaged (so-called
Rosseland-mean) opacity coefficient of the gas,κ,

τ =

∫ h

0
κρdz ≈ 1

2
κΣ, (7.16)

whereΣ = 2hρ. For the characteristic mass densityρ and temperatureT
encountered at the midplane of accretion disks around supermassive black
holes, there are two primary sources of opacity:electron scatteringwith

κes =
σT

mp
= 0.4 cm2 g−1, (7.17)

andfree-freeabsorption with

κff ≈ 8 × 1022cm2 g−1

(

ρ

g cm−3

)(

T

K

)−7/2

, (7.18)

where we assume a pure hydrogen plasma for simplicity.
It is customary to normalize the accretion rateṀ in the disk relative to the

so-called Eddington ratėME , which would produce the maximum possible
disk luminosity,LEdd (see the derivation in equation 7.33 below). When the
luminosity approaches the Eddington limit, the disk bloatsandh approaches
r, violating the thin-disk assumption. We writėm = (Ṁ/ṀEdd), with
ṀEdd ≡ (LEdd/ǫc

2), whereǫ is the radiative efficiency for converting rest-
mass to radiation near the ISCO (shown in Figure 7.5).

In local thermodynamic equilibrium, the emergent flux from the surface
of the disk (equation 7.11) can be written in terms of the midplane disk
temperatureT asF ≈ caradT

4/κΣ. The surface temperature of the disk is
then roughly,

Td ≈
(

4F

arad

)1/4

= 105 K M
−1/4
8 ṁ

1/4
−1 r

−3/4
1

[

1 −
(

r

rISCO

)1/2
]

.

(7.19)
Note that the disk surface temperature increases at small black hole masses

and reaches the X-ray regime for stellar-mass black holes. (Non-thermal
X-ray emission from a hot corona or a jet can supplement this disk emis-
sion.) Stellar mass black holes can therefore be important X-ray sources at
high redshifts, especially if they get incorporated into a binary system where
they accrete gas from a companion star. In the local Universe, black-hole
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X-ray binaries come in two flavors, depending on the mass of the compan-
ion star: low-mass X-ray binarieswhere a low-mass companion transfers
mass owing to the tidal force exerted by the black hole, andhigh-mass X-
ray binaries (BH-HMXB or micro-quasars)where the companion is a mas-
sive star which could also transfer mass to the black hole through a wind.
At redshiftsz > 6 when the age of the Universe was short, BH-HMXB
were probably most important since they are known to producetheir X-rays
over a short lifetime (< 109 yr). The cumulative X-ray emission from BH-
HMXBs is expected to be proportional to the star formation rate. If indeed
the early population of stars was tilted towards high massesand binaries
were common, BH-HMXB may have been more abundant per star forma-
tion rate in high redshift galaxies. As we discuss elsewhere, the X-rays pro-
duced by BH-HMXBs may have had important observable effectsas they
catalyzed H2 formation (§6.2), heated the IGM (§9.8.2), and modified the
21-cm signal from neutral hydrogen (§12.3.2). Their overall influence was,
however, limited: hydrogen could not have been reionized byX-ray sources
based on current limits on the unresolved component of the X-ray back-
ground. Throughout this chapter, we focus our attention on supermassive
black holes, which are brighter and hence easier to detect individually at
high redshifts.

Based on the above equations, we are now in a position to derive the
scaling laws that govern the structure of the disk far away from the ISCO.
For this purpose we use the following dimensionless parameters: r1 =
(r/10RSch), M8 = (M/108 M⊙), ṁ−1 = (ṁ/0.1), α−1 = (α/0.1) and
ǫ−1 = (ǫ/0.1).

For supermassive black holes, the accretion disk can be divided radially
into three distinct regions,91

1. Inner region:where radiation pressure and electron-scattering opacity
dominate.

2. Middle region: where gas pressure and electron-scattering opacity
dominate.

3. Outer region:where gas pressure and free-free opacity dominate.

The boundary between regions 1 and 2 is located at the radius

r1,im ≈ 54α
2/21
−1 (ṁ−1/ǫ−1)

16/21M
2/21
8 if b = 1, (7.20)

58α
2/21
−1 (ṁ−1/ǫ−1)

16/21M
2/21
8 if b = 0, (7.21)

and the transition radius between regions 2 and 3 is

r1,mo ≈ 4 × 102 (ṁ−1/ǫ−1)
2/3. (7.22)
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The surface density and scale-height of the disk are given by
Inner region:

Σ(r)≈ (3 × 106 g cm−2)α
−4/5
−1

(

ṁ−1

ǫ−1

)3/5

M
1/5
8 r

−3/5
1 if b = 1,(7.23)

(8 × 102 g cm−2)α−1
−1

(

ṁ−1

ǫ−1

)−1

r
3/2
1 if b = 0, (7.24)

h(r)≈RSch

(

ṁ−1

ǫ−1

)

. (7.25)

Middle region:

Σ(r)≈ (3 × 106 g cm−2)α
−4/5
−1

(

ṁ−1

ǫ−1

)3/5

M
1/5
8 r

−3/5
1 , (7.26)

h(r)≈ 1.4 × 10−2RSα
−1/10
−1

(

ṁ−1

ǫ−1

)1/5

M
−1/10
8 r

21/20
1 . (7.27)

Outer region:

Σ(r)≈ (6 × 106 g cm−2)α
−4/5
−1

(

ṁ−1

ǫ0.1

)7/10

M
1/5
8 r

−3/4
1 , (7.28)

h(r)≈ 10−2RSα
−1/10
−1

(

ṁ−1

ǫ−1

)3/20

M
−1/10
8 r

9/8
1 . (7.29)

The mid-plane temperature is given by

Tm(r)≈
(

16π2
)−1/5

(

mp

kBσT

)1/5

α−1/5κ1/5Ṁ2/5Ω3/5β−(1/5)(b−1) .(7.30)

The above scaling laws ignore the self-gravity of the disk. This assump-
tion is violated at large radii. The instability of the disk to gravitational
fragmentation due to its self-gravity occurs when the so-called Toomre pa-
rameter,Q = (csΩ/πGΣ), drops below unity (see§5.2.3). For the above
scaling laws of the outer disk, this occurs at the outer radius,

r1,out ≈ 2 × 104α
28/45
−1 (ṁ−1/ǫ−1)

−22/45M
52/45
8 . (7.31)

Outside this radius, the disk gas would fragment into stars,and the stars
may migrate inwards as the gas accretes onto the black hole. The energy
output from stellar winds and supernovae would supplement the viscous
heating of the disk and might regulate the disk to haveQ ∼ 1 outside the
above boundary. We therefore conclude that star formation will inevitably
occur on larger scales, before the gas is driven into the accretion disk that
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feeds the central black hole. Indeed, the broad emission lines of quasars dis-
play very high abundances of heavy elements in the spectra out to arbitrarily
high redshifts. Since the total amount of mass in the disk interior to this ra-
dius makes only a small fraction of the mass of the supermassive black hole,
quasars must be fed by gas that crosses this boundary after being vulnerable
to fragmentation.92

7.3.3 Radiatively Inefficient Accretion Flows

When the accretion rate is considerably lower than its Eddington limit (Ṁ/ṀE <
10−2), the gas inflow switches to a different mode, called aRadiatively
Inefficient Accretion Flow(RIAF) or an Advection Dominated Accretion
Flow (ADAF), in which either the cooling time or the photon diffusion
time is much longer than the accretion time of the gas and heatis mostly
advected with the gas into the black hole. At the low gas densities and
high temperatures characterizing this accretion mode, theCoulomb cou-
pling is weak and the electrons do not heat up to the proton temperature
even with the aid of plasma instabilities. Viscosity heats primarily the pro-
tons since they carry most of the momentum. The other major heat source,
compression of the gas, also heats the protons more effectively than the
electrons. As the gas falls inward and its densityρ rises, the temperature
of each speciesT increases adiabatically asT ∝ ργ−1, whereγ is the
corresponding adiabatic index. At radiir < 102rSch, the electrons are
relativistic with γ = 4/3 and so their temperature rises inwards with in-
creasing density asTe ∝ ρ1/3 while the protons are non-relativistic with
γ = 5/3 and soTp ∝ ρ2/3, yielding a two-temperature plasma with the pro-
tons being much hotter than the electrons. Typical analyticmodels93 yield
Tp ∼ 1012 K(r/rSch)−1, Te ∼ min(Tp, 10

9−11 K). Because the typical
sound speed is comparable to the Keplerian speed at each radius, the ge-
ometry of the flow is thick – making RIAFs the viscous analogs of Bondi
accretions.

Analytic models imply a radial velocity that is a factor of∼ α smaller
than the free-fall speed and an accretion time that is a factor of ∼ α longer
than the free-fall time. However, since the sum of the kinetic and thermal
energies of a proton is comparable to its gravitational binding energy, RIAFs
are expected to be associated with strong outflows.

The radiative efficiency of RIAFs is smaller than the thin-disk value (ǫ).
While the thin-disk value applies to high accretion rates above some critical
value,ṁ > ṁcrit, whereṁ is the accretion rate (in Eddington units) near
the ISCO, after taking account of the fact that some of the infalling mass
at larger radii is lost to outflows. Analytic RIAF models typically admit a
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radiative efficiency of

L

Ṁc2
≈ ǫ

(

ṁ

ṁcrit

)

, (7.32)

for ṁ < ṁcrit, with ṁcrit ∼ 0.01–0.1. For example, in the nucleus of the
Milky Way, massive stars shed∼ 10−3M⊙ yr−1 of mass into the radius of
influence of central black hole (Sgr A*), but only a tiny fraction ∼ 10−5 of
this mass accretes onto the black hole.

Since at low redshifts mergers are rare and much of the gas in galax-
ies has already been consumed in making stars, most local supermassive
black holes are characterized by a very low accretion rate. The resulting
low luminosity of these dormant black holes, such as the4 × 106M⊙ black
hole lurking at the center of the Milky Way galaxy, is often described using
RIAF/ADAF models. Although this mode of accretion is characterized by
a low mass infall rate, it could persist over a period of time that is orders of
magnitude longer than the quasar mode discussed earlier, soits contribution
to the growth of black holes in galactic nuclei may not be negligible.

7.4 THE FIRST BLACK HOLES AND QUASARS

What seeded the formation of supermassive black holes only abillion years
after the Big Bang?We know how to make a black hole out of a massive
star. When the star ends its life, it stops producing sufficient energy to hold
itself against its own gravity, and its core collapses to make a black hole.
Long before evidence for black holes was observed, this process leading
to their existence was understood theoretically by Robert Oppenheimer and
Hartland Snyder in 1937. However, growing a supermassive black hole is
more difficult. There is a maximum luminosity at which the environment of
a black hole of massMBH may shine and still accrete gas.i

This Eddington luminosity,LE , was derived in equation (5.27) by bal-
ancing the inward force of gravity on each proton by the outward radiation
force on its companion electron (which is the momentum flux carried by the

iWhereas the gravitational force acts mostly on the protons,the radiation force acts
primarily on the electrons. These two species are tied together by a global electric field, so
that the entire plasma behaves as a single quasi-neutral fluid which is subject to both forces.
Under similar circumstances, electrons are confined to the Sun by an electric potential of
about a kiloVolt (corresponding to a total charge of∼ 75 Coulombs). The opposite electric
forces per unit volume acting on electrons and ions in the Suncancel out so that the total
pressure force is exactly balanced by gravity, as for a neutral fluid. An electric potential of 1-
10 kiloVolts also binds electrons to clusters of galaxies (where the thermal velocities of these
electrons,∼ 0.1c, are well in excess of the escape speed from the gravitational potential).94
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radiation times the scattering cross-section of the electron) at a distancer:

GMBHmp

r2
=

LE

4πr2c
σT , (7.33)

wheremp is the proton mass andσT = 0.67×10−24 cm2 is the cross-section
for scattering a photon by an electron (Thomson scattering). Interestingly,
the limiting luminosity is independent of radius in the Newtonian regime.
Since the Eddington luminosity represents an exact balancebetween grav-
ity and radiation forces, it actually equals the luminosityof massive stars
which are held at rest against gravity by radiation pressure, as described by
equation (7.33). This limit is formally valid in a sphericalgeometry, and
exceptions to it were conjectured for other accretion geometries over the
years (and we shall even consider one such possibility for a spherical geom-
etry in §7.4.1 below). But, remarkably, observed quasars for which black
hole masses can be measured by independent methods appear torespect this
limit. Substituting all constants, the Eddington luminosity is given by,

LE = 1.3 × 1044

(

MBH

106 M⊙

)

erg s−1, (7.34)

As discussed previously, the total luminosity from gas accreting onto a
black hole,L, can be written as some radiative efficiencyǫ times the mass
accretion rateṀ ,

L = ǫṀc2, (7.35)

with the black hole accreting the non-radiated component,ṀBH = (1 −
ǫ)Ṁ . The equation that governs the growth of the black hole mass is then

ṀBH =
MBH

tE
, (7.36)

where (after substituting all fundamental constants),

tE = 4 × 107

(

ǫ/(1 − ǫ)

0.1

)(

L

LE

)−1

yr. (7.37)

We therefore find that as long as fuel is amply supplied, the black hole mass
grows exponentially in time,MBH ∝ exp{t/tE}, with an e-folding time
tE . Since the growth time in equation (7.37) is significantly shorter than the
∼ 109 years corresponding to the age of the Universe at a redshiftz ∼ 6
– where black holes with a mass∼ 109 M⊙ are found – one might naively
conclude that there is plenty of time to grow the observed black hole masses
from small seeds. For example, a seed black hole from a Population III
star of100 M⊙ can grow in less than a billion years up to∼ 109 M⊙ for
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ǫ ∼ 0.1 andL ∼ LE. However, the intervention of various processes makes
it unlikely that a stellar mass seed will be able to accrete continuously at its
Eddington limit without interruption.

For example, mergers are very common in the early Universe. Every time
two gas-rich galaxies come together, their black holes are likely to coalesce.
The coalescence is initially triggered by “dynamical friction” from the sur-
rounding gas and stars, and is completed – when the binary gets tight – as
a result of the emission of gravitational radiation.95 The existence of grav-
itational waves is a generic prediction of Einstein’s theory of gravity. They
represent ripples in space-time generated by the motion of the two black
holes as they move around their common center of mass in a tight binary.
The energy carried by the waves is taken away from the kineticenergy of
the binary, which therefore tightens with time. Computer simulations re-
veal that when two black holes with unequal masses merge to make a single
black hole, the remnant gets a kick due to the non-isotropic emission of
gravitational radiation at the final plunge (see§7.7). This kick was calcu-
lated recently using advanced computer codes that solve Einstein’s equa-
tions (a task that was plagued for decades with numerical instabilities).96

The typical kick velocity is hundreds of kilometer per second (and up to ten
times more for special spin orientations), much larger thanthe escape speed
from the first dwarf galaxies. This implies that continuous accretion was
likely punctuated by black hole ejection events,97 forcing the merged dwarf
galaxy to grow a new black hole seed from scratch.

7.4.1 Supermassive Stars

If continuous feeding is halted, or if the black hole is temporarily removed
from the center of its host galaxy, then one is driven to the conclusion that
the black hole seeds must have started more massive than∼ 100M⊙. More
massive seeds may originate fromsupermassive stars, defined as hydrostatic
configurations with masses103–108 M⊙. Such systems have not been ob-
served as of yet. Theoretically, they are expected to be supported almost en-
tirely by radiation pressure and hence their luminosity equals the Eddington
limit, L = 1.3 × 1044(M⋆/10

6 M⊙) ergs s−1. Supermassive stars steadily
contract and convert their gravitational binding energy toradiation with a
total lifetime< 106 yr before they collapse to a black hole.

Is it possible to make such stars in early galaxies?Yes: numerical simu-
lations indicate that stars of mass∼ 106 M⊙ could have formed at the cen-
ters of early dwarf galaxies that were barely able to cool their gas through
transitions of atomic hydrogen, havingTvir ∼ 104 K and no H2 molecules
(which were suppressed by a Lyman-Werner background). Suchsystems
have a total mass that is several orders of magnitude higher than the earliest
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Jeans-mass condensations discussed in§3.2. In both cases, the gas lacks the
ability to cool well belowTvir, and so it fragments into one or two major
clumps. The simulation shown in Figure 7.6 results in clumpsof several
million solar masses, which inevitably form massive black holes. The exis-
tence of such massive seeds would have given a jump start to the black hole
growth process.

First we show that the envelope of such stars must be convective. The
condition for convective instability is that that the star exhibits a negative
entropy gradient. This follows from the fact that convective eddies which
are hotter and rarefied relative to their environment tend torise towards the
star’s surface and decrease their density adiabatically (at constant entropy)
in pressure equilibrium with their environment. If the background entropy
decreases as the eddies rise, then they become even more rarefied relative
to their environment (lower ambient entropy at the same pressure implies
higher ambient density) and continue to rise even further, hence leading to
an instability. The energy transport by convective eddies drives the star to a
state of marginal stability, namely nearly uniform entropy. Let us first show
that in the absence of convection, a supermassive star will tend to develop a
negative entropy gradient as it radiates away its energy.

The entropy of each electron-proton fluid element in a supermassive star
is changing according to the local radiative heat fluxF at a rate

2Tg

mp

∂s

∂t
= −1

ρ
∇ · F, (7.38)

whereρ, Tg ands are the mass density, temperature and specific entropy of
the element. If the opacity is dominated by Thomson scattering, then the
local radiative heat fluxF is related to the radiation pressure gradient by

F =
−mp

σT

1

ρ
∇prad. (7.39)

Ignoring gas pressure and rotation, the hydrostatic equilibrium equation is
simply

1

ρ
∇prad = g, (7.40)

where the gravitational fieldg obeys Poisson’s equation,

∇ · g = −4πGρ. (7.41)

Combining equations (7.39)-(7.41), we find that the right-hand side of equa-
tion (7.38) is constant,

1

ρ
∇ · F =

4πGmp

σT
= constant. (7.42)
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Figure 7.6 Numerical simulation of the collapse of an early dwarf galaxy with a virial tem-
perature just above the cooling threshold of atomic hydrogen and no H2 (see
Color Plate 14for a color version of this figure). The image shows a snapshot
of the gas density distribution 500 million years after the Big Bang, indicating
the formation of two compact objects near the center of the galaxy with masses
of 2.2 × 106 M⊙ and 3.1 × 106 M⊙, respectively, and radii< 1 pc. Sub-
fragmentation into lower mass clumps is inhibited because hydrogen atoms can-
not cool the gas significantly below its initial temperature. These circumstances
lead to the formation of supermassive stars that inevitablycollapse to make mas-
sive seeds for supermassive black holes. The simulated box size is 200 pc on
a side. Figure credit: Bromm, V. & Loeb, A.Astrophys. J.596, 34 (2003).
Reproduced with permission of the American Astronomical Society.
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Therefore, the gradient of equation (7.38) gives

∂

∂t
∇s =

2πGm2
p

σT

∇Tg

T 2
g

< 0. (7.43)

The radial temperature gradient is negative since heat flowsout of the star,
implying that the star will develop a negative entropy gradient and become
convectively unstable. This result holds also for a rotating star, as long as the
rotation period is much longer than the dynamical time,tdyn ∼ (Gρ)−1/2 =

1.1 hr(ρ/1 g cm−3)−1/2.
The nearly uniform entropy established by convection makesthe structure

of supermassive stars simple (equivalent to a so-called polytrope with an
indexn = 3) with a unique relation between their central temperatureTc

and central densityρc,98

Tc = 2 × 106 K

(

ρc

1 g cm−3

)1/3( M

106 M⊙

)1/6

. (7.44)

Because of this modest temperature, nuclear reactions are insignificant in
metal-poor stars with massesM⋆ > 105 M⊙. General relativistic correc-
tions make the star unstable to direct collapse to a black hole as soon as its
radius contracts to a value

R⋆ < Rcrit = 1.59 × 103

(

M⋆

106 M⊙

)1/2(GM⋆

c2

)

. (7.45)

Rotation can stabilize supermassive stars to smaller radii, but even rotating
stars are expected to eventually collapse to a black hole after shedding their
angular momentum through a wind. If the supermassive star ismade of pre-
enriched gas, then powerful winds will inevitably be drivenat its surface
where the opacity due to lines from heavy elements far exceeds the Thomson
value, making the outward radiation force stronger than gravity (see§7.5
below).

We note that the infall of a sufficiently dense, optically-thick spherical
envelope of gas cannot be prevented by radiation pressure even if the radia-
tion production rate exceeds the Eddington limit near the center. To see this,
let us consider a gas shell falling inwards with a velocityvin(r) at a radius
r. If the outward diffusion time of photons through the gas,tdiff ∼ τr/c
(whereτ ∼ σTρr/mp is the shell’s optical depth to Thomson scattering),
exceeds the infall time,tin ∼ r/vin, then the radiation will be dragged by
the infalling gas into the black hole. Even though the radiation is always
diffusing outwards in the local rest-frame of the gas, it actually moves in-
wards in the black hole frame of reference whentdiff > tin. In that regime,
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the radiation will never be able to counteract the collapse of gas shells that
are farther out. Expressing the mass accretion rate as,

Ṁ = 4πρr2vin, (7.46)

we find thattdiff > tin if

Ṁ

ṀE

> ǫ

(

r

GM/c2

)

, (7.47)

whereM is the mass interior to radiusr andṀE = LE/ǫc
2 is the mass

accretion rate that produces the Eddington luminosity (equation 7.34) for a
radiative efficiencyǫ. We therefore conclude that as long as the mass infall
rate is sufficiently high, the Eddington limit will not applybecause of pho-
ton trapping. Super-Eddington accretion can therefore grow a seed black
hole rapidly, as long as the blanket of infalling gas advectsthe radiation
inwards as it accretes onto the black hole. This “obscured” mode of black
hole accretion (which is hidden from view for observers) could be partic-
ularly important at high redshifts when the gas density and infall rate onto
galaxies obtain their highest values.

7.5 BLACK HOLES AND GALAXIES

7.5.1 The Observed Correlations Between Supermassive Black Holes and Host
Properties

As described in§7.1, there are clear correlations between the supermassive
black holes that reside at the centers of galaxies and their host spheroid of
stars. In particular, Figure 7.7 shows the strong correlation between the
mass of the central black hole and the velocity dispersion ofstars in the host
galaxy’s spheroid,σ⋆. (Note that this isnotnecessarily identical to the virial
velocity of the galaxy, because it samples motions on much smaller scales.)
The data atz ∼ 0 follow a tight correlation,MBH ∝ σ4

⋆ , with only a small
apparent intrinsic scatter. Other correlations also exist; especially important
is the observed relationship between the black hole mass andspheroid lu-
minosity atz ∼ 0, MBH ∝ Lsp, and that between the black hole mass and
spheroid mass,MBH ∼ 0.0014Msp.99

These relationships already explain how quasars may shine much brighter
than their host galaxies. A typical star like the Sun emits a luminosityL⊙ =
4 × 1033 erg s−1 which can also be written as a fraction∼ 3 × 10−5 of its
Eddington luminosityLE = 1.4 × 1038 erg s−1. At the present day, black
holes grow up to a fraction∼ 10−3 of the stellar mass of their spheroid.
When they shine close to their Eddington limit, they may therefore outshine
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Figure 7.7 Dynamical measurements of the correlation between supermassive black hole
mass,MBH, and velocity dispersion of stars in the spheroid of its hostgalaxy,
σ⋆ (seeColor Plate 15for a color version of this figure). The symbol indicates
the method of black hole mass measurement: dynamics of stars(pentagrams),
dynamics of gas (circles), dynamics of maser sites (asterisks). Arrows indicate
3σ upper limits to black hole mass. The shade of the error ellipse indicates the
Hubble type of the host galaxy: elliptical, S0, or spiral. The line is the best fit
relation to the full sample:MBH = 108.12 M⊙(σ⋆/200 km s−1)4.24. The mass
uncertainty for NGC 4258 has been plotted much larger than its actual value so
that it will show on this plot. Figure credit: Gültekin, K.,et al.Astrophys. J.698,
198 (2009). Reproduced with permission of the American Astronomical Society.
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their host galaxy by up to a factor of∼ 10−3/(3×10−5), namely1–2 orders
of magnitude. The factor is smaller during short starburst episodes which
are dominated by massive stars with larger Eddington fractions.

Measuring black hole masses and host galaxy properties at high redshift
is difficult, so the extrapolation of these relationships toward the cosmic
dawn is not yet clear. The best way to do so is to resolve directly the region
of influence of the black hole, where its gravitational potential dominates
the motion of stars. Crudely, its mass could then be measuredby fitting
a Keplerian rise to the velocity dispersion at decreasing separations from
the center. In practice, this is difficult because of the complex structure of
galaxies and the projection of stars outside the region intothe measured
region. Nevertheless, the technique has been used successfully in dozens of
nearby galaxies, as shown in Figure 7.7.

At higher redshifts, such direct observations are impossible, so indirect
techniques are necessary. These rely on local “virial relations” between
black hole mass and spectroscopic properties of the AGN. These luminous
sources typically show broad emission lines that (based on atomic physics
considerations) are believed to originate from dense, highly ionized gas
clouds near the black hole. Assuming that the velocity dispersion of these
cloudsv (which is of order a few thousands ofkm s−1) is gravitationally
induced by the central black hole at their characteristic orbital radiusr, we
havev2 ∼ GMBH/r. The velocity can be measured from the Doppler
width of the corresponding emission line. However, to obtainMBH one also
needs a measurement of the orbital radius of these clouds. This can be ac-
complished throughreverberation mappingobservations which monitor the
AGN spectrum over time. If the continuum emission (from the inner region
of the accrretion disk around the black hole) increases, then the broad-line
region emission should also increase – but there will be a time delay as the
continuum light propagates to that region, which can be measured with in-
tensive monitoring programs. Cosmic time dilation makes this measurement
more difficult for massive black holes (which are the only ones that can be
easily observed) at high redshift.

Instead, an indirect proxy for the orbital radius is usuallyused. Empir-
ically, the broad line regions of all AGN are characterized by roughly the
same UV flux,L/4πr2 ∼ const. A possible interpretation of this scaling
is that the emission lines originate near the outermost boundary where dust
sublimates (and the cloud gas is exposed to the central UV illumination),
selecting a particular threshold for the UV flux.100 Thus,r ∝ L1/2 (with a
proportionality constant that is fixed by the geometry and kinematics of the
region), and the radiusr can simply be estimated from the AGN luminosity.
Measurements of nearby AGN are used to calibrate the proportionality con-
stant.101 The local AGN samples focus on emission lines easily accessible
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to optical telescopes observing atz ∼ 0 (such as Hβ); extension to higher
redshifts requires rest-ultraviolet lines (such as C IV) that redshift into the
optical range. The calibration is not trivial, but it provides at least an indirect
route to estimate black hole masses at high redshifts.

These techniques allow an estimate of the black hole mass, but in order
to understand the relationship between the black hole and its host galaxy,
that galaxy’s properties must also be measured. This is alsovery difficult,
because the only quasars visible at high redshifts are themselves extremely
luminous – and hence dramatically outshine their host galaxies. Extremely
good angular resolution is required in order to distinguishthe point-like
AGN from the surrounding stars and gas (which is easiest for quasars that
are magnified by intervening gravitational lenses). This ismost feasible in
the radio, where the molecular line widths also provide a reasonably good
estimate for the velocity dispersion and mass of the centralstar-forming por-
tion of the galaxy. Assuming that we can classify that regionas a spheroid,
the highest-redshift quasars appear to have much more massive black holes
than the local relations would suggest, withMBH ∼ 0.02Msp. The data are
so far sparse, but interestingly there appears a much weakercorrelation with
σ⋆ than in the local Universe.102

7.5.2 Galaxies and Their Supermassive Black Holes

Regardless of their extension to higher redshifts, the tight correlations in the
local Universe described in§7.5.1 suggest an intimate connection between
the growth of galaxy spheroids (or bulges) and their centralblack holes.
This in turn suggests that either feedback from the black hole affects the
galaxy’s gas and stars, or feedback from those stars affectsthe black holes –
or both. Both cases suggest that the relationship is an extremely important
one for galaxy formation and evolution.

Since the mass of a galaxy at a given redshift scales with its virial velocity
asMg ∝ V 3

c (see equation 3.31), the binding energy of galactic gas scales
asMgV

2
c ∝ V 5

c . Meanwhile, the momentum required to expel the gas from
its host scales asMgVc ∝ V 4

c . Both scalings are reasonably close to the
observed correlation shown in Figure 7.7 and can be tuned to explain the
observed relations by appealing to feedback from the black hole in order to
shut off star formation in the galaxy.

More concretely, suppose that accretion onto a black hole launches a wind
that couples to the galaxy’s ISM, driving it out of the potential well. As an
example, suppose that this feedback contains a total energythat is a fraction
ǫw of the rest mass of the black hole. Using similar arguments tothose
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leading to equation (6.26), this energy can unbind the gas inthe galaxy once

MBH ∼ 2 × 104

(

0.05

λ

0.1

ǫw

)(

Mh

1010 M⊙

)5/3(1 + z

10

)

M⊙ (7.48)

∼ 2 × 104

(

0.05

λ

0.1

ǫw

)(

Vc

50 km s−1

)5(1 + z

10

)−1/2

M⊙,(7.49)

where we have written the limit in terms of both the halo mass and circular
velocity for convenience. One can then imagine that, because this same gas
is ultimately the fuel source for the black hole, both it and the galaxy’s stellar
population will stop growing once it reaches this limiting size, establishing
the tight underlying correlation. Importantly, this implies that black holes –
like supernovae – are much more efficient at expelling gas from small halos
than large ones, so they may play a very significant role at high redshifts.

Similarly, following the arguments leading to equation (6.31), the mo-
mentum input from a black hole wind will suffice to drive the gas out of a
galaxy ifii

MBH ∼ 106

(

0.1

ǫw

)(

Mh

1010 M⊙

)4/3(1 + z

10

)

M⊙ (7.50)

∼ 106

(

0.1

ǫw

)(

Vc

50 km s−1

)4(1 + z

10

)−1

M⊙. (7.51)

As expected, this provides a more stringent limit because itassumes that the
outflow loses energy as it propagates through the galaxy.

This general picture is an attractive one, but note that neither of these sim-
ple scenarios has a straightforward connection to the observed correlations.
This is easiest to see by noting that, although the scaling with velocity could
easily beinterpretedas mimicking the observed scaling withσ⋆, that would
require a nonlinear relationship between spheroid mass (orluminosity) and
halo mass. A key question for understanding how black holes interact with
their hosts is then obviously how the spheroid properties like σ⋆ relate to
the halo properties. One simple correction may be to note that, if the fuel
supplies of stellar bulges and supermassive black holes areidentical, a linear
relation between bulge mass and black hole mass may be naturally described
by the feedback-regulated growth picture described above.In that case, the
relation between bulge mass and velocity dispersion is an interesting one
that reflects how galaxies accumulate and process cold gas.

If so, this raises an interesting “chicken and egg” problem,becauseboth
the black hole and stellar component generate feedback on the gas supply,

ii Here we useV 2
c = 2σ2

⋆ for a singular isothermal sphere profile, and we assume that
the black hole releases most of its energy over a dynamical time∼ σ⋆/rvir.
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and it is difficult to diagnose from observations which is more significant.
The energy injected by supernovae of bulge stars is∼ ωSNMsp, whereMsp

is the stellar mass of the bulge component andωSN is the energy output
per unit mass in stars,∼ 1049 ergs M−1

⊙ for typical stellar populations.
The energy injected by the black hole is∼ ǫwfBHMspc

2, wherefBH is
the fraction of the stellar bulge mass in the black hole (∼ 0.0014 in the
nearby Universe, possibly increasing in massive halos at higher redshift;
see§7.5.1). Then, the energy output from the black hole dominates if

ǫw > 0.004

(

0.0014

fBH

)

(

ωSN

1049 ergs M−1
⊙

)

, (7.52)

which is clearly very small. However, as we will discuss in§7.5.3, it is not
clear how this energy reservoir couples to the galaxy ISM.

The answers to these questions depend upon the way in which black holes
(and the central stellar regions) are fed by gas in their hostgalaxies. This
requires either a way to dissipate the angular momentum of the gas or an
external force that can torque the gas toward the center. Viscous dissipation
(even from instabilities like the MRI described in§7.3.2) is quite slow in the
ISM and is not thought sufficient to feed an AGN.

Instead, the most popular model is one in which supermassiveblack holes
in galaxies are fed with gas in episodic events of gas accretion triggered by
mergers of galaxies. Tides and gravitational interactionsduring major merg-
ers (i.e., in which the two merging components have comparable mass) pro-
vide massive torques that efficiently drive a large fractionof the gas toward
the centers of the merging components. However, black hole growth does
not requirea merger: any other process that can drive gas toward the galaxy
center will also suffice, such as global disk instabilities.These can them-
selves be triggered by accretion streams that feed the galaxy halo itself at a
high rate.

In the merger case, the fundamental cosmological input to modeling the
growth of black holes is the merger rate of dark matter halos.For example,
it is possible to “dress up” the mass distribution of halos inFigure 3.10
using the excursion set model to estimate their merger rates(see§3.4.2) .
The key physical inputs are the black hole-halo mass relation and a light
curve for the quasar. The former can be fixed via the observedMBH–σ⋆

relation. The latter then determines the (observable) luminosity from the
black hole properties. In its most crude form, this requiresa maximum
luminosity (which can be set as a fixed fraction of the Eddington limit, for
example) and a duty cycle (which may be related to the black hole growth
time tE of equation 7.37 or to the dynamical time of the host galaxy, which
is approximately the merger timescale). This simple approach can be tuned
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to give good agreement with the data on the quasar luminosityfunction
shown in Figure 7.1. In the crudest form of the model, reasonable agreement
with observations requires that quasars deposit∼ 5% of their Eddington
luminosity in the ISM of their host galaxy.103

Regardless of its origin, the inflow of cold gas towards galaxy centers
during the growth phase of their black holes would naturallybe accompa-
nied by a burst of star formation. The fraction of gas not consumed by stars
or ejected by supernova-driven winds will continue to feed the black hole.
It is therefore not surprising that quasars and starbursts co-exist in ultra-
luminous galaxies, and that all quasars show strong spectral lines of heavy
elements.104 In fact, as we discussed in§7.3.2, the outskirts of accretion
disks are very likely gravitationally unstable and susceptible to fragmenta-
tion to form stars.

7.5.3 Jets and Winds: Black Hole Feedback Mechanisms

Although the general picture of black holes exerting strongfeedback on their
host galaxies is very attractive, the details remain vague.This is primarily
because little direct evidence exists that any given feedback mechanisms af-
fects the host galaxy. The coupling mechanism is unknown, though several
plausible candidates do exist: it could be related to eitherthe bright radiation
or fast outflows that are known to be produced by quasars.

One possibility traces back to the fact that the scattering cross section per
unit mass for UV radiation on dust is larger thanσT /mp (which is used to set
the Eddington luminosity in equation 7.34) by two orders of magnitude.105

Although dust is destroyed within∼ 104GMBH/c
2 by the strong illumina-

tion from an Eddington-limited quasar, it should survive atlarger distances.
Hence, the radiation pressure on dust would exceed the gravitational force
towards the black hole and drive powerful outflows.

Spectral lines could be even more effective than dust in their coupling to
radiation. The integral of the absorption cross-section ofa spectral line over
frequency,

∫

σ(ν)dν = fosc

(

πe2

mec

)

, (7.53)

whereν21 is the transition frequency andfosc is the absorption oscillator
strength, is typically orders of magnitude larger thanσT ν21. For example,
the Lyman-α transition of hydrogen, for whichfosc = 0.416 (see§4.2),
provides an average cross-section which is seven orders of magnitude larger
thanσT when averaged over a frequency band as wide as the resonant fre-
quency itself. Therefore, lines could be even more effective at driving out-
flows in the outer parts of quasar environments.
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A second possibility for launching outflows is a (magneto)-hydrodynamical
effect within the accretion disk. We have already describedhow radiatively
inefficient accretion flows can launch outflows, but there is good evidence
for outflows in strongly-emitting AGN as well. These outflowstake (at least)
two types. The first are jets, as shown in Figure 7.2, which arethought to be
launched from the inner regions of accretion disks thanks tocomplex mag-
netohydrodynamical effects. The material inside travels relativistically and
may carry a great deal of energy, comparable to the radiativeluminosities of
the sources. However, such jets have extremely narrow opening angles and
do not appear to interact with much of the galaxy’s ISM. They are there-
fore unlikely to provide efficient feedback. The second possibility is a more
classic “wind” launched from the disk itself, perhaps alongopen magnetic
field lines threading the disk.

However they are launched, there is good evidence for these winds in
some quasars. Calledbroad absorption line quasars(BALQSOs), these
objects have strong redshifted absorption lines with extremely large widths
vBAL ∼ 0.1c that are thought to represent outflowing material. The total
kinetic luminosity in these winds is difficult to measure:

LK ≈ 2πfcNHmpv
3
BALRBAL, (7.54)

wherefc is the covering factor of the outflow,NH is the column density of
material in the absorber, andRBAL is its distance from the central source.
The covering fraction is uncertain, but a “unified” quasar model in which
BALQSOs only differ from “normal” quasars because of the observer’s
viewing angle impliesfc ∼ 0.1. The radius of the absorbing material is even
more uncertain, relying on modeling of the gas or outflow shock. Models
suggest thatǫw ∼ 0.03 for BALQSOs, though with a large uncertainty.106

Although a wind can clearly couple to the ISM better than a narrow jet,
it is still not obvious how the wind propagates from the central AGN point
source through the much larger star-forming region. A greatdeal of work
is required in order to understand the physics of quasar outflows and their
influence on their host galaxies.

7.5.4 Black Holes and “External” Feedback

So far, we have focused on the interplay of black holes and their host galax-
ies. However, the possibility that black holes can expel large fractions of
the gas from their hosts also indicates that their feedback mechanisms may
influence the surrounding IGM and halos. Energetically, equation (7.52)
suggests that even a modest coupling between feedback energy and the ISM
or IGM suffices to make AGN outflows important relative to the radiative
or supernova feedback from their host. There is even some direct evidence
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for AGN feedback in the local Universe: many galaxy clusterscontain hot
bubbles of material fed by radio jets from their massive central galaxies.
Clusters also provide the strongest indirect evidence for intergalactic AGN
feedback, where AGN are often invoked to explain the lack of apparent
cooling in the cluster gas. (More generally, models often appeal to them to
avoid the “overcooling problem” described in§8, though there is little di-
rect evidence for their activity in dark matter halos smaller than groups of
galaxies.)

Fortunately, these large-scale black hole outflows can be modeled in the
same way as their stellar counterparts (see§6.5.1), because of the approxi-
mate self-similarity of blastwaves in an expanding Universe. AGN outflows
will have many of the same effects as stellar superwinds, though the details
will of course differ. For example, quasar winds may not carry as much of
the host ISM out of the galaxy as their stellar counterparts and will therefore
cause less IGM metal enrichment. On the other hand, plasmas launched
from the highly-magnetized accretion disk may drag magnetic fields with
them, seeding an intergalactic magnetic field at high redshifts.

7.6 BLACK HOLE BINARIES

Nearly all nearby galactic spheroids are observed to host a nuclear black
hole. Therefore, the hierarchical buildup of galaxies through mergers must
generically produce black hole binaries. Such binaries tighten through dy-
namical friction with the background gas and stars and ultimately coalesce
through the emission of gravitational radiation.

In making a tight binary from a merger of separate galaxies, the mass
ratio of two black holes cannot be too extreme. A satellite ofmassMsat

in a circular orbit at the virial radius of a halo of massMhalo would sink
to the center on a dynamical friction time of∼ 0.1tH(Mhalo/Msat), where
tH is the Hubble time. If the orbit is eccentric with an angular momentum
that is a fractionε of a circular orbit with the same energy, then the sinking
time reduces by a factor of107 ∼ ε0.4. Therefore, massive satellites with
Msat > 0.1Mhalo bring their supermassive black holes to the center of their
host halos over the age of the Universe.

As a satellite galaxy sinks, its outer envelope of dark matter and stars is
stripped by tidal forces. The stripping is effective down toa radius inside of
which the mean mass density of the satellite is comparable tothe ambient
density of the host galaxy.108 Eventually, the two black holes are stripped
down to the cores of their original galaxies and are surrounded by a cir-
cumbinary envelope of stars and gas. As long as the binary is not too tight,
the reservoir of stars within the binary orbit can absorb theorbital binding
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energy of the binary and allow it to shrink. However, when theorbital ve-
locity starts to exceed the local velocity dispersion of stars, a star impinging
on the binary would typically be expelled from the galactic nucleus at a high
speed. This happens at the so-called the “hardening radius”of the binary,

ahard ≈ 0.1
q

(1 + q)2
M6

( σ⋆

100 km s−1

)−2
pc, (7.55)

at which the binding energy per unit mass of the binary exceeds 3
2σ

2
⋆ , where

σ⋆ is the velocity dispersion of the stars before the binary tightened. Here,
M ≡ (M1 + M2) is the total mass,M1 andM2 are the masses of the
two black holes,M6 = (M/106M⊙), q = M1/M2 is the mass ratio, and
µ = M1M2/(M1 +M2) is the reduced mass of the binary.

A hard binary will continue to tighten only by expelling stars that cross
its orbit. Unless the lost stars are replenished by new starsscattered into an
orbit that crosses the binary (through dynamical relaxation processes in the
surrounding galaxy, whose relaxation time is typically very long), the binary
would stall. This “final parsec problem” is circumvented if gas streams into
the binary from a circumbinary disk. Indeed, the tidal torques generated
during a merger extract angular momentum from any associated cold gas
and concentrate the gas near the center of the merger remnant, where its
accretion often results in a bright quasar.

If the two black holes are in a circular orbit of radiusa < ahard around
each other, their respective distances from the center of mass areai =
(µ/Mi)a (i = 1, 2). We define the parameterζ = 4µ/(M1 + M2), which
equals unity ifM1 = M2 and is smaller otherwise. The orbital period is
given by

P = 2π(GM/a3)−1/2 = 1.72 × 10−2 a
3/2
14 M

−1/2
6 yr, (7.56)

where,a14 ≡ (a/1014 cm). The angular momentum of the binary can be
expressed in terms of the absolute values of the velocities of its membersv1
andv2 asJ = Σi=1,2Miviai = µva, where the relative orbital speed is

v = v1 + v2 = (2πa/P ) = 1.15 × 104M
1/2
6 a

−1/2
14 km s−1. (7.57)

In gas-rich mergers, the rate of inspiral decreases as soon as the gas mass
interior to the binary orbit falls belowµ, when the enclosed gas mass is no
longer sufficient to carry away the entire orbital angular momentum of the
binary, J . Subsequently, momentum conservation requires that freshgas
steadily flow toward the binary orbit in order for it to shrink. The binary
tightens by expelling gas out of a region twice as large as itsorbit (similarly
to a “blender” opening a hollow gap) and by torquing the surrounding disk
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through spiral arms. Fresh gas re-enters the region of the binary as a result
of turbulent transport of angular momentum in the surrounding disk. Since
the expelled gas carries a specific angular momentum∼ va, the coalescence
time of the binary is inversely proportional to the supply rate of fresh gas
into the binary region. In a steady state, the mass supply rate of gas that
extracts angular momentum from the binary,Ṁ , is proportional to the ac-
cretion rate of the surrounding gas disk. Given that a fraction of the mass
that enters the central gap accretes onto the black holes andfuels quasar
activity, it is appropriate to expresṡM in Eddington unitsṁ ≡ Ṁ/ṀE ,
corresponding to the accretion rate required to power the limiting Eddington
luminosity with a radiative efficiency of10%, ṀE = 0.023M⊙ yr−1M6.
We then find

tgas ≈ (J/Ṁva) = µ/Ṁ = 1.1 × 107 ζṁ−1 yr. (7.58)

For a steadyṁ, the binary spends equal amounts of time per loga until
gravitational waves start to dominate its loss of angular momentum.

The coalescence timescale due to gravitational wave emission is given
by109

tGW =
5

256

c5a4

G3M2µ
= 2.53 × 103 a4

14

ζM3
6

yr. (7.59)

By settingtGW = tgas we can solve for the orbital speed, period, and sepa-
ration at which gravitational waves take over,

vGW = 4.05 × 103 ζ−1/4(ṁM6)
1/8 km s−1; (7.60)

PGW = 0.4 ζ3/4M
5/8
6 ṁ−3/8 yr; (7.61)

aGW = 2.6 × 10−4 ζ1/2M
3/4
6 ṁ−1/4 pc. (7.62)

For a binary redshiftz, the observed period is(1 + z)PGW. The orbital
speed at which gravitational waves take over is very weakly dependent on
the supply rate of gas,vGW ∝ Ṁ1/8. It generically corresponds to an orbital
separation of order∼ 103 Schwarzschild radii (2GM/c2). The probability
of finding binaries deeper in the gravitational wave-dominated regime,P ∝
tGW, diminishes rapidly at increasing orbital speeds, withP ∝ (v/vGW)−8.

Black hole binaries can be identified visually or spectroscopically. At
large separations the cores of the merging galaxies can be easily identified
as separate entities. If both black holes are active simultaneously, then the
angular separation between the brightness centroids can inprinciple be re-
solved at X-ray, optical, infrared, or radio wavelengths. The UV illumi-
nation by a quasar usually produces narrow lines from gas clouds at kpc
distances within its host galaxy or broad lines from denser gas clouds at
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sub-pc distances from it. Therefore the existence of a binary can be inferred
from various spectroscopic offsets:(i) between two sets of narrow lines if
the galaxies are separated by more than a few kpc and both havequasar
activity at the same time;(ii) between the narrow emission lines of the gas
and the absorption lines of the stars due to the tidal interaction between the
galaxies at a multi-kpc separation;(iii) between narrow lines and broad lines
if the black hole binary separation is between the kpc and pc scales.

The last of these offset signatures can also be produced by a single quasar
which gets kicked out of the center of its host galaxy while carrying the
broad-line region with it. Such a kick could be produced either by the
anisotropic emission of gravitational waves during the coalescence of a bi-
nary (producing a recoil of up to∼ 200 km s−1 in a merger of non-spinning
black holes, and up to∼ 4, 000 km s−1 for special spin orientation), or
from triple black hole systems that form when a third black hole is added to
a galaxy center before the binary there had coalesced.110 Aside from test-
ing general relativity in the strong field limit, fast recoils have an important
feedback effect in forcing a fresh start for the growth of black holes in small
galaxies at high redshifts. The expected kick velocities ofthese early recoils
offer a very interesting possibility for fossil signaturesin the local Universe,
because they are much larger than the escape speeds of the dwarf galaxy
hosts but comparable to or smaller than the escape speeds of these galaxies’
descendants, like the Milky Way. For example, the hierarchical formation
of the Milky-Way may have left recoiled black holes floating in its halo,
which are detectable through the compact star clusters thatremain bound to
these intermediate-mass black holes following their ejection from their host
dwarf galaxies at high redshifts.111

7.7 GRAVITATIONAL WAVES FROM BLACK HOLE MERGERS

As just described, the final phase of black hole binary coalescence is driven
by the emission of gravitational waves. The emitted waves could be detected
by new observatories which are currently being planned or constructed.

As long as the binary separation is much larger than its Schwarzschild
radius, the emitted gravitational wave luminosity can be derived in the post-
Newtonian approximation. For two black holes on a circular orbit, the lu-
minosity is112

LGW =
32

5

G4

c5
M3µ2

a5
. (7.63)

where a is the semi-major axis of the binary,M = (M1 + M2), and
µ = M1M2/M , with M1 andM2 being the masses of the binary mem-
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bers. The loss of energy to the emitted waves leads to a decrease in the
binary separationa and an eventual coalescence of the two black holes after
a timetGW given by equation (7.59). Supermassive binaries with compara-
ble mass members merge in less than a Hubble time once their separation
shrinks toa < 103.5rSch (see equation 7.2) or once their relative orbital
velocity v = (GM/a)1/2 > 10−2c = 3 × 103 km s−1.

Future detectors will be sensitive to the gravitational wave amplitude. To
an order of magnitude, the observed wave amplitude from an equal mass
binary with a Schwarzschild radiusrSch and an orbital velocityv is given
byh ∼ (1+z)(rSch/dL)(v2/c2), wheredL is the luminosity distance to the
binary.113 Since the signal amplitude only declines as the inverse distance
rather than the inverse distance squared (as for electromagnetic detectors
which respond to photon flux), the first generation of sensitive gravitational
wave observatories will already be able to find sources at cosmological dis-
tances.

More accurately, in a reference frame centered on the solar system’s
barycenter, the gravitational wave amplitude in its two polarization states
is given by114

h+ =
2M5/3

z [πfobs]
2/3

dL

[

1 + (L̂ · n̂)2
]

cos[2Φ(t)]; (7.64)

hx =−4M5/3
z [πfobs]

2/3(L̂ · n̂)

dL
sin[2Φ(t)]; (7.65)

where the so-called “redshifted chirp mass”Mz ≡ (1 + z)µ3/5/M2/5 sets
the rate at which the binary shrinks, determining the “chirp” of their orbital
frequencyP = 2π/

√

GM/a3. The precise orbital phase of the binaryΦ(t)
then depends on the masses and spins of the binary members, and yields the
observed wave frequencyfobs(t) = [π]−1(dΦ/dt), which is(1 + z) times
smaller than the emitted wave frequency. The unit vectorn̂ points from the
solar system frame to the binary – defining the sky coordinates of the source,
and the unit vector̂L points along the direction of the binary angular mo-
mentum vector – defining the binary orientation relative to the line-of-sight.
The inspiral signal does not provide explicitly the cosmological redshift sep-
arately from the binary masses, but the redshift can be inferred fromdL(z)
(or from an electromagnetic counterpart to the gravitational wave signal).
Any particular detector is sensitive to a linear combination of the two polar-
ization signals, with coefficients that depend on the orientation of the source
relative to the detector.

Figure 7.8 shows he sensitivity of various gravitational wave observato-
ries. The Laser Interferometer Space Antenna (LISA115) is a planned inter-
ferometer consisting of three spacecraft whose positions mark the vertices
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of an equilateral triangle 5 km on a side in an orbit around theSun. As evi-
dent from Figure 7.8, LISA will be able to detect∼ 104−7 M⊙ binaries out
to arbitrary redshifts during the cosmic dawn. The next generation ground-
based interferometer, Advanced-LIGO,116 will be sensitive to binaries in-
volving black hole remnants of massive Pop-III stars (with∼ 102−3 M⊙)
out toz ≫ 1.

An electromagnetic counterpart would greatly reduce the positional error,
and also determine the redshift of the gravitational wave source, enabling its
use as a “standard siren” for precision cosmological distance measurements.
Electromagnetic radiation could naturally be produced by acircumbinary
accretion disk prior to coalescence, through a variety of possible effects:
viscous dissipation of gravitational wave energy in the disk might result in a
weak electromagnetic transient shortly after the merger, re-equilibration of
the inner edge of the disk could create an X-ray brightening on a timescale
of 10–103 yr, and shocks produced by the remnant’s recoil might gener-
ate electromagnetic reverberations which may take∼ 104 years to dissipate
as enhanced infrared luminosity.117 It is not obvious whether these signals
could be distinguished from the much more abundant sources of temporal
variability in quasars with a single black hole. Moreover, the luminosity of
any circumbinary disk is expected to be significantly reduced by the cav-
ity associated with the decoupling of the black hole binary from the inner
edge of the disk in the final stage of inspiral. The disk is not expected to
refill the cavity and return to its full luminosity for at least a decade after
coalescence. On longer timescales, the portion of the accretion disk that re-
mains bound to the recoiled black hole remnant is expected tobe detectable
as a kinematically and eventually a spatially offset quasar, although its life-
time is limited by the supply of gas that can remain gravitationally bound
to it.118 Interestingly, the recoil of the remnant black hole allows it to fre-
quently disrupt stars along its path and produce a prompt electromagnetic
signal that does not depend on the prior existence of a gaseous disk in the
vicinity of the merging binary.119 Tidal disruption of stars can be observed
out to cosmological distances in cases where a relativisticjet is produced.120

The expected event rate of massive binary mergers can be calculated
based on the halo merger rate predicted by the excursion set formalism
(§3.4.1) under various assumptions about the relation between the black
hole and halo masses. For reasonable assumptions, LISA is expected to
detect many cosmological events per year. The actual detection of these
signals would open a new window into the Universe and enable us to trace
the hierarchical assembly of black holes in galaxies throughout cosmic his-
tory. Moreover, because gravitational waves pass freely through all forms of
matter, gravitational wave observatories might discover new populations of
black hole binaries that are electromagnetically faint because of their mod-
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Figure 7.8 Sensitivity of the future gravitational wave observatories, LISA and Advanced-
LIGO, to equal-mass (M1 = M2 = M/2) binaries (seeColor Plate 16for a
color version of this figure).Top panel:Root-mean-square noise amplitude of
LISA hrms from the detector only (dashed) and from the detector combined with
the anticipated foreground confusion (dash-dotted), along with the characteristic
amplitudeshchar of three binary massesM (solid). The locations on eachhchar

curve correspond to the peak amplitude (circle), 1 hour before the peak (filled
circle), 1 day before the peak (circle with inscribed cross), and 1 month before
the peak (circle with inscribed square) in the observer frame, as well as times
of 25rSch/c (square) and500rSch/c (diamond) before the peak in the source
frame.Middle panel:Contour plot of the signal-to-noise ratio (SNR) with binary
mass and redshift dependence for LISA.Bottom panel:SNR contour plot with
mass and redshift dependence for Advanced-LIGO. Figure credit: Baker, J., et
al. Phys. Rev.D75, 4024 (2007). Copyright 2007 by the American Physical
Society.



SUPERMASSIVE BLACK HOLES 299

est mass relative to bright quasars or because they are enshrouded by gas
and dust.



Chapter Eight

Physics of Galaxy Evolution

Let us summarize briefly what we have learned in the previous chapters. Ac-
cording to the popular cold dark matter cosmological model,dwarf galax-
ies started to form when the Universe was only a hundred million years
old. Computer simulations indicate that the first stars to have formed out
of the primordial gas left over from the Big Bang were much more massive
than the Sun. Lacking heavy elements to cool the gas to lower tempera-
tures, the warm primordial gas could have only fragmented into relatively
massive clumps which condensed to make the first stars. Thesestars were
efficient factories of ionizing radiation. Once they exhausted their nuclear
fuel, some of these stars exploded as supernovae and dispersed the heavy
elements cooked by nuclear reactions in their interiors into the surrounding
gas. The heavy elements cooled the diffuse gas to lower temperatures and
allowed it to fragment into lower-mass clumps that made the second genera-
tion of stars. Somewhere along the way – either as remnants ofmassive stars
or through direct collapse – black holes formed, merged, andaccreted gas
until they grew to become bright quasars. The ultraviolet radiation emitted
by all generations of stars (and quasars) eventually leakedinto the inter-
galactic medium and ionized gas far outside the boundaries of individual
galaxies.

The earliest dwarf galaxies merged and made bigger galaxiesas time went
on. A present-day galaxy like our own Milky Way was constructed over
cosmic history by the assembly of a million building blocks in the form of
the first dwarf galaxies.

Thus, it is galaxies – distant ancestors of our own Milky Way –that
formed the building blocks of large-scale structure duringthe reionization
era (and likely most of the cosmic dawn). In this chapter we will examine
these objects in some detail from a largely theoretical perspective. Along the
way, we must bear in mind that, although the above progression of events
is plausible, at this time it is only a conjecture in the mindsof theorists that
has not yet received confirmation from observational data. We will discuss
many of these efforts in Part III of this book, but for now we will focus on
the physics that drives the objects.
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8.1 HIGH-REDSHIFT GALAXIES

The most fundamental processes in galaxy formation are those that drive
the cycle of baryons from the IGM, into the galactic ISM, intostars, and
back into the ISM (and possibly the IGM) through supernovae or stellar
winds. Buried within these steps are a multitude of feedbackprocesses,
from photoionization, supernovae, and gas accretion onto acentral black
hole. A comprehensive understanding of the physical details of these feed-
back mechanisms is lacking. Nevertheless, we can at least identify the im-
portant processes that drive the evolution of galaxies. In this chapter, we
will briefly describe these ingredients, dedicating special attention to how
they might affect models and observations at high redshifts.

The starting point for understanding the abundance, clustering, and other
properties of galaxies is the dark matter halo distribution, n(m). We wish
to understand the mapping from halo mass to luminosity (in many different
bands or lines), stellar mass, metallicity, star formationhistory, velocity dis-
tribution, and any other physical properties of interest. Of course, there is
nothing to demand that this mapping is one-to-one, or even that these physi-
cal properties depend exclusively on halo mass, as they could also depend on
the halo’s larger-scale environment, mass accretion history, etc. The chal-
lenge of research on galaxy formation and evolution is to understand which
factors are most important and how all of them interact to produce the ob-
jects we observe.

In the crudest representation, galaxies are machines that transform ac-
creted material (whether acquired through slow accretion of diffuse gas or
through rapid mergers) into stars and black holes. The crucial complica-
tion is feedback, which can both prevent gas from accreting onto a halo
in the first place and expel material that is already present (preventing it
from forming stars, or providing potential fuel for later accretion episodes).
Because this feedback is generated on the smallest scales (through stars or
black holes), understanding galaxy evolution requires a model spanning a
large range of physical scales and processes.

Theoretical astrophysicists examine many of these problems individually
(and hence generally in isolation from each other). Their results inform
coarser models – including both “semi-analytical” approaches that rely on
relatively simple models for the many processes involved, as well as numer-
ical simulations (which rarely span the required dynamic range and so also
contain simple prescriptions for at least some of the processes). For the sake
of brevity, we will follow the former approach and aim only toparameter-
ize the important processes and suggest some intuition for the underlying
physics. This is by no means a comprehensive treatment but should give
a flavor for the “less” exotic processes that affect galaxy evolution even at
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the present day. The full suite of physical inputs is described in many other
books and review articles (see Appendix B for related resources).

The very simplest model involves two free parameters:(i) the fraction of
baryons converted into stars within a host halo,f⋆, and(ii) the duty cycle of
vigorous star formation activity during which the host halois luminous and
the stars are formed,fduty. This model defines the star formation timescale,
t⋆, as the product offduty and cosmic time,tH(z) ≈ 2/3H(z) at the redshift
of interestz. The star formation ratėM⋆ is then related to halo massMh as
follows

Ṁ⋆(Mh) =
f⋆ × (Ωb/Ωm) ×Mh

t⋆
. (8.1)

Within the context of this simplest model, the physics of galaxies determines
the values off⋆ andt⋆ (which may depend on halo mass as well, and pre-
sumably have some scatter between different halos at the same mass). More
complex models are obviously necessary to track more detailed properties
of the sources as well. Some of these ingredients are described below; we
summarize the major steps in Figure 8.1.

8.2 GAS ACCRETION

The fuel for star and black hole formation is provided by gas accretion onto
the halo, either in a relatively slow, steady mode or in a stochastic, “merger”
mode. The first is relatively easy to describe and model (see Figure 8.2).
First consider a spherical system. Provided that the gas accretes supersoni-
cally – as it will if the halo has a virial temperatureTvir larger than the IGM
temperature – we would generically expect an accretion shock to form, at a
radius comparable to the virial radius of the halo. However,such a configu-
ration is only stable if the hot gas behind the shock can support it. If, on the
other hand, this gas cools rapidly, the shock will sink inward. The radiative
cooling time is

tcool =
3

2

1

µmp

kT

ρ(r)Λ(T,Z)
, (8.2)

whereρ2Λ is the radiative cooling rate per unit volume. It is dominated by
Compton cooling (at very high redshifts) and atomic line transitions, and
it therefore depends sensitively on the metallicity and temperature of the
gas. Finally, the shock will stabilize very near the galaxy when the sound-
crossing timetsc ∼ r/cs becomes smaller than this cooling time. In more
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Figure 8.1 Cartoon of the basic steps in galaxy formation, each discussed in this chap-
ter. The process begins with a dark matter halo forming and accreting more
matter (either through smooth accretion or mergers). The gas then settles into
a rotationally-supported “disk” with an interstellar medium. Within the ISM,
self-regulation occurs through cooling and feedback, which ejects some fraction
of the halo’s gas through winds. Gas flowing toward the centerof the galaxy
may accrete onto a central black hole, which would then unbind other ISM gas
through winds or jets.
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Figure 8.2 A cartoon of the “baryon cycle” in which gas flows into and out of galaxies. The
central galaxy is embedded in a much larger dark matter halo.Gas accreting
onto the halo follows one of two fates: (1) in large halos, some will be shocked
at the virial radius and heated to high temperatures (from which point it must
cool radiatively to settle onto the central galaxy), or (2) in small halos (and to
some extent in larger ones), it travels along filamentary “cold flows” directly to
the central galaxy. As the galaxy’s gas is turned into stars,feedback will launch
winds, which both heats the halo gas (preventing it cooling onto the galaxy) and
expels some gas into the IGM.

detail, the condition for virialization shock stability is121

ρrΛ(T,Z)

u3µ2m2
H

< 0.0126, (8.3)

whereT is the postshock temperature andu is the infall velocity. The cool-
ing rate therefore determines the geometry of the gas distribution inside the
halo.

The transition between these rapid and slow cooling regimesdepends on
the halo mass and redshift. Crudely, halos with masses abovea critical
thresholdMcool will have hot “atmospheres” that cool slowly. Gas will
accrete onto these atmospheres rather than the galaxy, and the rate of ac-
cretion onto the galaxy itself will be limited not by cosmological processes
but by cooling within the atmosphere. On the other hand, halos with mass
Mh < Mcool will be limited only by the cosmological infall rate (and feed-
back from the galaxy itself; see below). This critical threshold occurs at
∼ 1011 M⊙ for gas with primordial composition, or∼ 1012 M⊙ for gas
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with solar composition, with only a mild dependence on redshift (the left-
hand side of equation 8.3 is∝ ρrvirΛ/u

3 ∝ (1 + z)1/2Λ). This is suffi-
ciently large that most very high-redshift galaxies will befed through the
rapid-cooling regime and so be limited only by the rate of cosmological
infall.

Recently, high-resolution simulations have shown that thefilamentary ge-
ometry of the cosmic web changes this picture slightly; the “rapid-cooling”
regime is generally fed by accretion along filaments that reaches the galaxy’s
star-forming region without any shocks until the gas strikes the high density
ISM. Thesecold flowsprovide the primary fuel supply for small galaxies,
but the filamentary structures can persist in larger galaxies as well. The
transition between these two cooling regimes is therefore not an abrupt one.

The overall growth of halo mass can be tracked with analytical arguments
and simulations. In particular, the extended Press-Schechter formalism de-
scribed in§3.4.2 provides a mechanism to estimate this, which matches nu-
merical simulations reasonably well. In the standard cosmology, this ap-
proach yields122

Ṁh/Mh

H(z)
≈ 2.3

(

M

1010 M⊙

)0.15(1 + z

7

)0.75

, (8.4)

which illustrates how rapidly accretion occurs at these very high redshifts.
(In absolute terms, a1010 M⊙ halo atz = 7 accretes gas at a rate of
2.6 M⊙ yr−1.)

Before discussing the fate of the cold flow gas in the small halos most
important for high redshifts, we will briefly describe a long-standing prob-
lem for halos in the slow-cooling regime,M > Mcool, that motivates much
contemporary work on galaxy evolution. Although gas in thisregime does
indeed cool slowly, it is still relatively fast by cosmological standards. Thus,
high-mass galaxies at low redshifts should still have accreted most of their
baryons and formed stars from them. However, observations show an expo-
nential decline in the number density of galaxies (withL⋆ comparable to the
Milky Way luminosity) at mass scales well below the exponential cutoff in
the halo mass functionn(m) at the present time (which occurs near galaxy
cluster scales). Evidently, then, some mechanism must prevent gas in mas-
sive halos fromovercoolingonto their central galaxies. This mechanism is
likely to be feedback, either operating within the halos themselves or in the
surrounding gas.
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8.3 HALO MERGERS

A second channel for adding mass to a galaxy is through a merger with a
nearby halo. These merger rates are also described (roughly) by the ex-
tended Press-Schechter formalism, and equation (8.4) implicitly includes
such growth in the overall accounting. However, the dynamics of such merg-
ers differ greatly from smooth accretion.

Mergers are often divided into two classes, depending on themass ratio
of the merging systems. Letm1 andm2 be the masses of the two sys-
tems, withm1 > m2. Major mergersare usually defined to have a mass
ratio m1/m2 < 4. Such an interaction is quite dramatic, with so-called
“violent relaxation” (due to time-varying gravitational potentials during the
interaction) largely determining the structure of the resulting merger rem-
nant, which may bear no resemblance to the merging galaxies.(Indeed,
the classical picture for the formation of elliptical galaxies is through major
mergers of spirals.)Minor mergers, on the other hand, havem1/m2 > 4.
The second system then makes only a small perturbation on thefirst, and
the remnant retains the overall structure of the more massive object.

In particular, gravitational tides raised by mergers disrupt both the stars
and gas inside the individual systems. The former can mix freely, but the
latter collide via shocks, possibly triggering massive star formation over
short timescales (typically a few dynamical times of the interacting galax-
ies). Suchstarburstscan be closely studied in nearby galaxies, and indeed
often show evidence for strong gravitational perturbations. The rapid growth
of high-redshift galaxies naively suggests that such starbursts may be very
common in the early universe. Mergers are difficult to model analytically,
so they have most often been studied with numerical simulations. These
show that equal mass mergers can enhance significantly the star formation
efficiency over isolated systems when averaged over the merger time.123

Mergers can also funnel gas toward the center of the remnant galaxy, fu-
eling any supermassive black hole there and triggering an AGN phase (see
§7.5).

8.4 DISK FORMATION

As halo gas cools, it loses the pressure supporting it against gravity and con-
tracts to higher densities. This contraction continues until the gas becomes
rotationally supported by its own angular momentum.

The net angular momentumJ of a galaxy halo of massMh, virial radius
rvir, and total energyE, is commonly quantified in terms of the dimension-
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less spin parameter,

λ ≡ J |E|1/2G−1M
−5/2
h . (8.5)

Expressing the halo rotation speed asVrot ∼ J/(Mrvir) and approximating
|E| ∼ MV 2

c with V 2
c ∼ GM/rvir, we findλ ∼ Vrot/Vc, i.e. λ is roughly

the ratio of the actual rotation speed to the maximal value above which it
would break up.

After cooling the gas settles to a rotationally-supported disk. Let us write
the disk mass as a fractioñmd of the halo mass and let the disk angular
momentum be a fractioñjd of that of the halo. The scale radius of the disk
is set by rotational support. As a simple estimate, let us take an isothermal
profile for the dark matter halo and neglect the self-gravityof the disk. We
further assume that the disk has an exponential surface density profile,

Σ(R) = Σ0 exp(−R/Rd), (8.6)

with Rd the disk scale radius. The total disk mass is thenMd = 2πΣ0R
2
d.

Because the circular velocity of an isothermal sphere is constant, the total
angular momentum of the disk is

Jd = 2π

∫

VcΣ(R)R2dR = 2MdRdVc. (8.7)

Setting this equal to a fractioñjd of the total angular momentum of the halo
as in equation (8.5), we obtain an expression for the disk scale length:124

Rd =
1√
2

(

j̃d
m̃d

)

λ rvir . (8.8)

Note that the factor̃jd/m̃d is simply the specific angular momentum of the
disk material. The characteristic density and scale-height of an isothermal
disk at the hydrogen temperature floor of∼ 104 K can then be easily derived
as a function of redshift.125 The assumptions behind this simple expression
are questionable: the self-gravity of the disk likely cannot be ignored once
it collapses to a small size, the dark matter profile is not exactly isothermal
(and it may respond to the gravity of the disk as well), and finally the disk
may not have organized itself into a simple exponential profile. Neverthe-
less, it proves to be a useful model in comparison to simulations.

We also require some way to calibrate the specific angular momentum of
the disk material and the spin parameter. The observed distribution of disk
sizes in local galaxies suggests that the specific angular momentum of the
disk is similar to that expected theoretically for dark matter halos, and so
we assumẽjd/m̃d = 1. The distribution of disk sizes is then determined by



308 CHAPTER 8

the the distribution of spin parameters and halo masses.126 N-body simula-
tions indicate that the former approximately follows a lognormal probability
distribution,127

p(λ)dλ =
1

σλ

√
2π

exp

[

− ln2(λ/λ̄)

2σ2
λ

]

dλ

λ
(8.9)

with λ̄ = 0.05 andσλ = 0.5.
Despite its potential flaws, this simple model shows the expected scaling

of the disk sizes with redshift: the size of a disk at a fixed halo mass is
expected to scale asRd ∝ (1 + z)−1. Observations do indeed indicate
that the luminous cores of galaxies follow this expected trend over the wide
redshift range2 < z < 8, as illustrated in Figure 8.3 (though note that these
galaxies are binned by luminosity rather than mass).

For high-redshift galaxies, the primary lesson is that – even though the an-
gular diameter distancedecreaseswith z at high redshifts – the small masses
and rapid cooling of the halo gas likely mean that the sourcesare extremely
compact. Figure 8.4 shows the extrapolated relation between galaxy size
and redshift, calibrated by current data on the size distribution and luminos-
ity function of high-redshift galaxies. It implies that even the James Webb
Space Telescope (JWST) will only be able to resolve galaxiesat an AB
magnitude limitmAB < 31 out to a redshift ofz ∼ 14. The next generation
of large ground-based telescopes will resolve all galaxiesdiscovered with
JWST, but only if they are sufficiently clumpy to enable detection above the
bright thermal sky.

8.5 STAR FORMATION IN GALAXIES

Once the gas has cooled and collapsed to high densities, starformation can
commence. Determining the conversion efficiency of gas to stars is arguably
the most important, and most challenging, aspect of galaxy formation. Nev-
ertheless, theorists and observers have made enormous strides over the past
few decades in understanding the relevant processes, at least in the local
Universe. We illustrate these steps in cartoon form with Figure 8.5.

Traditionally, the star formation rate per unit areaΣ̇⋆ has been calibrated
empirically as a function of the total gas surface densityΣgas. Observation-
ally in the local Universe, these quantities correlate reasonably well over
nearly seven orders of magnitude in surface density, with

Σ̇⋆ ∝ Σn
gas, (8.10)

wheren ≈ 1.4 ± 0.1. This so-calledKennicutt-Schmidt relation128 can
also be interpreted in terms of a fixed fraction of the gas being converted
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Figure 8.3 Observed evolution of the mean half-light radiusof galaxies across the redshift
range2 < z < 8 in two bins of fixed intrinsic luminosity: (0.3-1)L∗(z = 3)
(top) and (0.12-0.3)L∗(z = 3) (bottom), whereL∗(z = 3) is the characteristic
luminosity of a galaxy atz = 3 (equation 10.3). Different point types correspond
to different methods of analysing the data. The dashed linesindicate the scaling
expected for a fixed halo mass (∝ (1 + z)−1; black) or at fixed halo circular
velocity (∝ (1 + z)−3/2; gray). The central solid lines correspond to the best-fit
to the observed evolution described by∝ (1 + z)−m, with m = 1.12 ± 0.17
for the brighter luminosity bin, andm = 1.32 ± 0.52 at fainter luminosities.
Figure credit: Oesch, P. A., et al.,Astrophys. J.709, L21 (2010). Reproduced
with permission of the American Astronomical Society.
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Figure 8.4 Theoretically extrapolated relation between galaxy size and redshift for four val-
ues of apparent AB magnitude. Theleft andcentral panels show the physical
(Rgal) and apparent angular sizes (θgal), respectively. The thick grey lines indi-
cate the resolution of telescopes with diameters corresponding to HST (2.5 m),
JWST (6.5 m) and a ground-based extremely large telescope or ELT (30 m).
The right panel shows the average surface brightness within a galaxy scale ra-
dius as a function of redshift. In each panel, the grey band around the case of
mAB = 29 mag shows the68% range of uncertainty on the mean. Figure credit:
Wyithe, J. S. B., & Loeb, A.Mon. Not. R. Astron. Soc.413, L38 (2011).
Copyright 2011 by the Royal Astronomical Society.

Figure 8.5 Cartoon of baryon flows in the ISM. The multiphase ISM is a hot, ambient
medium surrounding cold gas clouds, which form when a thermal instability
allows the hot gas to cool locally, producing recombinationline radiation (such
as Hα). Inside these cool, neutral clouds, radiative cooling continues (largely
through fine structure lines such as [C II]), and the gas column eventually be-
comes sufficiently thick to shield H2 from dissociating radiation, allowing a gi-
ant molecular cloud to form. Within the cloud, cooling continues via molecular
transitions (such as CO), until regions became gravitationally unstable and form
stars. The radiation and eventual explosions of these starsreturn gas and energy
into the hot ISM, so that the process is self-regulating.
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into stars per orbital time in the associated galactic disks. In other words, if
the (three-dimensional) star formation rate density satisfies ρ̇⋆ ∝ ρg/tdyn,

whereρg is the gas density, we would haveρ̇⋆ ∝ ρ
3/2
g , very close to the

observed two-dimensional relation. Despite the apparent success of this
simple scaling, as an empirical relation it must still be tested beyond the
local Universe, and it is unclear whether star formation would obey the same
relation at the low metallicity and low initial magnetization of the gas within
the first galaxies.

Thus, a deeper understanding of star formation is highly desirable. As
a first step, note that stars in the local Universe form in molecular clouds.
One might therefore expect a more fundamental scaling of thestar formation
rate with the density ofmolecular(rather than atomic) gas. We writefH2

for the fraction of molecular gas. Furthermore, local observations show that
molecular clouds turn a constant fractionǫff ≈ 0.015 of their gas into stars
per free-fall time.129 This suggests a relation

ρ̇⋆ = ǫfffH2
ρ/tff (8.11)

for the star formation rate, which requires an estimate of the molecular frac-
tion (and an extrapolation of the star formation efficiency parameter to high-
z galaxies).

The molecular fraction is significantly more challenging tocompute than
the analogous calculation in§5.1, because enriched gas has more channels
for H2 formation (particularly on the surface of dust grains), a much more
complex radiation field (owing to the embedded star formation), dust shield-
ing, and a turbulent, inhomogeneous ISM. The physical picture that emerges
is one in which molecular gas is confined to the interiors of cold, high-
density gas complexes. We must then determine:(i) the relative mass of the
cold phase, and(ii) the fraction of the cloud able to go fully molecular. The
latter is determined by balancing the rate of H2 formation on dust grains
with photodissociation by the (dust-extinguished) radiation field, similar to
the calculations presented in chapter 5.

The fraction of gas in the cold phase is determined ultimately by the feed-
back from hot stars and supernovae. The canonical picture assumes a mul-
tiphase ISM, with a “hot” phase of diffuse ionized gas and a cold phase of
dense star-forming gas (and likely an intermediate warm phase of atomic
gas). Crudely, gas is exchanged between the phases (as well as the stellar
component) through three basic processes:(i) star formation (from cold gas
to stars),(ii) cooling in the diffuse ISM (from hot to cold gas), and(iii) su-
pernovae (from stars and cold gas to hot gas). The last process includes not
only the supernova ejecta itself but also cloud evaporationthrough conduc-
tion with the surrounding hot gas.
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Radiative cooling is challenging to model in the ISM unless the galaxy is
fully resolved, because the density (and possibly composition) is highly in-
homogeneous. For example, simply assuming a uniform cooling rate (even
enhanced by a clumping factor) throughout the entire galaxywould not al-
low any gas to cool to very low temperatures. In reality, cooling is driven
primarily by various thermal instabilities: because the cooling is most rapid
in densest gas, this material will quickly cool and become neutral, while
the low-density gas will remain hot. In other words, when cooling occurs
it is so efficient that a gas parcel usually drops out of the hotmedium and
rapidly enters the cold, molecular phase, rather than mixing and lowering
the temperature of the entire hot phase. In practice, the simple assump-
tion of a two-phase medium, each with a characteristicfixed temperature,
appears to provide a reasonable approximation. In this case, the radiated
energy determines the mass flow rate from the hot to cold phase.

Meanwhile, giant molecular clouds have much higher pressures than the
surrounding ISM (at least in local galaxies), suggesting that their proper-
ties are set by internal feedback processes rather than by coupling to the
ISM.130 In particular, H II regions from embedded stars appear to provide
the most important feedback mechanism. Because they are internally reg-
ulated, the properties of these clouds do not vary much between galaxies,
which explains the apparent constancy ofǫff – though, of course, the condi-
tions within high-redshift galaxies may be very different (for example, the
ambient ISM pressure will of course depend on its density).

Numerical simulations have shown results consistent with equation (8.10),
except thatn ≈ 2 for massive galaxies andn ≈ 4 for dwarfs, as required by
recent data.131

An alternative approach to this “bottom-up” view (which is fundamen-
tally based on understanding the “microphysics” of star formation) is to treat
it within a global context. The basic idea is that star formation can only oc-
cur if some sort of large-scale gravitational instability allows fragmentation
to higher densities.132 The condition for this to occur is theToomre criterion
(see§5.2.3),

Q ≡ csκe

πGΣg
< 1, (8.12)

whereκe = (2Ω/R)d(ΩR2)/dR is the epicyclic frequency for an angular
frequency of rotationΩ(R) = v/R at a (cylindrical) radiusR within the
disk. However, once fragmentation begins, feedback from star formation
will heat the gas (and increase the sound speed), slowing further fragmen-
tation. On the other hand, if star formation does not occur, the gas will
cool rapidly, decreasingQ. The expectation (which appears to be realized
in nearby galaxies) is therefore that galaxies will form stars sufficiently fast
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to maintainQ ∼ 1 in a sort of self-regulated flow. Together with a model
for the feedback effects of stars, this provides an alternative method to de-
termineΣ̇⋆.

The two most obvious feedback mechanisms are stellar radiation pressure
and supernovae, which “puff up” the disk and support the gas against the
vertical component of gravity. Focusing on radiation pressure due to UV
photons for concreteness, we can write (c.f. the momentum injection rate
from radiation in§6.4.1)

prad ∼ (1 − fesc)ǫΣ̇⋆c, (8.13)

whereǫ = 10−3ǫ−3 is the fraction of the baryonic rest energy converted to
photons. (In nearby galaxies, supernovae produce a comparable pressure,
but at high-redshifts the elevated ambient densities make them less impor-
tant.) The factor(1 − fesc) accounts for the fact that high-energy photons
that escape the galaxy do not couple to the gas and so provide no radiation
pressure.

As in §6.4.1, let us take the simple model of an isothermal density profile
within the halo with a 1D velocity dispersionσ and assume that the disk
contains a fractionfg of the total matter. The fractionfg is likely to be much
larger thanΩb/Ωm, because the baryonic component has already cooled
and collapsed into a disk. Assuming a thin disk, the verticalcomponent of
hydrostatic equilibrium can be written ash ∼ cs/Ω, whereΩ is the rotation
rate (see§7.3.2). WritingΣg = 2ρh, equation (8.12) provides an expression
for the gas density inside the disk. With these two relationsandc2s ∼ p/ρ,
we can solve equation (8.13) for the required star formationrate to support
the disk:

Σ̇⋆ ∼ 3

(

Q

ǫ−3(1 − fesc)

)(

fg

0.25

)2
( σ

50 km s−1

)4
(

100 pc

r

)2

M⊙ yr−1 kpc−2,

(8.14)
where we have scaledσ to a1010 M⊙ galaxy atz = 7 (usingV 2

c = 2σ2 for
an isothermal sphere and equation 3.31).

This particular estimate ignores the pressure contribution from super-
novae and a possible enhancement in the radiation pressure from infrared
emission by dust, but it gives a sense for how the global self-regulation cri-
terion can be used to estimate the large-scale properties ofgalaxies. Such
models typically connect more closely to the cosmological input parameters
(the dark matter halo mass and its accretion rateṀ ). For example, givenṀ
one can integrate the star formation rate inwards and determine the gas frac-
tion fg at each radius self-consistently.133 The advantage of this approach
is that it does not require a calibration to local galaxies and so is more ro-
bust to any unknown changes in the small-scale physics of star formation
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at high redshift; the disadvantage is that it makes strong assumptions about
Q, the structure of the disk, and the relation between star formation feed-
back and the disk properties (ignoring other sources of pressure support like
turbulence, for example).

However, the above relation does produce a surface-densitylaw consis-
tent with local models. DefiningǫSFR via Σ̇⋆ = ǫSFRΣgΩ, whereΩ is the
angular velocity (comparable to the dynamical time, and roughly the growth
rate of global instabilities in disk galaxies), self-regulation atQ ∼ 1 via ra-
diation pressure yieldsǫSFR of a few percent for moderately large galaxies,
with a predicted scalingǫSF ∝ Σg.

8.6 BLACK HOLE GROWTH IN GALAXIES

As described in chapter 7, it is now well-established that nearly all present-
day galaxies with spheroids also have supermassive black holes in their cen-
ters. Because the properties of these black holes correlatewith their host
galaxies, and because their feedback may be important in regulating the
stellar and gas contents of galaxies (see§7.5) it is natural to include them in
models of galaxy formation and evolution.

Black holes may be fed smoothly and relatively slowly duringthe normal
growth of a galaxy: some small fraction of the accreted gas may sink all the
way through the galaxy and be swept into the black hole. Theminimalaccre-
tion rate is given by the Bondi estimate from§5.2.1,ṀBH ∼ G2M2

BHρ/c
3
s,

where the densityρ and sound speedcs are evaluated at the accretion radius
Racc ∼ GMBH/c

2
s. However, this generally produces slow accretion.

A more efficient method of feeding black holes is to channel gas toward
the black holes (see§7.5.2). This can include any global instability (such
as bars or spiral waves), but in the cosmological context galaxy mergers are
often identified as the most likely mechanism. As described previously, the
torques generated during instabilities and mergers can be large, and a fair
fraction of this gas can be fed toward the center of the remnant according
to numerical simulations. Dimensionally, such strong torques will produce
inward radial velocities comparable to the local sound speed or orbital ve-
locity,134 many times larger than the expected effect of viscosity.

However, the fate of this gas is difficult to determine analytically, because
it is of course also subject to star formation and feedback. Global disk mod-
els (as described in the previous section) can in principle follow the gas
toward the galaxy’s center, but a more phenomenological approach is often
taken by assuming that theMBH–σ relation holds for all spheroidal galaxies
and using it toassigna total accreted mass following a merger. As usual,
one must worry about whether this relation holds during the earliest phases
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of galaxy formation (and in particular how it extrapolates with redshift; see
§7.5.2).

Of course, ifboth galaxies in a merger have black holes, the resulting
object will likely host a binary black hole. The fate of this merging system
is described in§7.6, and it may have interesting signatures even beyond
electromagnetic radiation. If the binary does not coalescebefore the next
merger, a triple (or higher multiple) system would form, from which the
lightest black hole may be ejected at a speed of thousands ofkm s−1. Due to
the increase in the merger rate at high redshifts, multiple black hole systems
are expected be more common in early galaxies.135

8.7 FEEDBACK AND GALAXY EVOLUTION

Feedback from stars and black holes is crucial for galaxy evolution models
in at least three respects. First, as we have already seen, itsets the proper-
ties of the star-forming gas within the galaxy itself, through radiation from
stars and mechanical energy input via supernovae. Second, it enriches the
gas, changing its dust content, cooling rates, and stellar properties. Finally,
winds (whether driven by radiation pressure or supernovae)offer a second
end point (other than stars) for accreted gas: it can be ejected entirely from
the halo.

Modeling these different aspects is clearly very challenging, and often
they are parameterized in simple fashions. For example, we have already
seen that the “internal” feedback regulating star formation can be implicitly
included in star formation laws with relatively simple phenomenological
prescriptions like the Kennicutt-Schmidt law or its more recent modifica-
tions (though, again, one must always worry whether such prescriptions can
be extrapolated robustly to the high redshifts of interest to us).

Chemical enrichment is probably the simplest of these effects to model:
given an initial mass function, the rate at which material isenriched and
returned to the ISM is straightforward to calculate. The ejecta are typi-
cally assumed to mix efficiently with the ISM, so that future generations of
stars have monotonically increasing metallicity. The major uncertainties in
chemical evolution are the properties of the gas accreting onto the galaxy
(whether it is pre-enriched) and the fraction of the ejectedmetals entrained
into winds and carried out of the galaxy.

Perhaps the most significant aspect of feedback is mass loss through
winds, which can dramatically affect the overall star formation efficiency
in small galaxies. We have already discussed the complex physics of winds
in §6.4. We expect feedback to be most important in the small gravitational
potential wells of low-mass galaxies. The most crucial question is how the
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wind efficiency varies with galaxy mass, which depends largely on the un-
derlying physics (i.e., momentum-driven or energy-driven). For example,
suppose that the supernova energy accelerates a fraction ofISM material
(with a mass loss rateṀw) to the escape speed of the dark matter halo.
Then we haveṀw ∝ Ṁ⋆ωSN/v

2
esc. If, on the other hand, much of the en-

ergy is lost through cooling so that the momentum input of thesupernovae
or radiation pressure from the stars drive the wind, thenṀw ∝ Ṁ⋆/vesc, a

significantly gentler dependence onvesc ∝M
1/3
h .

We note that beyond this overall scaling, the mass loading ofthe winds
is also highly uncertain, because their total matter content is difficult to ob-
serve. So far, the best evidence comes from redshifted metallines in galaxy
spectra, which at best provide a velocity and column densityof the mate-
rial; without the distance of the absorbing material from the galaxy, the total
mass is difficult to assess. Typically, however, the mass loss rate is assumed
to be roughly equal to the star formation rate.

Finally, winds not only entrain gas but can also prevent circumgalactic
gas from accreting onto the galaxy by heating it. This reduces the inflow
rate onto the galaxy.

Given the basic energetics of the process, the prevailing expectation is
that supernova feedback may suppress star formation in small galaxies and
help explain the relative dearth of low-luminosity galaxies compared to the
number of small-mass halos. This is consistent with local observations,
where the total stellar mass is∝M

2/3
h for Mh < Mcrit ∼ 3× 1010 M⊙ and

constant above it.136 Assuming that the total supernova energy inputESN ∝
M⋆, and that star formation continues until supernovae clear the halo of its
remaining baryons by injecting an energy comparable to the binding energy
of the gas, we would expectM⋆/Mh ∝ V 2

c ∝ M
2/3
h . If this explanation

applies at higher redshifts as well, we would expect a similar suppression
there, in galaxies withVc < 100 km s−1.

We should also consider feedback from black holes during accretion episodes
of quasar activity, which may be important in driving galactic winds. As we
have described in§7.5, the energy input from quasars can exceed that from
star formation, although the coupling of this energy to the ISM is not yet
understood. (In some cases, such as jets from radio quasars,the energy may
escape the galaxy in narrow channels without clearing all the gas.) On the
other hand, the tightMBH–σ relation is highly suggestive of a fundamental
relationship between the growth of black holes and their host galaxy’s stars.
Because (at least naively) this relationship suggests thatthe black hole mass
scales superlinearly with halo mass, this feedback channelis moreeffective
in larger galaxies and is often invoked as a potential solution to the “over-
cooling” problem in massive, low-redshift galaxies.
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Given the common “merger models” for AGN growth, one plausible phys-
ical picture is that the merger funnels large quantities of gas toward the
remnant’s center, triggering a starburst. Some of the gas continues to fall in-
ward and is accreted by the black hole, which drives a wind outward into the
galaxy. Once the black hole grows large enough, this wind unbinds the re-
maining gas and halts the star formation episode, at least until another major
accretion event occurs. This scenario naturally explains many aspects of the
low-redshift Universe (such as the relation of black holes to spheroids rather
than disks), but its application to very high redshifts – where spheroids may
or may not even exist, and the much more rapid growth of galaxy-sized ha-
los likely prevents active black holes from entirely halting star formation –
is far from clear.

8.8 FROM GALAXY MODEL TO STELLAR SPECTRA

In addition to the raw star formation rate, most observablesdepend on the
initial mass function (IMF) of the stars. We have already discussed this in
sections 5.2.4 and 5.3.3, where we described how local measurements are
consistent with a (broken) power law in the stellar mass range of ∼ 0.1–
100 M⊙. Once true galaxies form, with reasonably enriched gas, theIMF
likely approaches this form, though (as we argued before) the characteristic
mass may increase at higher redshifts owing to the higher CMBtemperature.

An additional issue that appears to be important for generating realis-
tic stellar populations is the finite mass of the gas clouds from which stars
form, as it now appears that most stars form in groups (thoughthey may
later disperse). The range of allowable star cluster massesis called theclus-
ter initial mass function; local observations are consistent with a power-law
distribution of the cluster number count per unit mass of slope∼ −2 (re-
flecting an equal amount of mass per logarithmic mass bin) between a few
tens to∼ 106 M⊙.137 This is important because the total fuel mass may
limit the maximum stellar mass that can form in that environment – in other
words, even if the underlying stellar IMF stretches smoothly to very high
masses, a dearth of high-mass gas clouds will cause a dearth of high-mass
stars. In the past, the cluster sites were generally ignored, and a population
of stars was generated by drawing from the IMF over a uniform range of
stellar masses. More accurate stellar population models can be constructed
by stochastically sampling the cluster initial mass function to generate a set
of star clusters and then stochastically sampling the stellar IMF (taking into
account the maximum stellar mass allowed within each one).i

iTo many readers, it might seem more natural to define the IMF asthe net result of
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Given a metallicity and following this procedure for a set ofstars form-
ing at a particular instant, one can then calculate how the luminosity and
spectrum of the population evolve with time using librariesof stellar mod-
els. Although isolated, non-rotating stars are well understood, there remain
some important uncertainties in this modeling. The fundamental challenge
is that the ionizing luminosity comes from only a small fraction of the stars
(those with the highest masses). Thus, small variations in their formation
efficiency or properties can cause substantial uncertainties in the models.

For example, the ionizing flux of stars cannot be observed directly and
instead must be modeled from their feedback effects on surrounding H II
regions. Meanwhile, the massive stars responsible for these photons have
atmospheres that are out of local thermodynamic equilibrium and often un-
dergo substantial mass loss through line-driven winds. These so-calledWolf-
Rayet starspresent particular challenges to models.

As a second example, most (> 75%) stars are born with neighbors (as
binaries or even larger multiple systems) in the local Universe. Binarity
can dramatically affect the evolution of the component stars. For example,
suppose one (the more massive star) reaches its supergiant phase first. It
expands rapidly, with some of its envelope passing the Rochelimit and es-
caping. The “naked” surface of this more massive star will then become
hotter, producing more ionizing photons. Meanwhile, the neighbor may
accrete some of this additional mass and itself become more massive (and
hence hotter) and possibly gain angular momentum and rotatefaster (which
also tends to make it hotter).

Overall, different stellar models vary by a factor of a few intheir ionizing
flux, even at a fixed metallicity and stellar IMF.138 They are generally more
consistent with each other at longer wavelengths, but the differences can
still be important. Nevertheless, several general trends are apparent:

• Stellar age: Because the most massive stars have the shortest life-
times, the spectrum (particularly at high frequencies) is extremely
sensitive to the elapsed time since a star formation episode. Fig-
ure 8.6a shows this explicitly. After only 1 Myr, many stars have
not yet evolved into their hot phases, and so the ionizing fluxis rela-
tively small. The ionizing spectra harden shortly afterward and then
rapidly fade away as the hot stars die. Meanwhile, the continua also
fade steadily as more stars fade into white dwarves or explode in su-

this process, since that would provide the galaxy-wide initial mass function of stars relevant
for cosmologists. However, in order to measure the stellar IMF one must find a population
of stars that formed simultaneously – in other words, a single cluster. Thus, the canonical
stellar IMF – measured long before the importance of the cluster IMF was recognized – is
only part of the “real” mass distribution of stars.
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Figure 8.6 Spectral synthesis models of stellar populations. (a) Spectra for an instantaneous
burst of star formation withM⋆ = 106 M⊙. (b) Spectra for a constant star
formation rate withṀ⋆ = 1 M⊙ yr−1. Both panels show predicted spectra
for populations106, 107 108, 109, and1010 yr after the onset of star forma-
tion. The calculation assumesZ = 0.05 Z⊙, includes binaries, and ignores
nebular reprocessing in all cases. It adopts an IMF with a slope of−1.3 for 0.1–
0.5 M⊙ and−2.35 for 0.5–120 M⊙, and does not account for the finite mass
of star-forming clouds. Generated using the BPASS population synthesis code
(http://www.bpass.org.uk).
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pernova.

• Star formation history: A corollary of the previous point is that
spectral measurements can determine the star formation history of
a galaxy. There is, however, the important possibility thatstar for-
mation may not be instantaneous. If it instead continues at acon-
stant rate for a long time period (i.e., much longer than the age of the
most massive stars), the high-energy photons will still be sensitive to
the high-mass, short-lived stars (and hence the current star formation
rate), but the lower-energy photons will depend on the integrated pop-
ulation of low-mass stars and so measure the total stellar mass. Fig-
ure 8.6b shows spectra with ongoing star formation over timescales
of 106, 107, 108, 109, and1010 years (from lower to upper curves).
Note how the spectra roughly converge after long times, onlyincreas-
ing at very long wavelengths as the galaxy continues to accumulate
more and more low-mass stars.

However, we should emphasize that the starburst and constant star
formation rate histories are only simple examples, and of course more
detailed observations can constrain more complex histories. For the
high redshifts of interest to us, where galaxies grow extremely rapidly,
so-called “exponential” histories, where SFR∝ et/t⋆ when smoothed
over cosmological times, may also be appropriate. On the other hand,
any single accretion event may lead to a burst of star formation that
dies off rapidly with time, so that SFR∝ e−t/t′⋆ .

• Metallicity: In general, the higher opacities of heavy elements lead
to slightly cooler stellar atmospheres and hence redder spectra. Of
course, they also change the spectral lines substantially.Figure 8.7
illustrates this for low and high metallicity models (see also§5.4 for a
comparison to Population III models). Although the long wavelength
tail is nearly unchanged, increasing the metallicity decreases the ion-
izing flux by a factor of up to several. The non-trivial differences
amongst these spectra indicate that the metallicity is an observable
quantity given high-resolution spectra. However, one mustbear in
mind that metallicity is likely to evolve as star formation proceeds,
since it is the stars themselves that enrich the medium, so the cumu-
lative stellar population in a galaxy may not be well-described by a
single metallicity.

• Binaries: Finally, we have already mentioned that the inclusion of
binary evolution can substantially modify the far-ultraviolet fluxes of
stellar populations. Figure 8.7b shows this explicitly. Binaries only
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Figure 8.7 Spectral synthesis models of stellar populations: (a) variation with metallicity;
(b) contribution of stellar binaries (assumingZ = 0.05 Z⊙). Both panels show
predicted spectra for a constant star formation rate of1 M⊙ yr−1, 108 yr after the
star formation began. The calculation ignores nebular reprocessing in all cases,
adopts an IMF with a slope of−1.3 for the stellar mass range of0.1–0.5 M⊙

and a slope of−2.35 for masses between0.5–120 M⊙. It does not account for
the finite mass of star-forming clouds. Generated using the BPASS population
synthesis code (http://www.bpass.org.uk).

slightly change the long-wavelength flux but increase the ionizing flux
significantly.

8.9 SIGNATURES OF THE INTERSTELLAR MEDIUM

In the previous section we saw how “synthesized” galaxy spectra can be
created given information about the stars and their formation history. Of
course, the other major component of the galaxy – its ISM – also has impor-
tant observable consequences that can affect both the observed continuum
of the stars and, especially, the galaxy’s spectral lines. Afirm grasp of these
effects is necessary to understand the stellar component, but it also allows us
to learn about the diffuse component of the galaxy and hence its fuel supply
and feedback processes. Here, we will briefly outline the most important of
these effects.
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8.9.1 Nebular Emission Lines

The raw stellar spectra computed in§8.8 likely do not reach an observer
without substantial modification by their surroundings. The most immedi-
ate is the interaction of ionizing photons with the local ISM: presuming that
the stars form in dense environments, many of those photons will be ab-
sorbed by local hydrogen or helium atoms. We typically parameterize the
fraction that escape their host galaxy asfesc, which is at most a few percent
in low redshift galaxies (see§9.2.2). The remaining photons ionize atoms in
their host galaxy, which then undergo radiative cascades, reprocessing the
energy originally contained in ionizing photons into emission lines at longer
wavelengths.

Figure 8.8 shows two examples of this reprocessing, for two different as-
sumed metallicities (note that the solar metallicity curvehas been shifted
down by a factor of 100 for clarity of presentation; its continuum ampli-
tude is in reality just slightly smaller than the low-metallicity model). The
strengths of these recombination lines are determined by ionization balance
in the H II regions. Assuming that they are Strömgren spheres (see§9.1),
the total number of recombinations per second is equal to thetotal num-
ber of ionizations, so the emission lines measure the ionizing luminosity.
The relative strengths of the hydrogen lines (and helium lines, for very low
metallicities and hot stars) depend on atomic physics and soprovide a mea-
sure of the temperature of the gas.

However, metal lines can also be important diagnostics, if they do exist.
These are usually collisionally excited forbidden transitions, such as [O II],
[O III], and [N II]; they are important because such lines have excitation
temperatures∼ 104 K, comparable to the expected temperatures of stellar
H II regions. The ratios of the strength of these emission lines to those of
hydrogen depend on the (gas) metallicity and can be used to estimate it; this
has proven to be very useful at lower redshifts, though it is not yet possible
at z > 4.

Nebular emission lines also offer a useful probe of the escape fraction,
because their strength is proportional to(1−fesc). Reprocessing shifts pho-
tons from the short wavelength tail to longer wavelengths and so can even
change broadband colors (i.e., a significant fraction of theenergy measured
in a particular observational filter may actually be contained in emission
lines rather than the raw stellar continuum). For example, suppose one es-
timates a spectral indexfλ ∝ λ−β from the average broadband colors. The
difference between full nebular reprocessing and full escape corresponds to
a range inβ ∼ 2.2–3.1 for very young stellar populations (< 3 Myr), though
the difference falls to∼ 0.1 for older populations (> 100 Myr).139 This is
particularly useful because, even whenfesc ∼ 1, photons withλ < 912 Å
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Figure 8.8 Effects of host galaxy absorption on stellar spectra. The curve extending to short
wavelengths is the raw stellar spectrum (identical to the curve with binaries in
Fig. 8.7b). The other two curves show the spectrum assuming that all ionizing
photons are absorbed by the galaxy ISM and reprocessed into emission lines at
longer wavelengths. The upper curve assumesZ = 0.05 Z⊙; the lower curve
assumes solar metallicity for both the stars and ISM. The latter is shifted down by
two orders of magnitude for clarity of presentation. Generated using the BPASS
population synthesis code (http://www.bpass.org.uk).
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will not be directly observable, owing to absorption by the intervening IGM
at z > 5. The longer-wavelength emission lines may thus provide thebest
direct diagnostics of this important quantity.

8.9.2 Dust

The other obvious effect on the stellar spectrum comes from dust, which
absorbs stellar photons (especially those with short wavelengths), heats up,
and ultimately re-radiates that energy in the infrared or submillimeter bands.
The effects of dust depend on its total mass, its composition, and the rela-
tive geometry of the stellar and dust components of the ISM. The total dust
mass determines the overall extinction of the gas, while itscomposition de-
termines the relative extinction across different wavelengths. Unfortunately,
this so-calledextinction lawis found to vary even amongst nearby galax-
ies, particularly for short wavelengths. Given that high-redshift galaxies
exist much earlier in their life cycle than nearby objects, one would also
expect that their dust may have very different compositionsfrom those in
the present-day Universe. Moreover, if the dust preferentially surrounds
star-forming regions it will have a larger effect on young, hot stars than on
the low-mass stars that may have wandered far from their birth sites. Thus,
predicting the dust absorption from early galaxies is rather difficult.

The dust emission is equally interesting. Each particle will radiate ther-
mally, though the spectrum will not typically be a true blackbody because
dust in different environments may have different temperatures (in the Milky
Way, ranging from∼ 20–40 K in the low-density ISM up to several hundred
K in star-forming regions) and because of the range of dust particle sizes
(the blackbody approximation is not valid for wavelengths smaller than the
particle radius). In a simple model, the dust emission spectrum can be pa-
rameterized by two quantities:(1) the dust temperatureTd and(2) the dust
emissivityǫν,dust.

The dust temperatureTd is set by balancing the incident energy against
the dust emission. In the simplest model, we assume blackbody emission
and write

T 4
d ≈ T 4

CMB + T 4
m + T 4

⋆ + T 4
AGN, (8.15)

where the four terms account for the CMB radiation field, non-radiative en-
ergy input (via cosmic rays or supernovae), the stellar radiation field, and
any energy input from AGN (which appears to be important in some galax-
ies). The last two quantities presumably scale with the surface density of
star formation and black hole accretion rate, respectively, though locally
they appear to saturate at∼ 60 K and∼ 150 K, respectively.140 The CMB
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contribution is rarely important at the present day, but it will become much
more significant at higher redshifts.

The dust emissivity is often approximated as a power law,ǫdust(ν) ∝ νβ,
with β ∼ 1 at high photon frequenciesν (in order to match observations)
and β → 2 at long wavelengths from standard scattering theory. If the
dust is optically thin, the spectrum will followfν,dust ∝ ǫν,dustBν , and the
normalization will be determined by balancing the input luminosity (from
stars or AGN) with this thermal emission. At low and moderateredshifts,
some very rapidly star-forming galaxies have such high dustcontent that
nearly all of their radiative output emerges in the infraredand sub-millimeter
bands. Whether more distant analogs for these exist is so farunknown and
depends primarily on how quickly galaxies can build large dust columns.

Although it is clearly difficult to predict from first principles, this dust
emission has one very important property from an observer’sperspective:
the spectra of dusty star-forming galaxies are such that, inthe sub-millimeter
band, the observed fluxes will be nearly independent of redshift well into
the cosmic dawn. This occurs because the peak of the blackbody spec-
trum usually lies blueward of the observational bands, so itmoves into
the observed bands as the galaxy’s redshift increases. Sucha negative K-
correctionmakes sub-millimeter observations potentially extremelypower-
ful for observing distant galaxies. Figure 8.9 illustratesthis for a model
galaxy based on a local composite of dust-dominated galaxies. It shows
how the observed flux for galaxies in three different bands, and taking three
different fiducial dust temperatures, varies with redshift. Interestingly, at the
longest wavelengths and/or lowest dust temperatures, the flux hardly varies
with redshift: if a telescope (such as ALMA) can detect a given galaxy pop-
ulation atz ∼ 1, it may be able to detect similar galaxies all the way to
z ∼ 10.

8.9.3 Interstellar Absorption Lines

In addition to metal emission lines from H II regions (see§8.9.1), heavy
elements in the ISM will also cause absorption lines in a galaxy spectrum.
In principle, these are interesting for measuring the gas-phase metallicity
of the ISM; however, in lower redshift galaxies the strongest lines tend to
be saturated (which can be noted through the relative strengths of doublet
lines), which makes such a measurement extremely difficult.141

Instead, these absorption lines are useful for measuring the properties of
galactic winds. Interestingly, although many of the lines appear saturated,
they donot completely attenuate the starlight. The depth of the absorp-
tion therefore tells us the covering fraction of the high-metal-column gas.
Meanwhile, these absorption lines are nearly always redshifted, as would
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Figure 8.9 Observed flux density as a function of redshift in three sub-millimeter bands, for
several different fiducial dust temperatures. The solid, dotted, and dashed lines
assume observations in the850, 450, and175 µm bands, respectively. The three
curves within each set take different dust temperatures,T = 20, 40, and 80 K,
from thick to thin lines. All assume that the dust has a power-law emissivity with
indexβ = 1.5. Figure credit: Blain, A. W. et al.,Phys. Rep.369, 111 (2002).
Copyright 2002 by Elsevier.
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be expected for gas flowing out of the galaxy along the line of sight toward
the observer. These lines (together with Lyman-α, which we will discuss in
chapter 11) provide the best direct evidence for galactic outflows at lower
redshifts. However, their interpretation remains extremely difficult because
they provide no information on how far the gas has traveled from the galaxy.

8.9.4 Radio Emission Lines

Another important tracer of the gas phase is emission from molecular and
atomic lines: these provide a significant fraction of the cooling radiation that
escapes galaxies, especially in star forming regions. We will describe two
important examples here: CO, which is an excellent tracer ofstar formation
in the local Universe (and at moderate redshifts), and the [CII] fine structure
line (with a rest wavelength of 157.7µm), which contains∼ 0.1–1% of the
bolometric luminosity of nearby star-forming galaxies. Table 8.1 lists many
other possible transitions, together with their approximate (local) relation
between luminosity and star formation rate.

CO has a ladder of rotational levelsJ → (J − 1) with frequencies
νJ = JνCO, whereνCO = 115.3 GHz, which corresponds to an excita-
tion temperature ofTCO = 5.5 K. This low temperature means that CO is
excited even in the cold, dense molecular clouds out of whichstars form.
Moreover, because carbon and oxygen are relatively abundant, it is by far
the strongest metal line in such regions. At low to moderate redshifts, there
is a tight correlation between CO luminosity (here expressed in the 1-0 tran-
sition) and the star formation rate,142

LCO(1−0) = 3.2 × 104L⊙

(

SFR

M⊙ yr−1

)3/5

. (8.16)

As usual, it is not clear if this relation can safely be extrapolated to high
redshifts. In fact, the astute reader may notice that equation (8.16) is in-
consistent with our assumption thatLCO ∝ SFR in Table 8.1: different
galaxy samples and different conversions from luminosity to SFR yield dif-
ferent results, and hence the scaling to higher-redshift galaxies is especially
difficult.

To predict the CO luminosity on more physically motivated grounds, we
need to know the molecule’s abundance as well as its excitation tempera-
ture. The latter is set by the cloud’s dust (Td in equation 8.15). The metal-
licity maynot be as important as it seems: in local galaxies, giant molec-
ular clouds are optically thick in CO, so decreasing the CO content does
not (at first) decrease the overall luminosity. However, note that the dust
temperature in equation (8.15) does implicitly depend on the metal content,
because once a cloud becomes optically thin to the stellar photons the dust
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Table 8.1 Prominent interstellar emission lines in star forming galaxies, along with their
typical ratio R between the luminosity and star formation rate (in units of
L⊙/(M⊙/yr)). For the first 7 linesR is measured from a sample of low redshift
galaxies; the other lines have been calibrated based on the galaxy M82. Table
credit: E. Visbal & A. Loeb,JCAP11, 16 (2010).

Species Emission Wavelength [µm] R [L⊙/(M⊙ yr−1)]
CII 158 6.0 × 106

OI 145 3.3 × 105

NII 122 7.9 × 105

OIII 88 2.3 × 106

OI 63 3.8 × 106

NIII 57 2.4 × 106

OIII 52 3.0 × 106

12CO(1-0) 2610 3.7 × 103

12CO(2-1) 1300 2.8 × 104

12CO(3-2) 866 7.0 × 104

12CO(4-3) 651 9.7 × 104

12CO(5-4) 521 9.6 × 104

12CO(6-5) 434 9.5 × 104

12CO(7-6) 372 8.9 × 104

12CO(8-7) 325 7.7 × 104

12CO(9-8) 289 6.9 × 104

12CO(10-9) 260 5.3 × 104

12CO(11-10) 237 3.8 × 104

12CO(12-11) 217 2.6 × 104

12CO(13-12) 200 1.4 × 104

CI 610 1.4 × 104

CI 371 4.8 × 104

NII 205 2.5 × 105

13CO(5-4) 544 3900
13CO(7-6) 389 3200
13CO(8-7) 340 2700
HCN(6-5) 564 2100
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temperature decreases. This will in turn decrease the CO luminosity. In
fact, nearby low-metallicity galaxies fall well below the relation in equa-
tion (8.16), though the much more compact high-redshift galaxies may have
very different characteristics.143

Moreover, becauseTCO is so small, many individual levels could be ex-
cited and many transitions could be visible. In local thermodynamic equilib-
rium, the line ratios just depend on temperature, but at different temperatures
and densities the higher levels may not be thermalized. Ideally, one would
then like to observe a wide range of lines in order to fully characterize the
molecular clouds.

An alternative bright probe is the fine-structure 157.7µm line of [C II],
which is much less sensitive to the chemistry of the molecular clouds. This
line, which arises from a2P3/2 →2 P1/2 electronic transition, has an exci-
tation temperature set primarily by collisions with free electrons and inter-
actions with CMB photons, so it can be predicted much more robustly: the
primary uncertainty is simply the mass of atomic carbon, or the metallicity
of the gas. Forz > 6, the [C II] line is redshifted into the sub-millimeter or
millimeter range and may be observed with the ALMA telescope.

We will return to radio line emission in§13.2.2, where we discus its utility
in comparison to other probes.

8.10 GRAVITATIONAL LENSING

We will end this chapter by describing the physics behind an important tech-
nique for understanding the matter content of galaxies, onethat is provided
for free by nature: “gravitational lensing.” Rich clustersof galaxies have
such a large concentration of mass that their gravity bends the light-rays
from any source behind them and magnifies its image. This allows ob-
servers to probe fainter galaxies at higher redshifts than ever probed be-
fore. The redshift record from this method is currently heldby a strongly
lensed galaxy atz = 7.6.144 As of the writing of this book, this method has
provided candidate galaxies with possible redshifts up toz ∼ 10, though
without further spectroscopic confirmation making these detections robust.
We will return to the utility of these lenses in chapter 10; for now we will
focus on the theoretical background.

The chance alignment of a foreground object along the line ofsight to
a high redshift source could result in the magnification, distortion, and po-
tentially splitting of the source image due the deflection ofits light rays by
the gravitational field of the foreground object. The probability for gravi-
tational lensinggrows with increasing source redshift, due to the increase
in the path length of the source photons. Although the lensing probability
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(< 1%) is only of anecdotal significance for sources atz < 2, its magnitude
could rise by an order of magnitude and affect the statisticsof bright sources
during the epoch of reionization.

Assuming that the gravitational potential of the lens is non-relativistic,
|Φ/c2| ≪ 1, the effect of spacetime curvature on the propagation of light
rays is equivalent to a medium with an effective index of refractionn,

n = 1 − 2

c2
Φ. (8.17)

This follows from the deviation imparted to the phase of the electromagnetic
wave by the potential of the lens (relative to a flat spacetimemetric). The
lens potentialΦ is negative and approaches zero at infinity. As in normal
geometrical optics, a refractive indexn > 1 implies that light travels slower
than in vacuum. Thus, the effective speed of a ray of light in agravitational
field is

v =
c

n
≃ c− 2

c
|Φ| . (8.18)

The total time delay∆t, the so-calledShapiro delay, is obtained by inte-
grating over the light path from the observer to the source:

∆t =

∫ observer

source

2

c3
|Φ| dl . (8.19)

A light ray is defined as the normal to the phase front. SinceΦ and hence
the phase delay of the electromagnetic wave vary across the lens, a light ray
will be deflected by the lens as in a prism. The deflection is theintegral
along the light path of the gradient ofn perpendicular to the light path, i.e.

α̂ = −
∫

∇⊥n dl =
2

c2

∫

∇⊥Φ dl . (8.20)

Note thatα̂ is not a unit vector; rather, the hat is conveniently used to dif-
ferentiate it from the reduced deflection angle defined below. In all cases
of interest the deflection angle is very small. We can therefore simplify the
computation of the deflection angle considerably if we integrate∇⊥n not
along the deflected ray, but along an unperturbed light ray with the same
impact parameter (with multiple lenses, one takes the unperturbed ray from
the source as the reference trajectory for calculating the deflection by the
first lens, the deflected ray from the first lens as the reference unperturbed
ray for calculating the deflection by the second lens, and so on).

The simplest lens is a point mass,M , with a Newtonian potential,

Φ(b, z) = − GM

(b2 + z2)1/2
, (8.21)
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whereb is the impact parameter of the unperturbed light ray andz indicates
distance along the unperturbed light ray from the point of closest approach.
We therefore have

∇⊥Φ(b, z) =
GM b

(b2 + z2)3/2
, (8.22)

whereb is orthogonal to the unperturbed ray and points toward the point
mass. Equation (8.22) then yields the deflection angle

α̂ =
2

c2

∫

∇⊥Φ dz =
4GM

c2b
. (8.23)

Since the Schwarzschild radius isRSch = (2GM/c2), the deflection angle
is simply twice the inverse of the impact parameter in units of the Schwarzschild
radius. As an example, the Schwarzschild radius of the Sun is2.95 km, and
the solar radius is6.96 × 105 km. A light ray grazing the limb of the Sun is
therefore deflected by an angle8.4 × 10−6 radians = 1.′′7.

The deflection angle from more a complicated mass distribution can be
treated as the sum over the deflection caused by the infinitesimal point mass
elements that make the lens. Since the deflection occurs on a scale∼ b
which is typically much shorter than the distances between the observer and
the lens or the lens and the source, the lens can be regarded asthin. The mass
distribution of the lens can then be replaced by a mass sheet orthogonal to
the line-of-sight, with a surface mass density

Σ(ξ) =

∫

ρ(ξ, z) dz , (8.24)

whereξ is a two-dimensional vector in the lens plane. The deflectionangle
at positionξ is the sum of the deflections from all the mass elements in the
plane:

α̂(ξ) =
4G

c2

∫

(ξ − ξ′)Σ(ξ′)

|ξ − ξ′|2 d2ξ′ . (8.25)

In general, the deflection angle is a two-component vector. In the special
case of a circularly symmetric lens, the deflection angle points toward the
center of symmetry and has an amplitude

|α̂(ξ)| =
4GM(ξ)

c2ξ
, (8.26)

whereξ is the distance from the lens center andM(ξ) is the mass enclosed
within radiusξ,

M(ξ) = 2π

∫ ξ

0
Σ(ξ′)ξ′ dξ′ . (8.27)
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Figure 8.10 Geometry of gravitational lensing. The light ray propagates from the source S at
transverse distanceη from an arbitrary axis to the observer O, passing the lens
at transverse distanceξ. It is deflected by an anglêα. The angular separations
of the source and the image from the axis as seen by the observer areβ andθ,
respectively. The distances between the observer and the source, the observer
and the lens, and the lens and the source areDs, Dd, andDds, respectively.

The basic lensing geometry is illustrated in Figure 8.10. A light ray from
a source S is deflected by the angleα̂ at the lens and reaches an observer O.
The angle between some arbitrarily-chosen axis and the truesource position
is β, and the angle between the same axis and the image I isθ. The angular
diameter distances between observer and lens, lens and source, and observer
and source are denoted here asDd,Dds, andDs, respectively.

It is convenient to introduce the reduced deflection angle

α =
Dds

Ds
α̂ . (8.28)

The triangular geometry in Figure 8.10 implies thatθDs = βDs− α̂Dds, so
that the positions of the source and the image are related through the simple
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lens equation,

β = θ − α(θ) . (8.29)

The nonlinear lens equation allows for multiple imagesθ at a fixed source
positionβ. In a flat Universe, the comoving angular-size distances simply
add up, withDds(1 + zs) = Ds(1 + zs) −Dd(1 + zd).

Because of the equivalence principle, the gravitational deflection is inde-
pendent of photon wavelength. In addition, since the phase space density
of photons must be conserved (Liouville’s theorem), gravitational lensing
preserves the surface brightness of the source and only changes its apparent
surface area. The total flux received from a gravitationallylensed image of
a source is therefore changed in proportion to the ratio between the solid
angles of the image and the source. For a circularly symmetric lens, the
magnification factorµ is given by

µ =
θ

β

dθ

dβ
. (8.30)

An extended source is lensed as a sum over infinitesimal (pointlike) seg-
ments, each centered on different sky coordinates and having its own mag-
nification factor.

8.10.1 Special Examples of Lenses

8.10.1.1 Constant Surface Density

For a mass sheet with a constant surface densityΣ, equation (8.26) implies
a reduced deflection angle of

α(θ) =
Dds

Ds

4G

c2ξ
(Σπξ2) =

4πGΣ

c2
DdDds

Ds
θ , (8.31)

whereξ = Ddθ. In this special case, the lens equation is linear withβ ∝ θ.
Let us define a critical surface-mass density

Σcrit ≡
c2

4πG

Ds

DdDds
= 0.35 g cm−2

(

D

1Gpc

)−1

, (8.32)

where the effective distanceD is defined through the following combination
of distances

D ≡ DdDds

Ds
. (8.33)

For a lens withΣ = Σcrit, the deflection angle isα(θ) = θ, and soβ = 0 for
all θ. Such a lens focuses perfectly, with a single focal length. For a typical
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gravitational lens, however, light rays which pass the lensat different impact
parameters cross at different distances behind the lens. Usually, lenses with
Σ > Σcrit can produce multiple images of the source.

8.10.1.2 Circularly Symmetric Lenses

For a circularly symmetric lens with an arbitrary mass profile, equations
(8.26) and (8.28) give

β(θ) = θ − Dds

DdDs

4GM(θ)

c2 θ
. (8.34)

A source which lies exactly behind the center of symmetry of the lens (β =
0) is imaged as a ring. Substitutingβ = 0 in equation (8.34) yields the
angular radius of the ring,

θE =

[

4GM(θE)

c2
Dds

DdDs

]1/2

. (8.35)

This so-calledEinstein radiusdefines the characteristic angular scale of
lensed images: when multiple images are produced, the typical angular
separation between them is∼ 2θE. Also, sources which are closer than
∼ θE in projection (relative to the lens center), experience strong lensing
in the sense that they are significantly magnified, whereas sources which
are located well outside the Einstein ring are magnified verylittle. In many
lens models, the Einstein ring also represents roughly the boundary between
source positions that are multiply-imaged and those that are only singly-
imaged. Interestingly, by comparing equations (8.32) and (8.35) we see that
the mean surface mass density inside the Einstein radius is just the critical
densityΣcrit.

For lensing by a galaxy massM at a cosmological distanceD, the typical
Einstein radius is

θE = (0.′′4)

(

M

1011 M⊙

)1/2 ( D

5 Gpc

)−1/2

, (8.36)

with a value that is larger by two orders of magnitude for richgalaxy clusters
(M ∼ 1015M⊙).

8.10.1.3 Point Mass

For a point massM the lens equation has the form,

β = θ − θ2
E

θ
. (8.37)
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This equation has two solutions,

θ± =
1

2

(

β ±
√

β2 + 4θ2
E

)

. (8.38)

Any source is imaged twice by a point mass lens. The two imagesare on
opposite sides of the source, with one image inside the Einstein ring and the
other outside. As the source moves away from the lens (i.e. asβ increases),
one of the images approaches the lens and becomes very faint,while the
other image approaches the true position of the source and asymptotes to its
unlensed flux.

By substitutingβ from the lens equation (8.37) into equation (8.30), we
obtain the magnifications of the two images,

µ± =

[

1 −
(

θE
θ±

)4
]−1

=
u2 + 2

2u
√
u2 + 4

± 1

2
, (8.39)

whereu is the angular separation of the source from the point mass inunits
of the Einstein angle,u = βθ−1

E . Sinceθ− < θE, µ− < 0, and so the
magnification of the image inside the Einstein ring is negative, implying
that this image has its parity flipped with respect to the source. The net
magnification of flux in the two images is obtained by adding the absolute
magnifications,

µ = |µ+| + |µ−| =
u2 + 2

u
√
u2 + 4

. (8.40)

When the source lies on the Einstein radius, we haveβ = θE andu = 1, so
the total magnification becomes

µ = 1.17 + 0.17 = 1.34 . (8.41)

8.10.1.4 Singular Isothermal Sphere

A simple model for the mass distribution of a galaxy halo assumes that
its collisionless particles (stars and dark matter) possess the same isotropic
velocity dispersion everywhere. Surprisingly, this simple model appears to
describe extremely well the dynamics of stars and gas in the cores of disk
galaxies (whose rotation curve is roughly flat), as well the strong lensing
properties of spheroidal galaxies.

We assume a spherically symmetric gravitational potentialwhich con-
fines the collisionless particles that produce it. We can associate an effective
“pressure” with the momentum flux of these particles at a massdensityρ,

p = ρσ2
v , (8.42)
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whereσv is the one-dimensional velocity dispersion of the particles, as-
sumed to be constant across the galaxy. The equation of hydrostatic equilib-
rium (which is derived from the second moment of the collisionless Boltz-
mann equation) gives

1

ρ

dp

dr
= −GM(r)

r2
,

dM(r)

dr
= 4π r2 ρ , (8.43)

whereM(r) is the mass interior to radiusr. A particularly simple solution
of equations (8.42) through (8.43) is

ρ(r) =
σ2

v

2πG

1

r2
. (8.44)

This mass distribution is called thesingular isothermal sphere(and will be
abbreviated as SIS below). Sinceρ ∝ r−2, the massM(r) increases∝ r,
and therefore the rotational velocity of test particles in circular orbits in the
gravitational potential is

V 2
c (r) =

GM(r)

r
= 2σ2

v = constant. (8.45)

As mentioned previously, this model naturally reproduces the flat rotation
curves of disk galaxies.

By projecting the mass distribution along the line-of-sight, we obtain the
surface mass density

Σ(ξ) =
σ2

v

2G

1

ξ
, (8.46)

whereξ is the distance from the center of the two-dimensional profile. The
deflection angle from (8.26),

α̂ = 4π
σ2

v

c2
= (1.′′16)

( σv

200 km s−1

)2
, (8.47)

is independent ofξ and points toward the center of the lens. The Einstein
radius of the SIS follows from equation (8.35),

θE = 4π
σ2

v

c2
Dds

Ds
= α̂

Dds

Ds
= α (θ); . (8.48)

Due to circular symmetry, the lens equation is one dimensional. Multiple
images are obtained only if the source lies inside the Einstein ring. If β <
θE, the lens equation has the two solutions

θ± = β ± θE . (8.49)
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The images atθ±, the source, and the lens all lie on a straight line. Techni-
cally, a third image with zero flux is located atθ = 0; this image acquires
a finite flux if the divergent density at the center of the lens is replaced by a
core region with a finite density.

The magnifications of the two images follow from equation (8.30),

µ± =
θ±
β

= 1 ± θE
β

=

(

1 ∓ θE
θ±

)−1

. (8.50)

If the source lies outside the Einstein ring, i.e. ifβ > θE, there is only one
image atθ = θ+ = β + θE. Searches for highly magnified images of faint
galaxies at high redshifts are being conducted near the Einstein radius of
clusters of galaxies, where the magnification factor peaks.



Chapter Nine

The Reionization of Intergalactic Hydrogen

The CMB indicates that hydrogen atoms formed 400,000 years after the Big
Bang, as soon as the cosmological expansion cooled the gas below 3,000 K.
On the other hand, observations of the CMB as well as the spectra of early
galaxies, quasars, and gamma-ray bursts indicate that lessthan a billion
years later the same gas underwent a wrenching transition from its atomic
state back to its constituent protons and electrons in a process known as
reionization. More specifically, thez ∼ 6 Lyman-α forest shows that the
IGM is highly ionized at this time (see§4.7), though there are possible hints
from other methods that some large neutral hydrogen regionspersist until
near this time. Thus we may not need to go to much higher redshifts to
begin to see the epoch of reionization. Moreover, CMB polarization studies
demand that the universe could not have fully reionized earlier than an age of
300 million years (see§13.1.1). It is intriguing that the inferred reionization
epoch coincides with the appearance of the first galaxies, which inevitably
produced ionizing radiation.How was the primordial gas transformed to
an ionized state by the first galaxies within merely hundredsof million of
years?

We begin this chapter by addressing this question using our tools for de-
scribing the formation and evolution of galaxies during thecosmic dawn.
The course of reionization can be determined by counting photons from all
galaxies as a function of time. Both stars and black holes contribute ioniz-
ing photons, but the early Universe is dominated by small galaxies which,
in the local universe, have disproportionately small central black holes. In
fact, bright quasars are known to be extremely rare atz > 6, so we will
generally focus on stellar models as a fiducial case.

Because stellar ionizing photons are only slightly more energetic than
the 13.6 eV ionization threshold of hydrogen, they are absorbed efficiently
once they reach a region with substantial neutral hydrogen.During reion-
ization, this makes the IGM nearly a two-phase medium, characterized by
highly ionized zones separated from the neutral sea of gas bysharp ioniza-
tion fronts. While the redshift at which reionization endedonly constrains
the overall cosmic efficiency for producing ionizing photons, a detailed pic-
ture of these ionized bubbles as they form and grow will teachus a great
deal about the population of the first galaxies that producedthis cosmic
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phase transition.

9.1 PROPAGATION OF IONIZATION FRONTS

The simplest reionization problem is to consider how a single, isolated
galaxy ionizes its surroundings. The formation of H II regions, or ionized
bubbles, around galaxies is the fundamental process that drives reioniza-
tion, although in practice these galaxies are only isolatedin the very earliest
phases of reionization. Our first goal is to model this problem of an isolated,
expanding H II region.

Let us consider, for simplicity, a spherical ionized volumeV , separated
from the surrounding neutral gas by a sharp ionization front. In the absence
of recombinations, each hydrogen atom in the IGM would only have to be
ionized once, and the ionized proper volumeVp would simply be determined
by

n̄HVp = Qi, (9.1)

wheren̄H is the mean number density of hydrogen andQi is the total num-
ber of ionizing photons produced by the source.

The size of the resulting H II region depends on the halo whichproduces
it. Let us consider a halo of total massMh and baryon fractionΩb/Ωm. To
derive a rough estimate, we assume that baryons are incorporated into stars
with an efficiencyf⋆ and that theescape fractionfor the resulting ionizing
radiation isfesc. This is the fraction of hydrogen ionizing photons that es-
cape their host galaxy without absorption and so are available to ionize inter-
galactic gas. We also letNion be the number of ionizing photons per baryon
inside stars; this is∼ 4, 000 for Population II stars with a “present-day” IMF
(see§8.8). We finally introduce a parameterAHe = 4/(4 − 3Yp) = 1.22,
whereYp is the mass fraction of helium, as a correction factor to convert the
number of ionizing photons to the number of ionized hydrogenatoms (as-
suming that helium is singly ionized as well). This is necessary because the
first ionization potential of He I is 24.4 eV, sufficiently close to the 13.6 eV
required for H I so that typical stellar populations ionize both species to-
gether.

At least in our simple model, so far as the IGM is concerned allthese
parameters are completely degenerate and together determine the overall
ionizing efficiency, which we will callζ,

ζ = AHef⋆fescNion. (9.2)

If we neglect recombinations, then we obtain the maximum comoving radius
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of the region which the halo of massMh can ionize,

rmax =

(

3

4π

Qi

n̄0
H

)1/3

=

(

3

4π

ζ

n̄0
H

Ωb

Ωm

Mh

mp

)1/3

= 680

(

ζ

40

Mh

108M⊙

)1/3

kpc, (9.3)

wheren̄0
H is the comoving number density of hydrogen. Here we have taken

Population II stars withfesc = 8% andf⋆ = 10% for a fiducial estimate.
We may make a similar estimate for the size of the H II region around a

quasar. For the typical quasar spectrum,∼ 104 ionizing photons are pro-
duced per baryon incorporated into the black hole, assuminga radiative ef-
ficiency of∼ 6% (see§7.2). The overall efficiency of incorporating baryons
into the central black hole is low (< 0.1% in the local Universe; see§7.5.1),
but fesc is likely to be close to unity for powerful quasars. Thus, quasars
typically haveζ > 10.

This zeroth-order approximation provides a rough guide to the relevant
scales. However, the elevated density of the IGM at high redshift implies
that recombinations cannot be ignored, so this simplest method must be im-
proved. Just before World War II, the Danish astronomer Bengt Strömgren
analyzed the same problem for hot stars embedded in the interstellar medium.145

In the case of a steady ionizing source (and neglecting the cosmological
expansion), he found that a steady-state volume (now termeda Strömgren
Sphere) would be reached, inside of which recombinations balance ioniza-
tions:

αBn̄
2
HVp = Q̇i, (9.4)

where the recombination rate depends on the square of the density and on
the recombination coefficient; here we use the case-B value on the assump-
tion that ionizing photons resulting from recombinations to the ground state
would contribute to the growth of the Strömgren sphere itself (see§4.3).

To model the detailed evolution of an expanding H II region, including
a non-steady ionizing source, recombinations, and cosmological expansion,
we write

n̄HuI =
Q̇i

4πr2p
, (9.5)

whereuI is the peculiar velocity of the ionization front (assumed here to be
much smaller than the speed of light) andQ̇i is the total number of ionizing
photons per second that reach the front; it differs from the production rate of
ionizing photons,Q̇i, because some of those photons are lost counteracting
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recombinations within the region. Noting that4πr2puI is the rate at which
proper volume is added to the H II region, which itself also expands with
the Hubble flow, we can write146

n̄H

(

dVp

dt
− 3HVp

)

= Q̇i − αB 〈nHne〉Vp . (9.6)

In this equation, the mean densitȳnH ∝ a−3(t) and the angular brackets
denote a volume average. Note that the recombination rate scales as the
square of the density. Therefore, if the IGM is not uniform, but contains
high-density clumps separated by modestly underdense voids, then the av-
erage recombination time will be shorter than in a uniform medium. This
is often accounted for by introducing a volume-averaged clumping factorC
(which is, in general, time dependent), defined byi

C =
〈

n2
e

〉

/n̄2
e . (9.7)

Unfortunately as we will see in§9.2.1 below, the clumping factor is rather
difficult to estimate robustly.

If the ionized volume is large compared to the typical scale of clumping,
so that many clumps are averaged over, then equation (9.6) can be solved by
specifyingC. Switching to the comoving volumeV , the resulting equation
is

dV

dt
=

1

n̄0
H

Q̇i − αB
C

a3
n̄0

HV. (9.8)

The solution for the total number of ionized atoms,Ni, contained in the H II
region around a source which turns on att = ti can be obtained through an
integrating factor

Ni(t) =

∫ t

ti

Q̇i(t
′) eF (t′,t)dt′ , (9.9)

where

F (t′, t) = −αBn̄
0
H

∫ t

t′

C(t′′)

a3(t′′)
dt′′ . (9.10)

We can simplify this in the high redshift limit (z ≫ 1), where the scale
factor varies asa ∝ t2/3, if we make the additional assumption of a constant

iThe recombination rate depends on the number density of electrons and hydrogen nu-
clei, and in using equation (9.7) we are neglecting the smallcontribution made by partially
or fully ionized helium.
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C. Then, definingf(t) = a(t)−3/2, we obtain

F (t′, t) = −2

3

αBn̄
0
H√

ΩmH0
C
[

f(t′) − f(t)
]

= −0.26

(

C

10

)

[

f(t′) − f(t)
]

.

(9.11)
We have written equation (9.9) in terms of the number of ionized atoms

rather than the volume to emphasize the limits of this approach. One can
easily define aneffectivecomoving volumeV = Ni/n̄

0
H . However, one

must be careful in applying equation (9.9), because this effective volumeV
is the comoving volume that would be filled by the ionized gas,if held at the
mean densityand fully ionized. The formalism implicitly confines recombi-
nations to the edge of the “ionized volume” – rather than allowing for the gas
inside the zone to recombine uniformly. This simple model isnevertheless
useful for many purposes, especially for steady sources where recombina-
tions are relatively unimportant. We present a more rigorous model for the
ionization fronts, and partial ionization inside the H II region, in§9.8.2.

Figure 9.1 shows some examples of the ionized volume evolution for a
particular model of an isolated galaxy; the results are scaled to the maxi-
mum IGM mass ionized by the galaxy. The models takeζ = 40, which
makesrmax ∼ 20rvir. They also take three possible clumping factors (from
top to bottom,C = 0, 1, and 10; see§9.2.1 below) atz = 10 and15 (solid
and dashed curves, respectively). For this source, the ionization rate is as-
sumed to be constant forts = 3 × 106 yr, the characteristic lifetime of the
massive stars that produce ionizing photons, before declining ∝ t−4.5 as
these stars die; this is a reasonable approximation to an instantaneous burst
of star formation with a “normal” IMF.

Without recombinations, the ionized bubble reaches its maximal size shortly
after this characteristic time and remains there at later times; the result here
is independent of redshift. If recombinations are allowed,the ionized vol-
ume never quite reaches its maximal value, with the shortfall increasing with
redshift and clumping factor. Moreover, once they are included the ionized
mass shrinks rapidly once the source dims, as recombinations destroy the
ionized gas. (We remind the reader again that this doesnot mean that the
front separating ionized and neutral gas shrinks; rather, the recombinations
extend throughout the ionized volume, with that front staying more or less
in place in this simple model.) Recombinations only slow down at late times
as the effective recombination time exceeds the Hubble time.

One additional correction is sometimes necessary for equation (9.6): in
the limit of an extremely bright source, characterized by anarbitrarily high
production rate of ionizing photons, equation (9.6) would imply that the H II
region expands faster than the speed of light. At early times, the ionization
front can indeed expand at nearly the speed of light,c, but only if the H II



THE REIONIZATION OF INTERGALACTIC HYDROGEN 343

Figure 9.1 Evolution of the effective ionized volume for a stellar ionizing source, scaled
to the maximum possible valueVmax = 4πn̄Hr3

max/3 (see eq. 9.3). The solid
and dashed curves assume that the sources begin shining atz = 10 and15, re-
spectively. Within each set, they takeC = 0, 1, and10, from top to bottom.
The source hasζ = 40 and is assumed to fade with time liket−4.5 after a pe-
riod ts = 3 × 106 yr, characteristic of the massive star lifetime. Figure credit:
Barkana, R. & Loeb, A.,Phys. Rep., 349, 125 (2001). Copyright 2001 by Else-
vier.
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region is sufficiently small that the production rate of ionizing photons by
the central source exceeds their consumption rate within the current volume.
It is straightforward to take the light propagation delay into account. The
general equation for the relativistic expansion of thecomovingradiusR =
(1 + z)rp of an H II region in an IGM with neutral fractionxHI is147

dR

dt
= c(1 + z)

[

Q̇i − αBCxHI

(

n̄0
H

)2
(1 + z)3

(

(4π/3)R3
)

Q̇i + 4πR2 (1 + z) cxHIn̄0
H

]

, (9.12)

where hereQ̇i is the rate of ionizing photons crossing a shell of the H II
region at radiusR and timet (and so corresponds to the luminosity of the
source at a time in the past). Indeed, forQ̇i → ∞ the propagation speed of
the proper radius of the H II regionrp = R/(1 + z) approaches the speed
of light, (drp/dt) → c.

9.2 GLOBAL IONIZATION HISTORY

The next level of sophistication in understanding reionization is to compute
the evolution of the average neutral fraction across the entire Universe. We
can obtain a first estimate for the requirements of reionization by demanding
one stellar ionizing photon for each hydrogen atom in the Universe. To
zeroth order the accounting is relatively simple: the efficiency parameterζ is
simply the number of ionizing photons produced per baryon inside galaxies;
thus the neutral fraction (ignoring recombinations) is

QHII = ζfcoll, (9.13)

whereQHII denotes the averagefilling factor of ionized bubbles (i.e., the
fraction of the Universe’s volume inside of H II regions) andthe collapse
fraction fcoll is the fraction of matter incorporated in galaxies (typically
above some minimum mass threshold determined by cooling and/or feed-
back; see§3.4 and especially Figure 3.12). This equation assumes instanta-
neous production of photons, i.e., that the timescale for the formation and
evolution of the massive stars in a galaxy is relatively short compared to
the Hubble time at the formation redshift of the galaxy. The primary inputs
to such a model are the net ionizing efficiencyζ andfcoll, which (given a
halo mass function) depends on the threshold halo mass that allows star for-
mation. Assuming that only atomic cooling is effective during the redshift
range of reionization, the minimum mass corresponds roughly to a halo of
virial temperatureTvir = 104 K, which can be converted to a mass using
equation (3.32).
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Again, we can improve this simple prescription by accounting for recom-
binations. To do so, we treat each ionizing source as producing an isolated
bubble and assume that their volumes add to give the total filling factor;
although in fact overlap is very important, this is not a bad approximation
because – neglecting internal absorption – any photons thatpass into an-
other ionized bubble propagate to its edge and help to grow it. Starting with
equation (9.8), if we assume a common clumping factorC for all H II re-
gions, we can sum each term of the equation over all bubbles ina given large
volume of the Universe and then divide by this volume. ThenV can be re-
placed by the filling factor anḋQi by the ionizing photon production rate
at timet per unit volume. The latter quantity is simplyζn̄dfcoll/dt, which
provides the emissivity of ionizing photons. Under these assumptions we
convert equation (9.8), which describes individual H II regions, to an equa-
tion that statistically describes the transition from a neutral Universe to a
fully ionized one:

dQH II

dt
= ζ

dfcoll

dt
− α(T )

C

a3
n̄0

HQH II , (9.14)

which admits the solution (in analogy with equation 9.9),

QH II(t) =

∫ t

0
ζ
dfcoll

dt′
eF (t′,t)dt′ , (9.15)

whereF (t′, t) is determined by equation (9.11).
Although this equation appears simple, even at this low level of sophis-

tication it hides a number of uncertain parameters. Not onlydo each of the
elements ofζ have large uncertainties, but they may also evolve in time;
similarly, the clumping factorC depends on the pattern of ionization in the
IGM. We next discuss each of these factors in turn.

9.2.1 Recombinations and the Clumping Factor

Before consideringζ, we first discuss some subtleties of the sink term in
equation (9.14). First of all, the recombination coefficient is uncertain by
a factor of a few through both the gas temperature (which depends on non-
equilibrium processes during reionization; see§4.3.1) and an environmen-
tal factor that determines whether case-A or case-B recombination is more
appropriate (see§4.3). On the one hand, consider the case in which ioniza-
tions (and hence recombinations) are distributed uniformly throughout the
IGM. Then case-B would be appropriate, because each regenerated photon
would soon encounter another IGM atom to ionize. On the otherhand, in
the highly-ionized low-redshift universe, most recombinations actually take
place inside dense, partially neutral LLSs because high-energy photons can
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penetrate inside these high-column density systems (see§4.4.1). However,
the ionizing photons produced after recombinations to the ground state usu-
ally lie near the Lyman-limit (where the mean free path is small) so they are
consumed inside the systems. Thus, these photons would not help ionize
the IGM, and case-A would be more appropriate. Which of theseregimes is
more relevant depends on the details of small-scale clumping and radiative
transfer.

Even more problematic is the clumping factorC(z). It may seem at first
that this volume-averaged factor can be computed through numerical simu-
lations. But that requires overcoming several difficult problems:(1) tracing
the gas distribution with sufficient precision to resolve density fluctuations
on the smallest scales;(2) correctly tracing the topology of ionized and neu-
tral gas – because the average must be performedonly over the ionized gas;
and(3) correctly modeling the evolution of gas clumps during the reioniza-
tion process itself.

The first problem is obvious: even leaving aside the ISM of each galaxy,
as well as the overdense environment surrounding each halo (which is im-
plicitly included in fesc in equation 9.2), the Jeans mass in the cold IGM
is < 105 M⊙. This allows the formation of a well-defined cosmic web,
as well as “minihalos,” dense gas clouds that virialize but cannot cool or
form stars. But, as we shall see, simulations of reionization must span
∼ 100 Mpc boxes in order to adequately sample the large H II regions,
requiring an enormous dynamic range. Thus, even in simulations, clumping
is usually accounted for through a “subgrid” model built from semi-analytic
techniques or bootstrapped from smaller simulations.

The second problem is perhaps more subtle: how do the sourcesand
absorbers relate to each other, and how does ionization affect the small-
scale clumping? For example, if low-density gas is ionized first, C < 1
throughout most of reionization, because all the dense gas would remain
locked up in neutral, self-shielded systems (which cannot,by definition,
recombine). On the other hand, on large scales the ionizing sources actually
lie inside overdense regions (sheets and filaments), where the recombination
rate is higher than average. The relative importance of these two pools of gas
changes as reionization progresses, which makes simplifiedprescriptions
for clumping particularly difficult to develop.

Finally, as the gas is ionized, the thermal pressure will increase and the
clumps will evaporate and fade into the IGM. Studying this problem requires
simulations of coupled gas dynamics and radiative transfer, which (although
now possible) is difficult and highly dependent on the particular model of
reionization (see§9.9 for a detailed discussion). As an additional difficulty,
the pre-reionization gas temperature is uncertain by a factor of 100 or so,
making even the initial clumpiness hard to determine.
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Thus, while the introduction of the clumping factor is an essential approx-
imation for many analytic models, its evaluation is rather difficult; we will
describe more physically motivated approaches in§9.5 below. Nevertheless,
a reasonable and concrete estimate is often useful. A recentfit from simula-
tions that ignores the second and third problems above but does resolve the
proper scales is148

C(z) = 27.466 exp(−0.114z + 0.001328z2). (9.16)

As expected, numerical simulations with radiative transfer and heating find
a significantly lower effective value ofC(z).149

9.2.2 The Ionizing Efficiency

We now move on to the source term in equation (9.14). This has two parts:
dfcoll/dt and the ionizing efficiencyζ. The collapse fraction for a given
cosmology depends only onMmin, the mass threshold for galaxy forma-
tion. The most common choice forMmin corresponds to a virial tempera-
tureTvir = 104 K, the threshold at which hydrogen line cooling becomes
efficient for primordial gas (see Figure 5.1). Above this mass, cooling and
fragmentation into stars is relatively straightforward. Other choices are,
however, physically plausible in certain regimes. For example, we have seen
that H2 cooling could allow Population III star formation in much smaller
halos, while internal feedback within galaxies (like supernova winds) can
strongly suppress star formation in halos near the cooling threshold, effec-
tively raisingMmin.

The factorζ is even more difficult to pin down. A star formation ef-
ficiency f⋆ ∼ 10% is reasonable for the local Universe, but so little gas
has collapsed byz = 6 that these local observations do not directly con-
strain the high-redshift value. Appropriate choices for Population III stars
are even more uncertain. To the extent that each halo can formonly a single
very massive (m⋆ ∼ 102 M⊙) star that enriches the entire halo (> 106M⊙),
f⋆ ∼ (Ωm/Ωb)m⋆/Mh < 10−3, though larger values are permissible, espe-
cially if metal dispersal is inefficient.

The UV escape fraction is small in both nearby galaxies and those at
moderate redshifts, with many upper limitsfesc < 5% and only a few posi-
tive detections.150 Interestingly,fesc shows large variance between galaxies;
most likely, ionizing photons are only able to escape along clear channels in
the galactic ISM, which appear to be quite rare in the objectswe can study.
However, it could be considerably larger inside small, high-redshift galax-
ies, whose interstellar media can easily be shredded by radiation pressure,
winds, and supernovae, clearing out large escape paths.
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Nion depends on the stellar initial mass function and metallicity. Conve-
nient approximations areNion ≈ 4000 for Z = 0.05 Z⊙ Population II stars
with a present-day initial mass function, andNion < 105 for very massive
Population III stars (see§5.4 and 8.8), but these are uncertain by at least
a factor of two. In particular, the latter estimate hinges more on the high
masses of these stars than on their primordial composition;metal-free stars
with a normal Salpeter IMF are only∼ 1.6 times more efficient than their
Pop II counterparts.

Finally, accreting black holes may provide an additional source of ioniz-
ing photons that increases the total efficiency of each halo.These sources
are likely to have hard spectra and so produce a substantial number of high-
energy ionizing photons; as such, they pose particular challenges to under-
standing reionization to which we will return in§9.8.

Of course, we actually expect all of these factors to evolve throughout
reionization due to the feedback processes discussed elsewhere. Thus, a ro-
bust model for the filling factorQH II requires a sophisticated understanding
of galaxy evolution during the cosmic dawn. This lies well beyond our pow-
ers at present, but we can make some progress by generalizingthe ionizing
efficiency to be a function of both time and halo massmh, ζ ≡ ζ(mh, t).
The mass dependence is meant to capture internal feedback mechanisms
that affect each galaxy in a deterministic fashion, like theeffects of starburst
winds. With this prescription, we must replace the source term in equa-
tion (9.14) with an integral,

d

dt

∫

dmh
mh

ρ̄
ζ(mh, t)n(mh, t), (9.17)

wheren(mh, t) is the halo mass function (see§3.4). Unfortunately, external
feedback mechanisms – which depend on the halo’s large-scale environment
– require additional physics inputs and additional machinery in the model.

9.3 THE PHASES OF HYDROGEN REIONIZATION

The process of hydrogen reionization involves several distinct stages (con-
ceptually illustrated in Figure 9.2). The initial “pre-overlap” phase consists
of individual ionizing sources turning on and ionizing their surroundings.
The first galaxies form in the most massive halos at high redshift, which
are preferentially located in the highest-density regions. Thus, the ionizing
photons that escape from the galaxy itself must then make their way through
the surrounding high-density regions, characterized by a high recombination
rate. Once they emerge, the ionization fronts propagate more easily through
the low-density voids, leaving behind pockets of neutral, high-density gas.
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Figure 9.2 Cartoon of the three phases of reionization.(a) In thepre-overlapphase, galaxies
are uncommon, and their H II regions grow in relative isolation. In practice,
galaxies are highly-clustered, so even in this stage some ofthose H II regions
meet each other. Nevertheless, the average ionizing background grows fairly
slowly during this epoch.(b) Once galaxies become sufficiently common, the
overlapphase, in which ionized bubbles rapidly intersect, begins.During this
phase, the ionizing background can increase relatively rapidly as sources are
quickly added to each discrete H II region.(c) Once nearly all of the IGM is
ionized, thepost-overlapphase begins, in which ionizing photons are absorbed
by dense clouds of optically thick gas, or Lyman-limit systems. The finite mean
free path of ionizing photons, even in a “reionized” universe, is represented here
by the dashed circles surrounding a few of the sources.

During this period, the IGM is nearly a two-phase medium characterized by
highly ionized regions separated from neutral regions by ionization fronts.
Furthermore, the ionizing intensity is very inhomogeneouseven within the
ionized regions.

Because these first sources are highly clustered, this earlyphase quickly
enters the central, relatively rapid “overlap” phase of reionization when
neighboring H II regions begin to overlap. Whenever two ionized bubbles
join, each point inside their common boundary becomes exposed to ioniz-
ing photons from both sources. Therefore, the ionizing intensity inside H II
regions rises rapidly during overlap, allowing those regions to expand into
high-density gas which had previously recombined fast enough to remain
neutral when the ionizing intensity had been low. By the end of this stage,
most regions in the IGM are able to “see” many individual sources, mak-
ing the ionizing intensity both larger and more homogeneousas the bubbles
grow than before.

During this central phase, most ionizing photons stream through the IGM
without absorption, because the gas is highly-ionized. However, the proto-
cosmic web makes this gas inhomogeneous, and in dense pockets of the
IGM the recombination rate is much larger. These neutral regions – the
high-redshift analogs of Lyman-limit systems (LLSs; see§4.4.1) – absorb
any ionizing photons that strike them, preventing the H II regions from con-
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tinuing to grow. Eventually, the ionized bubbles become so large that most
photons strike one of these LLSs before reaching the edge of abubble. This
final “post-overlap” phase thus has slower evolution in the ionizing back-
ground (at least in the simplest models), modulated by the evaporation of
these LLSs, and that background becomes increasingly more uniform.

Of course, this reionization process develops at differentrates in different
regions of the Universe; naturally, areas with an overabundance of sources
undergo more rapid reionization, while those with relatively few sources re-
quire input of ionizing photons from external sources. Because the galaxy
population traces the underlying density field, these correspond to overdense
and underdense regions, respectively. But because the galaxies are highly
biased relative to the dark matter, even a modestly overdense region can un-
dergo reionization much earlier. (In fact, if galaxies wereunbiased, reion-
ization would not occur any faster in dense regions because the increased
galaxy counts would be exactly cancelled by the increased gas density!)
Note that this inhomogeneity in the reionization process also means that the
three phases identified above are not clearly distinct from each other: over-
dense environments will rapidly reach the overlap (and evenpost-overlap)
stages while void regions are still in the pre-overlap phase.

This general march of reionization from high to low density is referred
to as inside-outreionization. While most reionization models follow this
behavior when averaged over large scales, on sufficiently small scales the
process is actuallyoutside-in, proceeding from low to high densities, since
dense blobs remain partially neutral for a more extended period of time.

Figure 9.3 illustrates this patchiness (or “Swiss cheese topology” as it is
often termed). The four panels from top left, top center, topright, and bot-
tom left show the density of ionized hydrogen (in units of themean) when
x̄i = 25%, 50%, 75%, and≈ 100%. The bottom right panel shows the
redshift zreion at which each cell in the simulation was ionized. Note the
wide distribution of ionized bubble sizes, with the largestbubbles centered
around the largest clusters of galaxies in the simulation, and the tight corre-
lation withzreion.

9.4 THE MORPHOLOGY OF REIONIZATION

Clearly, the patchiness of the ionization field – or itsmorphology– depends
sensitively on where galaxies formed at high redshifts. This morphology is
therefore of much interest from both theoretical and observational perspec-
tives, and we next describe its theoretical modeling.

Given the complex physics of the sources and sinks of ionizing photons
and their interaction in the IGM, it may seem that the problemmust be
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Figure 9.3 Snapshots from a numerical simulation illustrating the spatial structure of cosmic
reionization in a slice of 140 comoving Mpc on a side. The simulation describes
the dynamics of the dark matter and gas as well as the radiative transfer of ioniz-
ing radiation from galaxies. The first four panels (reading across from top left to
bottom left) show the evolution of the ionized hydrogen density ρHII normalized
by the mean proton density in the IGM〈ρH〉 = 0.76Ωb ρ̄ when the simulation
volume is 25%, 50%, 75%, and 100% ionized, respectively. Large-scale over-
dense regions form large concentrations of galaxies whose ionizing photons pro-
duce joint ionized bubbles. At the same time, galaxies are rare within large-scale
voids in which the IGM is mostly neutral at early times. The bottom middle
panel shows the temperature at the end of reionization whilethe bottom right
panel shows the redshift at which different gas elements arereionized. Higher-
density regions tracing the large-scale structure are generally reionized earlier
than lower density regions far from sources. At the end of reionization, regions
that were last to get ionized and heated are still typically hotter because they have
not yet had time to cool through the cosmic expansion. Figurecredit: Trac, H. &
Loeb, A. (2010).
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Figure 9.4 Cartoon of the excursion set model for generatingthe ionization morphology.
(a) In the initial stages, where galaxies are nearly isolated, it is straightforward
to compute the ionized volume (white circles) around each source (stars), given
only its ionizing efficiency. However, if two such volumes overlap, the overlap
region must be distributed over the remaining volume so thationizing photons
are conserved.(b) This problem becomes especially acute once a substantial
fraction of the IGM is ionized: in that case, redistributingthe overlap volume
can link up previously separate ionizing bubbles, causing acascading effect.(c)
The solution is to work from the outside in, rather than trying to begin with each
individual galaxy. Here, we compare the number of atoms contained inside the
large circle with the number of ionizing photons generated by all the galaxies
inside that region. If the latter is larger, the region is ionized; if not, we ask the
same question for smaller regions (shown by the dashed circles), until the two
quantities balance.

tackled with detailed numerical simulations, and indeed much of the early
work, beyond the pre-overlap stage, followed that approach. However, at
its heart reionization is actually surprisingly straightforward: until the post-
overlap stage, it simply requires us to count photons. Thus agreat deal of
progress can be made with simple analytic models.

Let us consider the simplest possible exercise, shown in thefirst two pan-
els of Figure 9.4: we count the number of ionizing photons produced by
galaxies inside some specified volume of comoving radiusR and fractional
overdensityδR and compare it to the number of hydrogen atoms. The region
can only be ionized if the former exceeds the latter, or if

ζfcoll(z, δR, R) > 1. (9.18)

Here fcoll(z, δR, R) is the collapse fraction within this region (see equa-
tion 3.38 and§3.4.2),

fcoll(z, δR, R) = erfc





δcrit(z) − δR/D(z)
√

2[σ2
min − σ2(R)]



 , (9.19)
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whereδcrit is the threshold for halo collapse,ii the factorD(z) linearly ex-
trapolates the real fractional overdensityδR to the present day for compari-
son to the collapse threshold, andσ2

min is the variance of the density field on
the scale corresponding to the minimum mass for galaxy formation,Mmin.
The proportionality constantζ is the ionizing efficiency per baryon in stars
(equation 9.2); here we have assumed that it is identical in every galaxy,
though that is straightforward to modify as in equation (9.17).

There are two flaws to this approach. The first is that some fraction of the
gas may recombine before the region is completely ionized, so more than
one photon per atom is required. If such recombinations wereuniform, we
could account for them simply by replacingζ → ζ/(1 +Nrec), whereNrec

is the mean number of recombinations per baryon. In practicethis is not a
very good approximation, so we defer a detailed descriptionof the effects
of inhomogeneous recombinations until later.

The second problem is the propagation of photons over large scales. Equa-
tion (9.18) islocal, in that it only compares atoms in a region to photons
generatedin the same region. In fact, a particular patch of space may be
entirely ionized by sources from outside the patch: in the extreme example,
consider a spherical shell in the IGM that surrounds a galaxy. The galaxy
sits inside the shell, but if the shell is sufficiently close to the galaxy it will
nevertheless be ionized.

Thus, to apply equation (9.18), we require some way to adjustthe scale
R as needed to account for nearby sources. Fortunately, we have already
studied just such a technique: the excursion set model for dark matter halos
solves this very problem (§3.4.1). In that case, the problem was that a small-
scale density fluctuation might lie inside a larger-scale feature that itself may
have collapsed to form a halo; in the present case a small region might lie
inside a larger ionized bubble. Either way, the solution is to compare the
threshold (for spherical collapse or ionization) onall scales, working from
large to small so as to include neighbors automatically, by phrasing it as a
diffusion problem. Figure 9.4c illustrates the procedure.

We therefore consider here the trajectory ofδR as we move from large
to small scales. We compare this smoothed overdensity to thecriterion in
equation (9.18), which can be rewritten as

δR > δB(M,z) ≡ δcrit −
√

2K(ζ)[σ2
min − σ2(M,z)]1/2, (9.20)

whereK(ζ) = erf−1(1 − ζ−1) and erf(x) ≡ 1 − erfc(x). The bar-
rier in equation (9.20) is well approximated by a linear function of σ2,
δB ≈ B(M) = B0 + B1σ

2(M), whereB0 andB1 are fitting constants.

ii Here we have used the constant Press-Schechter criterion for simplicity, but one can
easily use one of the more accurate choices described in§3.4.3.
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Conveniently, for this linear approximation there is an analytic solution to
the diffusion problem, which we can transform into the mass function of
ionized bubbles151

nb(M) =

√

2

π

ρ̄

M2

∣

∣

∣

∣

d lnσ

d lnM

∣

∣

∣

∣

B0

σ(M)
exp

[

− B2(M)

2σ2(M)

]

. (9.21)

This functionnb(M) provides the comoving number density of ionized bub-
bles with IGM mass in the range betweenM andM + dM .

The solid curves in Figure 9.5 show the resulting size distributions for a
range of̄xi atz = 15; the ordinate is the fraction of the ionized volume filled
by bubbles of a given size. The most important result of thesemodels is that
bubbles grow large during the middle stages of reionization, with character-
istic sizesRc ∼ 1, 4, 10, and30 comoving Mpc when̄xi = 0.2, 0.4, 0.6,
and0.8. Comparing this to equation (9.3), it is clear that by the midpoint of
reionization atypical ionized bubble already contains thousands of sources
– overlap is indeed extremely important in determining the morphology of
ionized bubbles

A second important point is the very different shape of thesebubble mass
functions compared to the halo mass function, which increases toward zero
mass at all redshifts. The barrier of equation (9.20) increases relatively
rapidly toward smallM , choking off the formation of small bubbles. This
imprints a characteristic sizeRc on the ionized bubbles. To understand this
size, note thatRc is the scale at which a “typical” density fluctuation is
able to ionize itself, without the input of external sources; mathematically,
it is whereσ(Rc) ≈ B. In the large bubble limit (B ≈ B0), our original
ionization criterion becomes

ζ fcoll(δ = B0, σ
2 = 0) = 1. (9.22)

Expanding equation (9.19) to linear order, this can be written

σ(Rc) ≈ B0 ≈ x̄−1
i − 1

D(z)beff
, (9.23)

where beff is the average galaxy bias. Intuitively, a more biased galaxy
population provides a larger “boost” to the underlying darkmatter fluctu-
ations, allowing larger regions to ionize themselves. The dashed curves in
Figure 9.5 illustrate this effect: they show the bubble sizedistribution if
ζ ∝ m

2/3
h , wheremh is the halo mass. This emphasizes the massive, more

biased galaxies and so increasesbeff . Thus, by measuring the H II region
sizes, one can constrain the characteristics of the galaxies driving reioniza-
tion.
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Figure 9.5 H II region size distributions atz = 15 in the analytic model of equation (9.21).
The solid and dashed curves assumeζ ∝ m0

h andm
2/3

h , respectively. From left
to right within each set, we takēxi = 0.05, 0.2, 0.4, 0.6, and0.8. Recombina-
tions are assumed to be uniform throughout the IGM. Figure credit: Furlanetto,
S. R., McQuinn, M., & Hernquist, L.,Mon. Not. R. Astron. Soc.365, 529
(2006). Copyright 2006 by the Royal Astronomical Society.

Several properties of equation (9.21) deserve emphasis. First, at a given
x̄i, nb(M) depends only weakly on redshift. This is because the shape
of fcoll(δ,R) evolves only slowly with redshift; quantitatively,D(z)beff is
roughly constant for high-redshift galaxies, assuming that Mmin is deter-
mined by a virial temperature threshold. Second, the width of nb(m) is
ultimately determined by the shape of the underlying matterpower spec-
trum, which steepens toward larger radii with a shape that isonly weakly
dependent on astrophysical uncertainties.

Thus, at least in this simple model, the bubble sizes depend essentially
on only two parameters: the overall filling fraction of the ionized gas,QHII,
and the average bias of the ionizing sources,beff . Varying the overall ef-
ficiency of reionization (and hence its timing) has only a small effect on
the morphology of reionization. This robustness makes the morphology an
extremely useful tool in understanding the reionization process.

Finally, the similarity to the Press-Schechter halo mass function also means
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that most of the machinery used for halo mass functions, (forclustering,
conditional mass functions, etc.) can be carried over to describe these ion-
ized bubbles. For example, the linear bias of H II regions, defined so that
nb(m|δ) = nb(m) [1 + bHII(m) δ] in a large region of mean overdensityδ,
isiii

bHII(m) ≈ 1 +
B(m)/σ2(m) − 1/B0

D(z)
. (9.24)

Note that in this model each bubble must correspond to a region with above
average density (although it can of course contain smaller underdense voids).
This is obvious from equation (9.18): once the averagefcoll(δ = 0) = 1/ζ,
the entire Universe must already be ionized.

However, the biasbHII can become negative for sufficiently small bub-
bles. Physically, this occurs because overdense regions are farther along in
the reionization process, so most small bubbles have already merged with
larger H II regions. During the late stages of reionization,only the deepest
voids contain galaxies isolated enough to create small bubbles. Neverthe-
less, the average bias of ionized gas,

b̄HII ≡ Q−1
HII

∫

dmnb(m)V (m)bHII(m), (9.25)

whereV (m) is the comoving volume corresponding to a massm, is quite
large throughout the early stages of reionization, attaining values∼ 3–10.

As another example, each H II region of massm must have its overden-
sity equal to the barrier value atσ2(m). One can then generate density
trajectories with the initial conditions fixed at these bubble-wide values and
apply the usual spherical (or ellipsoidal) collapse criterion to generate the
conditional halo mass functions within each bubble (c.f. equation 3.43);
thus one can predict the galaxy populations that ionize eachregion of space.
We explore this possibility farther in§11.7.1.

Finally, we end this section by noting that theobserveddistribution of
bubble sizes differs from this “intrinsic” one. The theoretical distribution is
evaluated at a single instant in cosmic time; however, real observations ob-
serve different times because of the finite speed of light.152 This “light-cone
effect” imposes amaximumobservable bubble size at the end of reioniza-
tion, which can be estimated via similar arguments to those we have used

iii There is one subtlety in this calculation compared to the usual halo bias. With the linear
barrier fit to equation (9.20), the fractional bubble overdensity has a termB1σ

2
R/B0, where

σ2
R is the mass variance on the large scale on which the bias estimate is made. This term does

not scale with the dark matter density and so it spoils a linear bias estimate. Fortunately, it is
large only ifσ2

R is large (i.e., on small scales) or very close to the end of reionization, when
B1 ≫ B0.
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here. Let us take the slightly simpler case of including onlythose pho-
tons generated within a given region of comoving radiusR. Then the ion-
ization state of that region depends only on the collapse fraction inside it.
Again, reionization should be completed when this exceeds acertain critical
value, corresponding to a threshold number of ionizing photons emitted per
baryon. There is an offsetδz between the redshift at which a region of mean
over-densityδR achieves this critical collapsed fraction and the redshiftz̄ at
which the Universe achieves the same collapsed fraction on average.

This offset may be computed by expanding equation (9.19) assuming
small deviations (an excellent approximation on the large scales and early
times relevant here), giving153

δz

(1 + z̄)
=

δR
δcrit(z̄)

−
[

1 −
√

1 − σ2
R

σ2
min

]

, (9.26)

where againσ2
min is evaluated at the minimum galaxy mass isMmin. Ob-

viously the offset in the ionization redshift of a region depends on its lin-
ear over-densityδR. Note also that equation (9.26) is independent of the
critical value of the collapsed fraction required for reionization: the only
redshift dependence is inMmin and is rather mild. Therefore, as with the
bubble size distribution, the ionization redshift relative to its average value
is nearly independent of thetiming of reionization. The bottom right panel
of Figure 9.3 shows the distribution of reionization redshift in a numerical
simulation of the reionization process, illustrating the large dispersion of
reionization times.

Because the overdensity distribution narrows asR increases, the typical
deviationδz decreases withR. On the other hand, the light-crossing time
increaseswithR. Thus there is a critical size above which photons from the
far edge of a bubble reach the observer only after the near edge of the bubble
has been fully ionized. This then determines the maximumobservablesize.
With the presently favored cosmological parameters, this yields≈ 10 co-
moving Mpc, nearly independent of the time at which redshiftoccurred.154

9.4.1 The Formal Solution of the Linear Barrier Problem

Before turning to more sophisticated models of reionization, we will pause
briefly here to derive the mass function of equation (9.21), which will il-
lustrate explicitly how the excursion set formalism allowsus to approach
these problems. Recall from§3.4.1 that we treat the problem as diffusion in
density space, associating a given trajectory with a “halo”(here, an ionized
bubble) of massmb if the trajectory crosses an absorbing barrier (here spec-
ified byδB) for the first timeat mass scalemb. In order to solve the diffusion
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problem, we imagine smoothing the density field around a given point on
progressively smaller scales, “zooming in” on that point aswe go. If we
perform the smoothing such that each stage adds additional Fourier modes
of progressively smaller amplitude, we can replace our massvariablemb

with

σ2
k(mb) =

∫ K

0

k2 dk

2π2
Plin(k) (9.27)

where the cutoff wavenumber amplitudeK = K(mb). This is a sharp
k-space filter; it is convenient because each step in the “zooming in” corre-
sponds to simply adding in more and morek-modes. As each is independent
(at least during linear evolution and in the standard cosmological paradigm
of Gaussian initial perturbations), each step in our randomwalk, fromm1 to
m2 < m1, will be uncorrelated with previous steps, with standard deviation
∆σ2

k = σ2
k(m2) − σ2

k(m1).
Unfortunately, a sharpk-space filter has unappealing properties inreal

space, where these halos or bubbles reside (and where we try to observe
them): the corresponding real-space window function has oscillatory contri-
butions from large distances, and is not confined to a limitedspatial region.
From this standpoint, sharp filtering in real-space is much more appealing,
because it describes the well-localized halos or bubbles wedesire, and that
is what the usual variance of the density field,σ2(m), describes. The fun-
damental sleight-of-hand of the excursion set approach is to ignore this dis-
tinction by usingσ2(m) in place ofσ2

k – a sleight-of-hand that is ultimately
justified by its utility in matching the results of more detailed numerical
simulations. In the remainder of this section, we will letS = σ2(m) for
notational convenience.

In order to describe the evolution of fractional overdensity δ with S, we
note that the probability of a transition fromδ1 to δ2 = δ1 +∆δ betweenS1

andS2 is

p(δ2, S2)dδ2 = Ψ(∆δ,∆S)d(∆δ), (9.28)

where

Ψ(∆δ,∆S)d(∆δ) =
1√

2π∆S
exp

(

− (∆δ)2

2(∆S)

)

d(∆δ) (9.29)

and∆S is the difference in the variance of the density field betweenthese
two scales.

The probability distribution ofδ after taking such a step is therefore

p(δ, S + ∆S) =

∫

d(∆δ)Ψ(∆δ,∆S)p(δ − ∆δ, S), (9.30)
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wherep(δ−∆δ, S) is the probability distribution of the density before taking
the step andΨ is the probability of taking the proper step to reach the final
δ. Assuming small step sizes, we can Taylor expand both sides,expanding
to second order in∆δ (which is first order in∆S). The left-hand side is
straightforward; the right-hand side gives:
∫

d(∆δ)Ψ(∆δ,∆S)

(

p(δ, S) − ∂p

∂δ
∆δ +

1

2

∂2p

∂δ2
(∆δ)2

)

= p(δ, S)+
∆S

2

∂2p

∂δ2

(9.31)
And thus the “evolution” equation for the fractional overdensity becomes

∂p

∂S
=

1

2

∂2p

∂δ2
, (9.32)

which takes the form of a diffusion equation.
The boundary conditions are straightforward to describe. First, we know

δ = 0 whenS = 0, by definition, or in other wordsp(δ|S = 0) = δD(δ),
a Dirac delta function. Second, we want to identify trajectories that strike
our barrierδB with bubbles of the corresponding mass. This is an absorb-
ing barrier in a diffusion problem, as it completely removesany trajectory
that reaches this threshold from continuing its random walk. Therefore,
p(δB , S) = 0.

There are a variety of methods to solve this problem, including Laplace
transforms,155 path integrals,156, and the method we will illustrate here, sim-
ple separation of variables. Let us focus on a linear barrier, B = B0 +B1S,
and transform to a variabley = B1(δ − B1S), such that equation (9.32)
becomes

∂p

∂S
=
B2

1

2

(

∂2Q

∂y2
+ 2

∂Q

∂y

)

(9.33)

and our absorbing barrier boundary condition becomesp(B1B0, S) = 0.
We then seek solutions of the formp(y, S) = g(y)f(S). Equation (9.33)
does indeed separate, and if we write the separation constant asλ it is easy to
show that the solutions aref(S) = exp(λS) andg(y) = exp[(−1± iX)y],
whereX = −i(1 + 2λ/B2

1)1/2. The absorbing barrier boundary condition
demands that the solution vanish aty = B1B0, which fixes the oscillatory
component ofg. Thus

p(y, S) =

∫ ∞

0
dXh(X) sin[X(y −B0B1)] exp

[

−y − B2
1

2
(1 +X2)S

]

,

(9.34)
whereh(X) represents the amplitude of each mode. This function can be
fixed by comparison with the other boundary condition: it is customary to
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recast this as

p(δ|S = 0) = lim
S→0

1√
2πS

exp

[

− δ2

2S

]

(9.35)

Replacingδ with y, it is easy to see thath(X) = (B1/π) sin(XB0B1),
which allows us to integrate equation (9.34) and so obtain anexplicit ex-
pression for the probability distribution,

p(δ, S) =
1√
2πS

{

exp

(

− δ2

2S

)

− exp

[

−|2(B0 + i
√
B0B1S) − δ|2
2S

]}

.

(9.36)
Although the “image” approach described in§3.4.1 does not work here, this
equation shows that the final distribution has an analogous form, as the first
part is simply the distribution without the absorbing barrier and the second
is the trajectories that have been removed by the absorbing barrier.

The probability that a trajectory crosses the barrier in theinterval(S, S+
dS) is the rate at which these trajectories disappear from the unabsorbed set,
or

pcross(S) = − d

dS

∫ B0B1

−∞

dy

B1
p(δ, S) = −B1

2

∂p

∂y

∣

∣

∣

∣

B0B1

−∞

=
B0√
2πS3

exp

[

−B(k)2

2S

]

,

(9.37)
where in the second part we used the diffusion equation (9.33) and the ab-
sorbing boundary condition. Finally, the number density ofbubbles in equa-
tion (9.21) is simply

nb(m) =
ρ̄

m
pcross(S)

∣

∣

∣

∣

dS

dm

∣

∣

∣

∣

. (9.38)

The technique described here can also be used to solve the halo mass
function problem (whereB is independent of mass orS), as well as many
other interesting problems within the excursion set formalism.

9.5 RECOMBINATIONS INSIDE IONIZED REGIONS

Incorporating inhomogeneous recombinations into the excursion set model
for ionized bubbles is relatively straightforward. Each H II region obviously
contains density fluctuations. Because the recombination rate increases like
(1 + δnl)

2, whereδnl is the fully nonlinear fractional overdensity, dense
clumps will remain neutral – and optically thick – longer than voids will.

We begin with the simple ansatz that, within each ionized bubble, there
exists a threshold overdensityδi below which gas is ionized and above
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Figure 9.6 Illustration of the role of optically-thick regions (or LLSs) in reionization. These
always exist due to the clumpiness of the IGM, but they only become important in
the late phases of the process.(a) Early in reionization, when the ionized regions
are small, most lines of sight intersect the edge of the ionized bubble rather than
an LLS. Most ionizing photons therefore contribute to increasing the filling factor
of ionized gas, and LLSs play only a minor role in slowing the process during
its early phases.(b) However, once the bubble size grows larger than the mean
separation of LLSs, most ionizing photons are absorbed by these objects rather
than growing the ionized bubbles. The embedded sources therefore no longer
contribute to reionization – and, so far as they are concerned the process is over
locally, even if other regions remain largely neutral.

which it is neutral. Any ionizing photons striking these dense blobs – which
correspond to Lyman-limit systems (LLSs) in the post-reionization Universe
(see§4.4.1) – will be lost to recombinations in the neutral gas andhence
are useless for increasing the filling factor of the ionized bubbles. In other
words, for an H II region to continue growing, the average separation of
these dense blobs must exceed the radius of the bubble. Givena model for
the volume-averaged IGM density distribution,PV (δnl), we can estimate
δi by requiring the mean free path between such regions to equalthe bub-
ble radius. Clearly this threshold must increase as the bubbles grow – so
that progressively denser gas is ionized with time. Figure 9.6 illustrates this
process.

However, ionizing more deeply into the dense gas will also increase the
recombination rate per proton, which is

Arec =α(T )n̄e(1 + δ)

∫ δi

−1
dδnl PV (δnl) (1 + δnl)

2 (9.39)

≡α(T )n̄eC(δ,Rb),

whereC(δ,Rb) is the local clumping factor within a bubble of radiusRb

and mean overdensityδ, and where we assume that the bubbles are large
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enough for linear theory to suffice in this average.iv The bubble can only
grow if ionizing photons are produced more rapidly than recombinations
consume them, or in other words if

ζ
dfcoll(z, δR, R)

dt
> α(T )n̄eC(δ, R), (9.40)

The crucial point is thatC depends on both the mean density of the bubble
(recall that bubbles correspond to large-scale overdensities) and on its size
(throughδi). Thus, as expected from§9.2.1, inhomogeneous reionization
affects the clumping factor. Moreover, the complete model is both “inside-
out” on large scales and “outside-in” on small scales. Recombinations be-
come increasingly important as bubbles grow; eventually they balance ion-
izations and the bubble growth saturates in true recombination-limited cos-
mological Strömgren spheres.

Equation (9.40), which places a constraint on the instantaneous emissivity
of ionizing photons, complements our original ionization condition, equa-
tion (9.18), which requires that thecumulativenumber of ionizing photons
exceeds the total number of hydrogen atoms. In reality both conditions
must be fulfilled, but in practice one of the two generally dominates. This is
essentially because recombinations take over only whenδi approaches the
characteristic density of virialized objects, or in other words when LLSs set
the mean free path, as in the lower-redshift Universe (see§4.4.1).

As a consequence, it is possible to combine the two conditions in the ex-
cursion set formalism and compute the “bubble” sizes including recombina-
tions. However, this approach requires one conceptual shift: rather than the
actual size of discrete H II regions, the radiusR now corresponds roughly
to the mean free path of ionizing photons. When recombinations are unim-
portant, this equals the size of isolated bubbles. But once the bubbles “satu-
rate” as Strömgren spheres, neighboring H II regions can touch – it is only
that their ionizing photons will not influence each other. This is, in actual-
ity, the same configuration that is present in the post-reionization Universe,
where ionizing photons are limited by LLSs. The model therefore describes
how the “bubble-dominated” topology characteristic of reionization transi-
tions smoothly into the “web-dominated” topology of the post-reionization
Lyman-α forest, albeit in an inhomogeneous manner across the Universe.

The key input parameter is obviouslyPV (δnl), which parameterizes the
IGM clumpiness (see also§4.7). In detail, the nonlinear evolution requires
cosmological simulations that include coupled dark matterdynamics, gas

iv In detail, we actually require the density distributionPV as a function of large-scale
overdensity. Fortunately, in practice most large ionized bubbles (where recombinations are
relevant) are very close to the mean density.
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dynamics, and radiative transfer (to account for the effects of photoheat-
ing before and during reionization). This difficult problemhas not yet been
solved in detail, and so approximate models are generally used. These typ-
ically either take the post-reionization limit (where the gas is smoothed on
the Jeans scale corresponding to a temperature of∼ 104 K) or appeal to a
simple model for structures present before reionization (such as virialized
minihalos unable to cool and form stars).

In practice, including recombinations in this manner has a very simple
effect: it imposes amaximum sizeto the “ionized regions” that corresponds
to the mean free path of an ionizing photon through the inhomogeneous
IGM, given the local ionizing background. Bubbles substantially smaller
than this limit are almost unaffected by the LLSs, because sofew of their
ionizing photons strike them.

This picture has important implications for our understanding of the end
of reionization. Consider, for example, the evolution of the mean specific
intensity of the radiation background,J ≈ ǫλ/(4π), whereǫ is the emissiv-
ity andλ is the mean free path (see equation 4.44). If we ignored neutral
gas inside the ionized bubbles, the mean free path would simply equal the
size of the local ionized bubbble,Rb, which of course reaches infinity at the
end of reionization.

Now consider how the radiation background grows at a a fixed point in
the IGM, including inhomogeneous recombinations. When thepoint is first
ionized,J increases rapidly. As the sources inside the bubble ionize their
surroundings – gradually adding more sources within the visible “horizon”
provided by the bubble edge –J increases slowly, in proportion toRb. Oc-
casionally, however, the sources will ionize a thin wall separating the local
bubble from a neighboring H II region. At these times, many more sources
suddenly become visible andJ , along with the local bubble size, increase by
a large factor instantaneously. The solid curves in Figure 9.7 illustrate this
series of discontinuous jumps in the ionizing background ata few different
points in the IGM.

However, this series of discontinuous jumps cannot continue indefinitely:
eventually, the bubble grows large enough that most ionizing photons inter-
cept dense LLSs rather than reaching the bubble’s edge. Fromthat point, the
ionizing background is regulated by the abundance of these systems rather
than the global ionized fraction: in effect, the point has reached the “post-
overlap” stage even if some of the IGM (at large distances from our point)
remains neutral. In Figure 9.7, this is illustrated by the range of redshifts (or
bubble filling factors) for which the random trajectories reachλ, whereR
nearly stops increasing according to this model.

This transformation from an ionizing background regulatedby the sizes
of H II regions to one regulated by LLSs poses an interesting challenge for
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Figure 9.7 Bubble histories for several randomly generatedtrajectories. The vertical axis
shows the bubble radius surrounding a fixed IGM point as a function of the filling
factor of bubbles andz; here we arbitrarily fixζ so that reionization completes
at z = 6. Each solid line corresponds to a different IGM point. All include the
effect of inhomogeneous recombinations, while the dashed lines ignore them.
These differences only matter when the bubbles grow larger than the mean free
path of ionizing photons (near the end of reionization), so these are only distin-
guishable whenQHII > 0.9. The dotted and dot-dashed lines show the average
bubble sizeRc and the mean free pathλ, respectively, in this model. Figure
credit: Furlanetto, S. R. & Oh, S. P.,Mon. Not. R. Astron. Soc.363, 1031
(2005). Copyright 2005 by the Royal Astronomical Society.
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studies of reionization. In particular, in the final stages of the process, the
mean amplitude of the ionizing background is completely insensitive to the
morphology of reionization – and so tells us nothing about that process.
Rapid evolution would not be indicative of “overlap” but rather of rapid
evolution in the absorber population.

9.5.1 The Mean Free Path at High Redshifts

Obviously, the mean free path of ionizing photons will play an extremely
important role in regulating the end of reionization. Can weplace any con-
straints on it?

This is a difficult proposition at best. Extrapolating observations atz < 6
(equation 4.49) implies thatλ ∼ 7 (1) proper Mpc atz ∼ 6 (10); sim-
ple theoretical models predict values in this range as well.However, as the
Universe becomes denser and as the ionizing background declines, the den-
sities required to host an optically thick system approach the mean cosmic
density. It is therefore not at all clear that such an extrapolation is justified.

For example, equation (4.51) tells us the density of an LLS interms of
the ionizing background. We can make a simple estimate of this background
for a stellar population in the context of our simple reionization model. The
proper emissivity (inerg cm−3 s−1) is

ǫ ∼ ζ
hνHIρb

mp

dfcoll

dt
, (9.41)

whereνHI is at the ionization edge of H I. This yields an ionization rate

Γ ∼ ǫ
λσHI

hνHI
∼ 2.5 × 10−14

(

λ

pMpc

)(

ζ

∣

∣

∣

∣

dfcoll

dz

∣

∣

∣

∣

)

s−1, (9.42)

whereλ is in proper Mpc. In equation (4.51), these fiducial values imply
that with λ ∼ 1 proper Mpc atz ∼ 10, δLLS ∼ 1. Thus, LLSs would
consist of gas very near the mean density – presumably with much different
physical properties than the dense LLSs in the moderate-redshift Universe.
In fact, more detailed models that attempt to self-consistently match mean
free paths of this order with IGM patches find that absorbers must lie inside
weakly overdense regions.157

A second concern is that the ionizing background – and hence the location
of LLSs – will fluctuate across the Universe, even discounting the contrast
between predominantly ionized and neutral regions. Withinbubbles smaller
than this mean free path,Γ ∝ Rb because the volume available for ionizing
sources scales asR3

b while the flux from each goes likeR−2
b . Thus the wide

variation in bubble sizes shown in Figure 9.5 will translateinto an equally
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Figure 9.8 IGM absorbers in a “semi-numerical” simulation of reionization (seeColor Plate
17 for a color version of this figure). In each panel, we set (by hand) the mean
free path of ionizing photons to 10 comoving Mpc; the four columns show differ-
ent H II fractions at a fixed redshiftz = 10. The upper panels show the ionizing
flux (arbitrary normalization) inside ionized zones according to the colorscale.
The lower panels show the locations of halos (dark points inside the white re-
gions) and absorbers (green points). Figure credit: Crociani, D. et al.,Mon. Not.
R. Astron. Soc., 411, 289 (2011). Copyright 2011 by the Royal Astronomical
Society.

wide variation inΓ. On the other hand, as we have argued above the in-
creased number of LLSs in small bubbles will not substantially affect the
morphology of reionization. Moreover, even within ionizedbubblesΓ has
substantial (and systematic) fluctuations as they expand into low-density re-
gions devoid of sources – although of course such regions also have fewer
dense blobs capable of becoming LLSs. In practice, once the ionizing back-
ground declines to be near the cosmic mean, theΓ fluctuations are more
important than those in the matter density, so the opticallythick systems
cluster near the edges of ionized bubbles whereΓ is small.

Figure 9.8 shows some examples of this phenomenon for a series of bub-
ble filling factors in a numerical simulation. The upper panel shows the
inhomogeneous ionizing flux background, which varies by about an order
of magnitude within the ionized bubbles, while the lower panel shows the lo-
cations of ionizing sources (dark points) and absorbers (gray points) within
the white ionized regions. Note how the absorbers tend to cluster near the
edges of the ionized bubbles, even though the underlying density is pre-
sumably relatively small there. This is because the ionizing background is
weaker in these regions which are far from the luminous sources.



THE REIONIZATION OF INTERGALACTIC HYDROGEN 367

A final concern is in the uncertain amount of small-scale structure in the
high-redshift IGM, which depends sensitively on the Jeans mass of this gas
and hence the IGM temperature evolution. If, for example, the IGM is not
significantly heated before it is ionized, the gas will be much clumpier than
in the post-reionization Universe, which would render extrapolation from
observations useless. We discuss these issues further in§9.9 below.

9.5.2 Maintaining Reionization

A related question (and one that existing observations can begin to answer)
is whether a particular set of ionizing sources can keep the IGM ionized at a
sufficiently high level. On a global scale, this requires balancing the recom-
bination rate per unit volume with the emissivity (by number) of ionizing
photons,ṅion:158

α(T )Cn̄H n̄e = ṅion. (9.43)

Unfortunately, this equation has the same ambiguities we have already em-
phasized. The recombination coefficient depends on the nature of the ab-
sorbers (to set case-A or case-B) as well as the underlying gas tempera-
ture (this introduces factor of two uncertainties). Moreover, the effective
clumping factorC depends on the degree to which dense regions are ion-
ized and is somewhat degenerate with the number of ionizing photons they
consume; in detail it will actually depend on the emissivityitself, which sets
the self-shielding threshold. An additional difficulty is the implicit assump-
tion that ionizing photons are absorbed instantaneously (or equivalently that
the elapsed period between emission and absorption is much smaller than
both the Hubble time and the characteristic source evolution timescale).

Nevertheless, this equation provides a simple qualitativeguide to gauge
whether a source population may be able to maintain the observed ionization
rate in the Universe. The canonical relation for the comoving star formation
density in galaxies is

ρ̇⋆ ∼ 0.003f−1
esc

(

C

3

)(

1 + z

7

)3

M⊙ yr−1 Mpc−3. (9.44)

However, converting the critical rate of ionizing photon productionṅion to
a star formation rate introduces a new set of uncertainties.One substantial
difficulty is the escape fractionfesc, which is uncertain to at least an order of
magnitude. Others are the initial mass function (IMF) of stars, because only
the most massive stars produce ionizing photons, and stellar parameters like
the metallicity and binarity (see§8.8), which introduce a factor of several
uncertainty in the ionizing efficiency per unit star formation rate (Nion in
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the language of equation 9.2); the relation here assumes a Salpeter IMF and
solar metallicity, both of which are likely conservative and sooverestimate
the requiredρ̇⋆. Thus, without additional observational constraints on the
source populations, equation (9.44) provides only a rough guide.

In order to ionize most of the IGM in the first place, the cumulative pop-
ulation of stars needs to produce at least one ionizing photon per hydro-
gen atom in the Universe. Under the same assumptions about the IMF and
metallicity as used above, this condition implies a minimumcomoving den-
sity of stars after reionization of

ρ⋆ ∼ 1.6 × 106f−1
esc M⊙ Mpc−3. (9.45)

Note that this constraint does not involve the clumpiness factor, since both
the number of sources and atoms scale the same way with volume.

9.6 SIMULATIONS OF REIONIZATION

So far we have discussed simplified analytic models of the reionization pro-
cess. Such models ignore a large number of physical effects,including:
(i) the complexities of radiative transfer, such as shadowing of radiation
by a dense absorber;(ii) the detailed geometry of the “cosmic web” and
source distribution, which is poorly approximated by spherical averaging;
(iii) the (possible) presence of high-energy photons that can propagate large
distances through neutral gas;(iv) the feedback of photoionization and pho-
toheating on the sources of reionization and on the IGM; and(v) the nature
and clustering of the dense absorbers. It is therefore important to develop
more sophisticated numerical approaches to reionization.

In this section we will focus on the application of numericalsimulations
to reionization, with some more specific comments on the numerical im-
plementation of radiative transfer. We refer the reader to§3.7 for more
information on the algorithms used in the gravitational andhydrodynamic
components of the calculations.

9.6.1 Radiative Transfer Simulations

One option is a full cosmological simulation that attempts to incorporate
all of the relevant physics, including gravitational dynamics, hydrodynam-
ics, and radiative transfer. This approach is crucial for understanding many
of the above issues – particularly those involving feedbackof reionization
itself on the gas distribution. However, it imposes daunting requirements
on the simulations. Most importantly, we have seen that the relevant scales
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during reionization easily reach tens of Mpc, so simulatinga characteris-
tic volume requires a box that spans> 100 Mpc. On the other hand, the
source halos (even discounting molecular hydrogen cooling) have masses
Mh ∼ 108 M⊙. Spanning both these scales – with at least 100 particles
per galaxy – requires a dynamic range of∼ 1011 (in mass), which is very
difficult to achieve at present.

As a result, simulations with hydrodynamics – the most difficult of these
three physics components to resolve over large dynamic ranges – typically
focus on details of reionization that appear on small physical scales, such as
feedback on small IGM clumps and the escape of ionizing photons from
the local environment of their sources. These sorts of simulations have
shown that ionization around galaxies is often highly anisotropic, due to the
dense filaments along which galaxies sit, that photoheatingfeedback will
efficiently destroy the smallest gravitationally bound clumps of baryons (or
minihalos), and that this same feedback will moderate the clumping factor
throughout the IGM.159 They cannot, however, describe global quantities
like the average evolution of the ionized fraction or radiation background,
simply because the simulated volumes are too small to include more than
one growing ionized bubble.

On the other hand, pure gravitational simulations with thisdynamic range
are relatively straightforward, and radiative transfer optimized for reioniza-
tion by stellar sources (in which simply following the fate of mono-energetic
ionizing photons is not a bad approximation) is relatively simple. Thus,
most work to date has focused on dark matter simulations thatassume a
simple relation between the baryons and dark matter and apply radiative
transfer to the resulting baryon field. These simulations very effectively ad-
dress the detailed geometry of the sources and cosmic web andcan at least
approximately address the complexities of radiative transfer and the propa-
gation of high-energy photons, but they cannot determine how reionization
feedback affects the sources or the IGM (since these are, by definition, hy-
drodynamic effects).

A variety of radiative transfer algorithms appear in the literature, and for-
tunately they seem to converge reasonably well in most circumstances.160

The general problem is very difficult, as computing the specific intensity
Iν(t, x, n, ν) requires solving a seven-dimensional problem: timet, po-
sition x, frequencyν, and direction of propagationn. Furthermore, sim-
ulations can contain hundreds of thousands of sources, evenexcluding the
diffuse light generated by IGM recombinations. Thus the complete problem
is prohibitively expensive, and approximate schemes are necessary.

Because each of the many sources illuminates its surroundings over4π
steradians, the number of photon rays that must be included in a calcula-
tion is much larger than the number of sources. Codes typically take one
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of three approaches:(i) a Monte Carlo algorithm, in which a large num-
ber of photon packets are cast from the sources;(ii) adaptive ray tracing, in
which a small number of rays are initially cast from each source, spawn-
ing new ones as necessary to maintain the desired angular resolution, or
(iii) a field-based approach, in which photon propagation is abstracted into
a continuous field. The first is straightforward but faces themost serious
convergence challenges. The second most clearly reflects the physics of the
problem but is the most challenging technically. Field-based approaches
are the fastest but can suffer from unusual artifacts when detailed radiative
transfer effects (such as shadowing) become important; they are subject to
unphysical diffusion effects in such cases. Nevertheless,the different codes
agree rather well. The upper panels of Figure 9.9 compare twodifferent
reionization codes (both using the adaptive ray tracing technique) executed
within an identical simulation. The results are clearly very similar.

A second question is how much to specialize the code to the particular
problem of reionization. For example, the algorithm can either explicitly
incorporate multifrequency sources or focus only on counting ionizing pho-
tons. The latter is clearly significantly faster, but the former allows for non-
stellar sources and is necessary to trace photo-heating accurately. Similarly,
in many astrophysical contexts (including LLSs) the ionizing photons emit-
ted during recombinations are important sources, but during reionization
such photons are typically absorbed again almost immediately and so get
neglected.

Still, even with this sophisticated machinery numerical simulations are
ultimately limited by the same uncertainties that plague analytic models:
namely, the physicsinside high-redshift galaxies is so poorly known that
the models are descriptive but not predictive, in the sense that they can accu-
rately predict the statistical properties of reionizationgiven a source model
but cannot from first principles generate such a source model.

A second problem is that these simulations cannot accurately reproduce
the properties of photons sinks such as IGM clumping and LLSs, because
those depend on the hydrodynamics in and around galaxies as well as feed-
back from photoionization. The most sophisticated models prescribe IGM
clumping from higher-resolution simulations (together with some assump-
tions about the distribution of ionized and neutral gas and the relevant level
of Jeans smoothing) and/or prescribe the distribution of LLSs based on a
semi-analytic model.

The most important question is how these numerical approaches compare
to the analytic models described earlier. Given all the complexities, the an-
swer – that the analytic models fare extremely well – may be a surprise.
Most importantly, the simulations show large ionized structures, with sizes
comparable to those predicted, throughout most of reionization. They con-
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Figure 9.9 Comparison of radiative transfer and semi-numerical models of reionization. The
three columns show three different times during reionization, with the filling fac-
tor of ionized bubbles (here labeledX) of 0.25, 0.51, and 0.72. The top two rows
show two different radiative transfer schemes (both based on adaptive ray trac-
ing). The bottom two rows use semi-numerical schemes: the one labeled “FFRT”
uses the analytic excursion set model to predict the halo abundance, while the one
labeled “FFRT-S” uses the simulated halo field itself. All four rows use exactly
the same simulation volume; note the excellent agreement between the radiative
transfer schemes and the close match with the semi-numerical schemes on mod-
erate and large physical scales. The maps are 143 Mpc/h across and 0.6 Mpc
deep. Figure credit: Zahn, O. et al.,Mon. Not. R. Astron. Soc., 414, 727 (2011).
Copyright 2011 by the Royal Astronomical Society.
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firm that the filling factor of the ionized bubbles,QHII, is by far the most im-
portant factor in determining the morphology and that the redshift is mostly
unimportant. They also show that the clustering of the ionizing sources is
the second most important factor and that inhomogeneous recombinations
have relatively little effect on the bubble sizes until a threshold H II region
size is reached.161

9.6.2 Semi-Numerical Simulations

The general agreement between these disparate approaches has inspired a
set of hybrid “semi-numerical” algorithms that allow a compromise between
the simplicity of the analytic models and the power of a specific realization
of reionization.162 All of these approaches follow the same general proce-
dure:

• First, generate the initial conditions for a cosmological simulation box
(usually in a large region of size> 100 Mpc).

• Second, linearly evolve the density field to the desired redshift. As
we have seen, this is trivial, for the amplitude of density fluctuations
simply increases likeD(z), independent of scale. Optionally, low-
order nonlinear corrections can be applied, such as the Zel’dovich
approximation (§4.1).

• Third, identify the source (or dark matter halo) distribution. This is
typically done by applying the excursion set approach to thespecific
density realization of the simulation in one of two ways. Oneop-
tion is to use large cells and compute the expected halo abundance
in each one with the analytic excursion set model (using the linear
density of each cell as the basis for the conditional mass function of
equations 3.43 or 9.19). This is useful for particularly large volumes
(> 1 Gpc) and/or quick and dirty estimates. A second option, use-
ful for more detailed work and/or higher-resolution simulations, is
to step through each cell in the simulation volume and smooththe
density field on progressively smaller scales, identifyingit as a halo
whenever it crosses the spherical collapse threshold density (or an
improvement upon that criterion). This mimics the random walk dif-
fusion process used to generate the halo mass function (see§3.4.1) but
applies it point-by-point to account for real fluctuations in that den-
sity field. The resulting halo field does not match those of numerical
simulations exactly but provides an excellent statisticalcorrelation.

• Finally, generate the morphology of the ionized regions. Again, the
density field is smoothed on progressively smaller scales around each
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pixel, and regions are tagged as ionized if this smoothed field exceeds
the excursion set ionization criterion of equation (9.20),i.e. if the
number of ionizing photons generated within the region (according to
some imposed source prescription) exceeds the number of hydrogen
atoms.

• Optionally, a criterion for inhomogeneous recombinationscan also
be included by imposing a maximum bubble size or by weightingthe
cells according to some estimate of the subgrid clumping and/or self-
shielding.

These semi-numerical approaches thus represent a fairly direct imple-
mentation of the analytic model in specific realizations of the density field.
Figure 9.9 shows that the results closely match radiative transfer simula-
tions, at least on large scales. Clearly the broad-brush features are very
similar, with ionized bubbles appearing in the same regionsand growing to
approximately the same sizes in each model. Of course, the detailed shapes
of the features are harder to reproduce, especially when twoionized bubbles
are near to or have just overlapped with each other.

Figure 9.10 compares four models in a more quantitative fashion through
the power spectrum of the ionized fractionPxx(k), evaluated over the simu-
lated volumes; this is important for many of the observableswe will discuss
later on. At very small scales (k > 8h/Mpc), the models disagree, but
this is largely due to shot noise in the various prescriptions. On moder-
ate to large scales, the two radiative transfer prescriptions agree extremely
well, while the semi-numerical prescriptions differ by∼ 30% late in reion-
ization. This and other statistics show that the hybrid approaches are ade-
quate when accuracy of this order suffices. Most importantly, the excellent
agreement between this implementation of analytic reionization models and
the numerical simulations suggests that existing models for the reionization
process are quite robust,given a model for the sources and sinks(which are
themselves almost completely unconstrained by existing observations).

The hybrid approach provide many of the advantages of large-scale simu-
lations (especially the detailed source distribution and cosmic web topology)
with computational costs orders of magnitude smaller. However, it certainly
has drawbacks as well. One difficulty is that there is no a priori way to set
the excursion set parameters, filtering schemes, and other details of the ap-
proach; comparison to simulations has identified the best practical schemes,
but the details of the algorithms matter at the∼ 10% level.163 Another is
that these prescriptions still invoke spherical filtering in order to paint on the
ionization morphology; while the resulting configurationsare certainly not
themselves spherically symmetric, they do not account for complex radia-
tive transfer effects. Third, the “photon-counting” methods we have studied
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Figure 9.10 Comparison of the power spectrum of the ionization field in the radiative trans-
fer and semi-numerical models of reionization. The three panels correspond to
the columns of Fig. 9.9, and the curves correspond to the fourmodels shown
there as well. Note the close match in the predictions of all four models on
scalesk < 8h/Mpc, although the semi-numerical schemes do overpredict the
power on very large scales in the late stages of reionization. The differences at
k > 8h/Mpc are due to shot noise, which differs between the schemes. Figure
credit: Zahn, O. et al.,Mon. Not. R. Astron. Soc., 414, 727 (2011). Copyright
2011 by the Royal Astronomical Society.
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so far only work for specific classes of sources in which ionizing photons
are absorbed shortly after impacting neutral gas. These schemes have not
yet been extended to sources with harder spectra (such as quasars, which we
discuss in§9.8).

Perhaps most importantly, the semi-numerical approach cannot be used
to follow the progress of reionization through time, because it does not con-
serve photons. Instead, the global evolution ofQHII(z) must be prescribed
externally; once that is known a series of maps can easily be generated, but
they cannot then be used to infer anything about the feedbackof reionization
on the source population, for example. AlthoughQHII(z) in radiative trans-
fer simulations is ultimately determined by an imposed source prescriptions
as well, they at least allow a self-consistent interaction of the reionization
morphology with those sources.

9.7 STATISTICAL PROPERTIES OF THE IONIZATION FIELD

Figure 9.10 uses the power spectrum of the ionization fraction to compare
the various simulations. The power spectrum offers a convenient way to
quantify the statistical properties of a reionization model, and it can be un-
derstood intuitively based on the excursion-set model of reionization. One,
relatively rigorous, approach to compute the power spectrum on a scalek
is to follow two random walks, correlated on all scalesk′ < k, and deter-
mine the probability distribution of their fates inside ionized bubbles. This
provides a reasonably good match to the numerical simulations.164

However, we will take a simpler, approximate approach here that is in-
formed by the simulation results. We begin by noting that theionized frac-
tion is not a typical cosmological field, because it is strictly bounded to lie
between zero and unity. Thus we expect the joint probabilitydistribution of
the ionized fraction at two different points to take the form

〈xi(r1)xi(r2)〉 = Q2
HII + (1 −QHII)f(r/Rc), (9.46)

wherer = |r1 − r2| andRc the characteristic bubble size. Heref is an
unknown function containing the physics of the problem, with the limits
f → 0 for r ≫ Rc andf → QHII asr → 0. This equation has a sim-
ple physical interpretation: if two points are separated bya distance much
smaller than the size of a typical H II region they will eitherboth be ion-
ized by the same bubble, with probabilityQHII, or both be neutral. But
if r ≫ Rc, they must reside in distinct H II regions, so the probability
approachesQ2

HII, with a small enhancement due to the clustering of the
bubbles. The correlation function isξxx = 〈x1x2〉 − Q2

HII (and the power
spectrum is its Fourier transform).
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A second restriction on the nature of the correlations arises because of the
finite range of the ionized fraction: ifQHII = 1, every point must be ionized
(or xi = 1 everywhere); in that case the correlations must vanish. Thus we
needξxx = 0 when eitherQHII = 0 or 1.

The challenge lies in constructing the functionf , which expresses how
bubbles encompass two different points separated by a fixed distance. The
correlated random walk approach described earlier implicitly computes this
factor without any geometric assumptions about the bubbles. We will in-
stead use the bubble mass functionnb(m), which necessitates some assump-
tion about their structure. The simplest is of course spherical symmetry;
unfortunately, this leads to an unphysical suppression in the ionized frac-
tion nearRc. Because the excursion set formalism determines themaximum
bubble size for which any point is a part, it does not allow forany further
overlap of the bubbles. If they are all spherical, it then becomes difficult to
pack them in such a way that they ionize all space – this is simplest to see
in the limit in which every bubble has the same size, where reionization is
then similar to packing a crate with oranges. The gaps between the oranges
are impossible to remove in this situation. In reality, of course, the bubbles
deform into non-spherical shapes to fill the gap, but that is difficult to model
analytically.

We therefore sacrifice rigor in order to build a simple model that approx-
imates the numerical results.165 To do so, we split the problem into two
regimes. WhenQHII < 0.5, the neutral gaps are large and so reasonably
well-modeled by the spherical approximation. Then, takinginspiration from
the halo model (§3.6.1), we can explicitly build the joint probability distri-
bution by considering separately (1) the probabilityP1 that a single bubble
ionizes both points and (2) the probabilityP2 that the two points are ion-
ized by separate bubbles. In the latter case, we must includethe correlations
between distinct bubbles. We then have

P1(r)=

∫

dmnb(m)V1(m, r) (9.47)

P2(r)=

∫

dm1nb(m1)

∫

d3r1

∫

dm2nb(m2)

∫

d3r2[1 + ξbb(r|m1,m2)],(9.48)

whereV1(m, r) is the volume in which the center of a sphere of mass
m can lie while simultaneously ionizing two points separatedby r and
ξbb(r|m1,m2) ≈ bHII(m1)bHII(m2)ξ(r) is the bubble correlation function.

Late in reionization, whenQHII > 0.5, we setf = P1 in equation (9.46):
while this does not include large-scale correlations, by this point the bubbles
are so large that the excess correlation on scales beyond thebubble size is
negligible. By doing this, we are ignoring the “two-bubble”term entirely.
This means that our expression does not asymptote to a form proportional
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to the dark matter correlation function at late times,ξxx ≈ b̄2HIIξ. However,
at these late times this limit is only reached at extremely large scales, well
beyond the sizes accessible to either observations or simulations. At more
moderate scales, the Poisson fluctuations of the discrete bubbles dominate.

Putting these together, we have

〈xixi〉 (r) =

{

P1(r) + P2(r) QHII < 0.5,
(1 −QHII)P1(r) +Q2

HII QHII > 0.5,
(9.49)

The solid curves in Figure 9.11 compare this simple expression to the cor-
relation function found in a semi-numerical simulation (including only the
linear theory evolution in a100h−1 Mpc box) at three different bubble fill-
ing fractions. Note the very good agreement at small and moderate scales,
which suggests that this simple approach provides good intuition about the
properties of the ionization field.

Also of interest is the cross-correlation between the ionized fraction and
the underlying density,〈xi(r1)δ(r2)〉. Again, it is relatively straightforward
to construct a reasonable analytic approximation for this because the excur-
sion set formalism is used for both the halo distribution (which via the halo
model describes the density field) and the ionized bubbles. To evaluate it
in detail, we can again use some simplifying manipulations.First, suppose
thatr2 lies inside the bubble that ionizesr1 (again, ifr1 is neutral, the prod-
uct vanishes automatically). Then we already know the mean density of the
bubble material (equal to the excursion set barrierδB in equation 9.20). We
can therefore approximate this part of the correlation as

Pin(r) =

∫

dmnb(m)V1(m, r)[1 + δB(m)], (9.50)

because thexi field is unity only inside of bubbles, where the mean density
is δB .

If on the other hand the point is outside the bubble, we take inspira-
tion from the halo model and assign pointr1 to a halo. We can then ap-
proximate the cross-correlation between the bubble and halo asξbh(r) ≈
b(mh)bHII(m)ξ(r), using the linear theory expression because the distance
is large. The contribution from these pairs is

Pout(r) = QHII−
∫

dmnb(m)V1(m, r)+

∫

dmb nb(m)

∫

d3rb bHIIξ(r),

(9.51)
where we have used the fact that the mean halo bias is always unity to per-
form the integral overmh (see equation 3.75). Here the first two terms
essentially fix the space available to bubbles to ionize the point r2 without
also ionizingr1; note the second term inPout cancels the first term inPin.
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Figure 9.11 Comparison of the autocorrelation function of the ionized fraction (solid curves)
and the cross-correlation function of the ionized fractionand density (dashed
lines). In each case, the thick lines show our analytic approximations of equa-
tions (9.49) and (9.52), while the thin curves show results for a semi-numerical
simulation in a100h−1 Mpc box. The two methods are in quite good agree-
ment at a wide range of ionized fractions. Figure credit: McQuinn, M. et al.,
Astrophys. J., 630, 643 (2005). Reproduced with permission of the American
Astronomical Society.
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The third term contains the correlations. As before, this term is not accu-
rate whenQHII is large, becausebHII encounters difficulty there; however,
at these times the bubble radius so large anyway that the entire correlation
term can be ignored. Thus, we have the net approximation

〈xi(r1)δ(r2)〉 =

{

Pin(r) + Pout(r) −QHII QHII < 0.5,
Pin(r) − P1(r) QHII > 0.5.

(9.52)

In other words, whenQHII is small, we must include correlations from both
the bubble atr1 and from its neighboring bubbles (and in particular the
excess correlation from their clustering). WhenQHII is large, we need only
include the former effect. Subtracting theP1 andQHII terms in each case
isolate the excess correlations.

Figure 9.11 compares this approximate treatment of the cross-correlation
with a semi-numerical calculation (thick and thin dashed curves, respec-
tively). Again, the simple model does a rather good job over arange of
ionized fractions, though it tends to underestimate the small-scale correla-
tions because it averages over each bubble.

The important point of this simple model is that the excursion set model
not only reproduces the gross properties of the bubble population but also
their spatial distribution with respect to the density field. The special na-
ture of the ionization field simplifies many of these calculations, helping to
develop intuitive models that explain the simulation results. Moreover, the
correlations can mostly be understood in terms of the average properties of
the bubble population, because the individual H II regions are so large that
nonlinear effects tend to be washed out anyway.

9.8 REIONIZATION BY QUASARS AND OTHER EXOTIC SOURCES

To this point we have focused on stellar sources of reionization, largely be-
cause galaxies seem to dominate the ionizing photon budget at z ∼ 6. How-
ever, quasars present an interesting alternative reionization source because
they have much harder (nonthermal) ionizing spectra than even the hottest
stars. Thus, some of their photons can travel much larger distances through
the IGM, and the morphology of the ionized and neutral gas will be much
smoother than the sharply-defined H II regions that we have discussed so
far.

9.8.1 How Important are Quasars to Reionization?

There are, unfortunately, very few constraints on the abundance of high-z
quasars. The census of very luminousz ∼ 6 quasars is now fairly well-
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determined, and their abundance seems to decline exponentially at z > 4
(see Figure 7.1).166 Although constraints on the shape of the luminosity
function are quite weak, the total ionizing photon emissivity arising from
this population of quasars appears to fall a factor of 10–50 short of that re-
quired to maintain reionization at that time, usingC = 3 and the arguments
in §9.5.2.

Nevertheless, it is relatively easy to imagine that much smaller black
holes – in particular those characteristic of the small galaxies common at
high-redshifts – could play an important role in at least partially ionizing
the IGM. As discussed in§7.5, at lower redshifts it is now clear that black
holes are both ubiquitous and closely related to their host galaxies. For
the purposes of a simple estimate we will simply scaleMBH to the to-
tal halo massMh, so that the (comoving) mass density in black holes is
ρBH = fBHfcollρ̄b. As a fiducial value, we will scalefBH to its local value
in massive galaxies,∼ 10−4, but as discussed in§7.5.1 this may evolve at
high-redshifts (and appears to be an underestimate for the brightestz ∼ 6
quasars).

Now let us consider how largefBH must be in order to significantly ionize
the IGM. These ionizations come from two sources: primary photoioniza-
tions from the quasar photons themselves, and secondary ionizations from
the energetic secondary electrons produced after the initial photoionization.
For a hard non-thermal spectrumLν ∝ ν−1, the latter dominate and deposit
(very crudely) a fraction of the energyfi ∼ xHI/3 in ionizations. If the
black holes have a radiative efficiency (relative to their rest mass)ǫ and emit
a fractionfUV of their energy above the ionization threshold of whichfesc,q

escapes the host galaxy, the expected number of ionizationsper hydrogen
atom is

NX ∼ 0.5fesc,q

( ǫ

0.1

)

(

fUV

0.2

)(

fcoll

0.01

)(

fBH

10−4

)(

fi

1/3

)

. (9.53)

Thus the local black hole-halo relation makes a plausible argument for a
substantial contribution of quasars to reionization. Note, however, that the
secondary ionizations become less and less common asxHI decreases, so
lower-energy photons (either from quasars or stars) are still necessary to
complete reionization (as discussed in the next section).

Unlike for stars, the escape fractionfesc,q is likely to be quite high for
quasars. Because all the quasar ionizing radiation emergesfrom a single
source, it is much more likely to carve transparent channelsin the interstellar
medium of the galaxy. Moreover, much of the ionizing energy comes from
relatively high-energy photons that have an easier time traversing their host
galaxy without interacting.

The unresolved X-ray background offers a constraint on thisscenario,



THE REIONIZATION OF INTERGALACTIC HYDROGEN 381

because such a high-redshift quasar population would produce hard X-rays
(≥ 10 keV) that free stream until today, some redshifting into thewell-
observed soft X-ray band. Approximately93 ± 3% of the soft X-ray back-
ground has been resolved; the best estimate for the unresolved component
is JX ∼ 0.3–1 × 10−12 erg s−1 cm−2 deg−2 in the 0.5–2 keV band.167

Suppose that black holes produce the high-redshift X-ray background at
a median redshiftz, emitting a fractionfHXR of their energy in the[0.5–
2](1+z) keV range. The flux received at earth isJ = (c/4π)ρHXR/(1+z),
whereρHXR is the comoving energy density in hard X-rays produced by this
early generation of black holes. Thus

JX ≈ 10−13f−1
esc,q

(

fHXR/fUV

0.2

)(

1/3

fi

)(

NX

0.5

)(

10

1 + z

)

erg s−1 cm−2 deg−2,

(9.54)
where the fiducial choices forfHXR/fUV and〈E〉 are appropriate for a spec-
trum withLν ∝ ν−1 ranging from 13.6 eV to 10 keV.

Interestingly, this is comparable to the presently-observed unresolved com-
ponent. Thus, the X-ray background required if quasarsalonereionized the
Universe probably violates observed limits,168 but they could still make a
substantial contribution to the ionization budget; thus itis certainly useful
to consider scenarios in which quasars drive or affect the reionization pro-
cess. Stellar mass X-ray binaries could also contribute to the X-ray back-
ground,169 as we will discuss in§12.3.2.

Moreover, it is relatively easy to imagine scenarios in which black hole
accretion plays a much larger role. One possible way to evadethese con-
straints is with a population of “mini-quasars” built from smaller black holes
that may form through different channels than the very bright observable
quasars. In such mini-quasars, most of the UV photons may come from an
accretion disk, while hard X-rays instead come from synchrotron/inverse-
Compton emission. The relative contribution of the two components is ex-
tremely uncertain, and if the non-thermal tail is relatively insignificant the
empirical X-ray background constraint would tell us littleabout the total
contribution of black holes to reionization.

9.8.2 Ionized Bubbles Around Quasars

The primary difference between quasars, which typically have non-thermal
spectra in the UV and X-ray regimes, and stars (which are nearly thermal
and so have very few high-energy photons) is that one cannot simply as-
sume that all the ionizing photons are absorbed in a narrow region around
the ionization front; instead, the higher-energy photons can propagate large
distances through the intergalactic medium. The comoving mean free path
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of an X-ray photon with energyE is:

λX ≈ 11 x̄
1/3
HI

(

1 + z

10

)−2( E

300 eV

)3

Mpc; (9.55)

thus, photons withE > 1.5[(1 + z)/15]1/2x̄
1/3
HI keV propagate an entire

Hubble length before interacting with the IGM. Many of the soft X-rays
therefore escape the ionized bubble but deposit their energy (as ionization
and heat) in the surrounding gas, “pre-ionizing” and “pre-heating” it before
the ionization front itself reaches the gas.

In this case where photons leak past the “ionization front” marking the
boundary between the mostly-ionized and mostly-neutral gas, the photon-
counting arguments implicit to§9.1 are not sufficient: the assumption of a
two-phase medium (highly ionized and completely neutral) breaks down.
Instead we must more carefully examine the radiative transfer of ionizing
photons through these regions. For simplicity, we will consider a model
universe composed entirely of hydrogen; including helium complicates the
equations but adds no essential new physics. As a photon travels away from
its source, it encounters absorption that depends on the local ionized frac-
tion as well as the photon energy. The total optical depth experienced by a
photon with frequencyν that has traveled from a source to a radiusr is

τ(ν, r, t) =

∫ r

0
σHI(ν)nHI(r, t)dr

′ (9.56)

wherenHI is the local H I density (which may evolve either through the cos-
mological expansion or the neutral fraction) and where we have explicitly
noted the time dependence, since the ionized region will grow as more and
more photons are pumped into it. We have also assumed thatr ≪ c/H(z),
so that we can ignore the cosmological redshift of the photon. The ioniza-
tion rate at this position is then

Γ(r, t) =

∫ ∞

νHI

dν

hν

Lνe
−τ(ν,r,t)

4πr2
σHI(ν)

[

1 +

(

E − EHI

EHI

)

fi(E − EHI)

]

,

(9.57)
whereLν = (dL/dν) is the monochromatic luminosity (per unit frequency)
of the source,EHI = 13.6 eV is the ionization potential of H I,E − EHI

is the energy of the photoelectron, andfi(E − EHI) is the fraction of this
energy that goes into secondary ionizations as this electron scatters through
the ambient medium. This last factor describes the fate of the high-energy
electrons; it is small for photons near the ionization threshold and (very
roughly) approachesfi ∼ xHI/3 at high energies. A comparable fraction of
the energy goes into collisional excitation of line transitions; the remainder
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goes into heating (see below). These fractions have been computed much
more precisely using basic atomic physics.170

The ionization rate at each position is then governed by

dnHI

dt
= ΓnHI − αB(T )nenHII, (9.58)

where (again ignoring helium)ne = nHII = nH − nHI. We assume case-
B recombination (i.e., local absorption of the recombination photons) for
simplicity; otherwise the radiative transfer equation must include a source
function for recombination photons as well. This “on-the-spot” approxima-
tion is usually a good one because the recombination photonsare emitted
near the ionization threshold and so have short mean free paths. Note that
we have left the clumping factorC off of equation (9.58), because inte-
grating the ionization front evolution over space allows one to include the
detailed density profile. However, it can easily be incorporated into the last
term to account for clumping below the resolution of the calculation grid.

Because the recombination rate depends on temperatureT (and often be-
cause the temperature is of intrinsic interest), one must also trace its evolu-
tion with (see also§4.3.1)

dT

dt
= −2HT +

2T

3

d ln(1 + δ)

dt
− T

d ln(2 − xHI)

dt
+

2

3kBntot
(H− Λ),

(9.59)
whereH is the total radiative heating rate,Λ is the total radiative cooling
rate, andntot is the total particle number density. These terms describe
adiabatic cooling due to the Hubble expansion, adiabatic heating or cooling
due to local density inhomogeneities, the change in the total particle density
due to ionizations and recombinations, and radiative processes, from left to
right.

At high redshifts, radiative heating and cooling are typically dominated
by photoheating and inverse Compton cooling, respectively. The former is

Hph =

∫ ∞

νHI

dν
Lνe

−τ(ν,r,t)

4πr2
σHI(ν) (E − EHI) fh(E − EHI), (9.60)

wherefh(E − EHI) is the fraction of the photoelectron energy that goes
into heating. It is large for photons near the ionization threshold and (very
roughly) approachesfh ∼ 1 − 2xHI/3 at high energies.171 The Compton
cooling rateΛcomp is given by (see equation 2.38)

2

3

Λcomp

kBntot
=

1 − xHI

2 − xHI

(TCMB − T )

tc
, (9.61)

where tc ≡ (3mec)/(8σT uCMB) is the Compton cooling time (see also
§2.2), σT is the Thomson cross section, anduCMB ∝ T 4

CMB is the CMB
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Figure 9.12 Example ionization and temperature profiles around a relatively bright quasar
at z = 10, with LB = 109L⊙. The source is assumed to emit steadily after it
turns on, and the different curves taket = 106, 106.5, 107, 107.5, and108 yr
after ignition. The calculation assumes an initial IGM temperature ofT = 10 K
and a uniform IGM at the mean density (including helium); note that distances
are measured in proper (not comoving) units.

energy density. The first factor on the right hand side accounts for energy
sharing by all free particles.

Figure 9.12 show some example ionization and temperature profiles around
a relatively bright quasar atz = 10 with LB = 109 L⊙. The source
is assumed to emit steadily after it turns on, and the different curves take
t = 106, 106.5, 107, 107.5, and108 yr after ignition. The calculation as-
sumes an initial IGM temperature ofT = 10 K and a uniform IGM at the
mean density. As expected, the ionization front sweeps outward over time.
Behind it, the gas lies in ionization equilibrium, withxHI ∝ r2. The ion-
ization front itself – which we will define to be the distance between which
0.1 < xHI < 0.9 – is narrow, but residual ionization (and heating, which
can be substantial) extends several comoving Mpc from the front itself. The
gas leading the front isnot in ionization equilibrium, as the ionization front
will continue to sweep outward if the source remains luminous, and the gas
outside will steadily increase in both temperature and ionized fraction until
it reaches the highly ionized limit.

In particular, because the recombination time in this outerregion is so
long (at least while the ionized fraction itself is small), the relatively low
level of heating and ionization contributed by each quasar is cumulative.
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After many generations of AGN, the gas that remains outside of H II regions
gradually becomes more and more ionized, potentially untilthe ionized frac-
tion saturates at∼ 0.5 when secondary ionizations become inefficient.

This gradual ionization and heating of the otherwise untouched gas pro-
vides one of the key difference between stellar and quasar reionization. Oth-
ers are primarily driven by differences in the source luminosities and abun-
dances: to the extent that quasars are rarer and more luminous than star-
forming galaxies, they will produce larger, rarer H II regions in the IGM,
in which the ionized fraction and density field are less correlated. We will
discuss some of the observational signatures of these differences in the later
chapters.

9.8.3 Helium Reionization

So far we have focused purely on the reionization of intergalactic hydro-
gen. The first ionization potential of helium, 24.4 eV, is sufficiently close to
that of hydrogen that helium is almost definitely singly ionized at the same
time as hydrogen. However, stripping the second electron requires 54.4 eV,
which is well beyond the blackbody peak of typical hot stars (although very
massive metal-free stars can at least partially ionize helium, see§5.4). We
therefore expect a significantly different ionization history for He II.

Nevertheless, many of the same tools we have already developed can be
used to follow the creation of He III. Helium can easily be incorporated
into the formalism of§9.8.2 by adding a multi-species network that traces
the evolution of He II and He III. In practice, most high-energy photons
are absorbed by He II, but (because helium is relatively rare) the secondary
electron still deposits most of its energy as heat or in ionizing and exciting H
I. The ionization and heating profiles (as in Figure 9.12, which does include
helium) do not qualitatively change.

Similar calculations for stellar sources show that only very massive metal-
free stars can produce He III, although even in optimistic models the He III
fraction rarely rises to unity.172 Moreover, once these stars fade away, the
He III rapidly recombines into He II because its recombination time is much
shorter than that for H II (see§4.5) and therefore the age of the UniversetH ,

tBrec,He

tH
≈ 0.2

(

8

1 + z

)3/2

. (9.62)

Thus, there may be a brief phase of ionized helium during the cosmic dawn,
but it likely ends with the death of these primordial stars.

However, radiation from quasars could provide a more sustained source
of high-energy photons. We have already seen that these sources can plausi-
bly ionize hydrogen; can they do the same for He II? The primary difference
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from our earlier calculation is that fast secondary electrons produced in the
ionization process do not efficiently ionize He II, because its collisional ion-
ization cross section is more than an order of magnitude smaller than that of
H I (and when hydrogen is fully ionized the energy loss rate toother elec-
trons is also much more rapid). Without secondary ionizations, the crucial
parameter is the mean photon energy per ionization〈Ei〉. If Lν ∝ ν−1 from
54.4 eV to 2 keV (beyond which the IGM is optically thin), thisenergy is
〈Ei〉 ∼ 200 eV. Assuming that all of the high-energy photons ionize He II
rather than H I (e.g., if stellar sources ionize the latter first), we find that the
number of ionizations per helium atom could be

Nion,He ∼ 0.6fesc,q

( ǫ

0.1

)

(

fUV,He

0.1

)(

fcoll

0.01

)(

fBH

10−4

)(

200 eV
〈Ei〉

)

.

(9.63)
HerefUV,He is the fraction of the quasar’s luminosity emitted above54.4 eV.
Of course, given the rapid recombination time these early quasars are un-
likely to maintain more than a low level of He III in the IGM.

Despite this estimate, just as for H I theobservedhigh-z quasar popula-
tion produces far fewer He II-ionizing photons. In fact estimates based on
the measured quasar luminosity function (appealing to bothphoton-counting
arguments and the required emissivity to maintain reionization) predict that
He II reionization must wait untilz ∼ 3, near the peak of the quasar era.173

Indeed, a number of lines of evidence indicate that the eventoccurs at
roughly this time, though none are as yet definitive. We list these efforts
here because they make an interesting comparison to the constraints on H I
reionization that we discuss later:

• The mean optical depth of the He II Lyman-α forest appears to in-
crease rapidly beyondz ∼ 2.8.174 In §4.7 we argued that an appar-
ently similar increase in the H I forest optical depth atz ∼ 6 could
not robustly be interpreted as evidence for reionization. But the case
for helium is more secure: because the atomic number densityof he-
lium is smaller and its recombination rate is faster, its Gunn-Peterson
optical depth is onlyτ ∼ 14Γ−1

HeII,−14(1+z/4)9/2, whereΓHeII,−14 is
the He II ionization rate in units of10−14 s−1 (roughly the measured
value). Thus, He II becomes transparent in the late stages ofreion-
ization; moreover, it doesnot have an opaque damping wing that can
conceal highly-ionized regions (see§11.4). Additionally, reionization
is accomplished by rare, bright sources whose illuminationcan create
large (many Mpc) ionized bubbles even before the process completes.
Together, these factors imply that the He II Lyman-α forest is a much
cleaner probe of reionization than for H I.
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• Moreover, the He II forest shows substantial fluctuations atz > 2.8,
from being nearly opaque to very transparent.175 Such regions are dif-
ficult to arrange if the IGM is highly-ionized, because they would re-
quire a dearth of quasars over several hundred comoving Mpc,which
is very unlikely. Unfortunately, the enormous optical depth of the H
I forest atz ∼ 6 masks the analogous fluctuations, and so this test is
much more difficult to repeat with hydrogen.

• A number of measurements of the H I forest show a peak in the IGM
temperature atz ∼ 3.176 The most natural interpretation is photoheat-
ing from helium reionization (see§9.9).

• There is some evidence for a hardening in the metagalactic ionizing
background atz ∼ 3, as measured by the ratios of some metal lines.
For example, C IV has an ionization potential just above thatof He II,
while Si IV has its potential far above that point. Once He II is ion-
ized and the IGM becomes transparent to photons above 54.4 eV, we
expect the abundance of C IV to decrease relative to Si IV as well (see
§4.6). Some (but not all) measurements show such an decrease.177 At
z ∼ 6, the analogous process at the H I edge should show an increase
in higher ionization states, e.g., C IV, relative to low ionization states,
e.g. O I (see§4.6). Tentative evidence for such evolution does exist,
but the scarcity of metal line systems atz > 5 and their likely posi-
tions inside highly-overdense systems complicates their interpretation
in this case.

Clearly, He II reionization is at best an imperfect analog tohydrogen
reionization, but it does allow us to test a number of the sameideas – espe-
cially those relating to the ionizing background and its interaction with the
IGM. In particular, it has the key advantage of occurring atz ∼ 3, where
measurements of the H I Lyman-α forest offer a much clearer picture of
the IGM. Helium reionization may therefore offer a useful testbed for un-
derstanding the tail end of hydrogen reionization, when LLSs dominate the
absorption of ionizing photons and IGM structure is crucial.

9.8.4 Exotic Reionization Scenarios

It is also possible that much more exotic processes – such as dark matter de-
cay or annihilation, or primordial black hole evaporation –helped (or even
completed) the reionization of the IGM. Any such exotic process that pro-
duces photons withE > 13.6 eV to which the IGM is opaque can contribute
to ionizing (and possibly heating) the IGM. For example, dark matter decay
– even with a timescale many times the present age of the Universe – could
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in principle reionize the entire IGM, so long as> 10−8 of the total rest
energy of the dark matter particles goes into ionization.178

Although such models are quite speculative, they would produce very dif-
ferent patterns of reionization and so are interesting froma phenomenolog-
ical perspective. For example, dark matter is fairly uniformly distributed at
high redshifts, so decay would cause a nearly uniform ionizing background
and hence a nearly uniform ionized fraction (moderated onlyby inhomoge-
neous recombinations and possible escape of the decay products from the
source region). Annihilation would provide a clumpier source distribution
but would still cause much smoother reionization than starsor quasars.

9.9 FEEDBACK FROM REIONIZATION: PHOTOHEATING

As described in§4.3.1 and§9.8.2, after photoionization (some of) the ex-
cess energy deposited in the photo-electron is transformedto heat through
scattering. This heating can be substantial: for a spectrumtypical of a star-
forming galaxy,∆T ∼ 12, 500–30, 000 K (see§4.3.1), while for quasar
sources one might have∆T ∼ 105 K. Owing to X-ray heating, the IGM
temperature is rather uncertain before reionization (as wewill discuss in
§12.3.2), but this photoheating almost certainly increasesit by nearly an
order of magnitude, which has a number of important consequences.

9.9.1 Photoheating and the IGM

If reionization were uniform, this dramatic heating would leave the IGM
essentially isothermal. However, we have seen that in fact the process is
driven by large-scale density fluctuations, with overdenseregions (full of
galaxies) reionized first and underdense regions (devoid ofgalaxies) reion-
ized last (see the bottom right panel of Figure 9.3). This translates into
systematic IGM temperature fluctuations because, once reionization ends,
the rapid photoheating ceases (constrained by the recombination rate within
the IGM gas). Thus the overdense regions begin coolingearlier and have
systematically cooler temperatures at the tail end of reionization (see the
bottom center panel of Figure 9.3).

Figure 9.13 shows this quantitatively via the IGM temperature-density
relation. We show this relation atz = 6 computed from the excursion set
reionization model of§9.4 for a variety of scenarios in which reionization
ends betweenzr = 6 and 10 (thus the different curves do not represent
a time sequence from one model but rather a sequence of different reion-
ization models, with the time of observation held constant). Immediately
following reionization (solid curve), the low-density voids are systemati-
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Figure 9.13 IGM temperature-density relation following H Ireionization. All curves as-
sumez = 6 and take a post-reionization temperature ofTH = 20, 000 K. The
solid, long-dashed, short-dashed, dot-dashed, and dottedcurves set the reioniza-
tion redshift atzr = 6, 7, 8, 9, and10, respectively. Figure credit: Furlanetto,
S. R., & Oh, S. P.,Astrophys. J.701, 94 (2009). Reproduced with permission
of the American Astronomical Society.

cally hotter than gas near the mean density, simply because the former was
the last to be ionized and so still lie near the post-reionization temperature.
(Note that overdense gas is hot as well, due to the adiabatic heating from
ongoing structure formation.)

This kind of inverted temperature-density relation is strongly character-
istic of “inside-out” reionization, where large-scale overdensities are ion-
ized first and underdense voids last. Inside-out models are generic to stellar
reionization, because its morphology closely traces the underlying cosmic
web. (Note, however, that this does not mean thatsmall-scaleoverdensities
are ionized last – in fact these LLSs typically maintain relatively large neu-
tral fractions until the very late stages.) If, on the other hand, rare, luminous
sources (such as quasars) drive reionization, the ionized bubbles correlate
less strongly with the density field and the associated temperature inversion
weakens (or even disappears – as is likely to be the case with helium reion-
ization atz ∼ 3). Thus, the IGM temperature-density relation provides a
good test of the morphology of reionization.
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As time passes, the expansion of the Universe causes gas at all densities to
cool adiabatically. However, because underdense voids expand more rapidly
than average, this cooling occurs fastest at low densities,gradually erasing
the initial (inverted) temperature-density relation. Because adiabatic cooling
occurs over an expansion time, the characteristic cooling timescale is the
Hubble time (see the first two terms on the right hand side of equation 9.59).
Thus, the interesting observational signature of inside-out reionization fades
after a relatively short time, and the temperature-densityrelation approaches
the universal asymptote in which photoheating following recombinations
balances the adiabatic cooling.

Of course, reionization is also stochastic, with regions ofa given density
having many different reionization histories (driven by the nearby halo pop-
ulation). Thus, the temperature-density relation is imperfect, with scatter of
∼ 30% at a given density. This scatter (and its dependence on density) also
depends on the reionization model, with rarer sources inducing more scatter.

Photoheating from reionization not only increases the IGM temperature
but also affects its structure: the accompanying thermal pressure increases
the effective Jeans mass (MJ ∝ T 3/2; see equation 3.15), evaporating exist-
ing small-scale structures and preventing accretion onto small dark matter
clumps. In the diffuse IGM, this effect is usually interpreted as a decrease in
the clumping factorC. WhenMJ is small, before reionization, very small
dark matter halos can retain their baryons, causing a great deal of small-
scale structure, while after reionization, these structures evaporate andC
decreases. Fortunately, this smoothing is relatively insensitive to the pre-
cise post-reionization temperature, because (in most models) any reason-
able amount of photoheating already increases the temperature by a very
large factor.

On the other hand, following this evolution in detail requires quite sophis-
ticated numerical simulations that (a) resolve the small-scale IGM structure
and (b) include coupled radiative transfer and hydrodynamics. To date this
has only been possible in relatively small volume simulations that do not
fully account for the large-scale morphology of reionization; fortunately, the
insensitivity of the resulting clumping evolution to the details of the reion-
ization process suggests that these results – in which the clumping factor
can decrease by nearly a factor of two due to photoheating – are robust.

Directly observing photoheating is a challenge, especially at very high
redshifts in which the Lyman-α forest is nearly saturated in absorption. In
addition to the Jeans smoothing itself (which affects small-scale power in
the forest), heating also increases thermal broadening in the line profiles.
These manifest themselves in both statistical measures of the forest (like
the power spectrum, where small-scale structure is erased)and in the lines
themselves (with the spectral broadening leaving less curvature in the spec-
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trum). Although these techniques have not yet been feasibleat high red-
shifts, they are easier at moderate redshifts (z ∼ 3) around the time of
He II reionization and have been applied extensively there.Both methods
have provided measurements of the evolution of the mean temperature with
redshift and show heating atz ∼ 3, of roughly the magnitude expected if
quasars are responsible for the event (see§9.8.3).

However, these methods have not yet offered strong constraints on the
temperature-density relation, primarily because the forest is mostly sensi-
tive to only a narrow range of densities at any one redshift. One interesting
way to avoid this problem and extend it to high redshift is by comparing con-
straints from multiple Lyman lines. With their weaker oscillator strengths,
Lyman-β and Lyman-γ sample different parts of the density field (see Fig-
ure 4.16); comparing their different optical depths as a function of redshift
may therefore reveal how the temperature evolves followingreionization.

9.9.2 Photoheating and Virialized Objects

Photoheating affects not only diffuse IGM gas but also gas inside of virial-
ized objects. If such a halo hasTvir < 104 K, photoionization will heat the
gas above the escape velocity of the halo, allowing the baryons to evaporate.
Moreover, once IGM gas is heated, it will ignore small dark matter potential
wells, preventing the accretion of gas onto existing galaxies and suppressing
subsequent star formation.

The Jeans mass (or, more properly, the filter mass) in the IGM isMJ ∼
105 M⊙if the gas simply cools adiabatically after decoupling fromthe CMB
(see§3.2). This is far below the atomic cooling threshold (Tvir ∼ 104 K
corresponds to∼ 107 M⊙; see§3.3), so although these dark matter clumps
can accrete baryons they cannot go on to form stars. Instead,they will
remain as dense clumps sprinkled through the IGM. Moreover,because the
mass function is so steep at high redshifts, this populationcan contain a great
deal of the collapsed mass – from∼ 10% atz ∼ 15 to∼ 30% atz ∼ 8. Such
objects are known asminihalos, and their large overdensities may make
them an important photon sink through the early stages of reionization.

However, these objects have shallow potential wells. As an ionization
front reaches the halo, it heats the gas to> 104 K > Tvir. Because the
thermal pressure then exceeds the gravitational binding force, the minihalo
gas escapes into the IGM through a strong evaporative wind. The high cen-
tral densities of the minihalo gas transform the ionizationfront (which is
R-type in the diffuse IGM) into a D-type front, generating a shock wave
that expels the gas from the minihalo (see the discussion in§6.3).179 This
hydrodynamic process therefore occurs on roughly the soundcrossing time,
∼ csrvir ∼ 30(Mh/10

7 M⊙)1/3 Myr at z ∼ 10, which is much shorter than
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the age of the Universe at that redshift.
One way to parameterize the effects of these minihalos on reionization

is by supplementing the IGM clumping factor with an averageCmh =
〈

n2
e

〉

/ 〈ne〉2 over the minihalo density profiles. However, the rapid time
evolution during evaporation makes application of this enhanced clumping
factor difficult, because one must include each minihalo foronly a finite
time. A simpler parameterization is to use the total number of ionizing pho-
tons consumed (per minihalo atom) during the entire evaporation process.
Over this time period, detailed numerical simulations showthat this pro-
cess typically consumes∼ 3–5 ionizing photons per minihalo atom, as the
high internal densities of the halos cause relatively rapidrecombinations:
trec ∼ 2 Myr (using the case-B rate) for a virialized object atz ∼ 10.180

Given the fraction of collapsed mass in these minihalos, this increases the
number of photons per hydrogen atom required to complete reionization by
about one, potentially making minihalos as important a photon sink as the
clumped IGM itself. Fortunately, although these minihaloswill be clustered
and so induce inhomogeneous recombinations, numerical simulations show
that treating them as approximately uniform does not introduce any signifi-
cant errors.181

Once a region is ionized, later formation of minihalos is strongly sup-
pressed – even if the gas cools and recombines, because the photoionization
(or indeed any other substantial heating event, such as an X-ray background)
dramatically increases the entropy of the IGM. In this context, the quantity

K =
T

n2/3
= 760

(

T

104 K

)

(1 + δ)−2/3

(

1 + z

10

)−2

eV cm2 (9.64)

is usually referred to as “entropy,” although the thermodynamic entropy is
actuallyS ∝ lnK. Conveniently,K is conserved for any adiabatic process,
including Hubble expansion or slow accretion; only strong shocks or radia-
tive processes modify it. Clearly, the heating that occurs during reionization
dramatically increases the entropy. Typical values areKreion > 100 eV cm2

at z ∼ 10, even after a substantial period of cooling and entropy release via
recombination line cooling.

If this entropy is much larger than that generated by gravitational accre-
tion onto a dark matter halo, the finite entropy “floor” will prevent gas from
collapsing to high densities – essentially preventing accretion onto the halo.
It is convenient to parameterize this process in terms of theentropy gen-
erated by the accretion shock at the virial radius, which providesKhalo ≈
Tvir/[n(rvir)]

2/3. Interestingly,Kreion/Khalo ∼ 10(Tvir/10
4 K)−1 for an

NFW profile; thus the photoheating from reionization significantly sup-
presses accretion onto halos even somewhat above the usual atomic cool-
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ing threshold: numerical calculations of gas profiles (assuming hydrostatic
equilibrium within the virial shock) show that only∼ 50% of the gas is
able to accrete whenKreion/Khalo ∼ 1, decreasing rapidly for less massive
halos.182

Photoheating suppresses accretion so efficiently because this process typ-
ically affects the gas while it has a low density and so efficiently imparts a
large entropy to the gas. In fact, any other photoheating – even from a mod-
est X-ray background generated by rare quasars – can substantially affect
the IGM entropy, preventing the formation of minihalos evenbefore they
are ionized. We can use the estimate of equation (9.53) to examine this pos-
sibility as well: if a fractionfh of the energy goes into heating (rather than
ionization), we have

Tqso ∼ 20, 000fesc,q

( ǫ

0.1

)

(

fUV

0.2

)(

fcoll

0.01

)(

fBH

10−4

)(

fh

1/3

)

K,

(9.65)
so substantial heating is clearly plausible. Even ifTqso ∼ 1000 K – with
a very modest accompanying ionized fraction – the argumentsabove show
that minihalo formation would be almost completely suppressed.

Figure 9.14 shows some of these effects quantitatively. Thebottom panel
illustrates how the entropy suppresses the collapse of gas onto dark matter
halos. The uppermost solid curve showsfcoll in this model if no excess
entropy is introduced, including only minihalos withTvir < 104 K in the
calculation. The dotted curves addK = 1 and10 eV cm2 (upper and lower,
respectively). Even these modest levels reducefcoll by a factor of a few to
even an order of magnitude. The lower solid curve, labeledKIGM(z) shows
a minimal suppression due to reionization, in which the gas is actually al-
lowed to recombine for roughly a Hubble time (dramatically decreasing its
entropy at high redshifts through recombination cooling).Even this conser-
vative estimate essentially eliminates minihalo formation.

The top panel shows an estimate of the effective clumping factor, C =
〈

n2
e

〉

/ 〈ne〉2, when only gas inside of minihalos is included in the same
scenarios as below. (Thus it underestimates thetotal clumping factor that
must include gas outside of virialized objects, but it more clearly shows the
effect on these objects.) Again, even a relatively modest entropy injection
dramatically reduces the role of these objects as photon sinks during reion-
ization.

The suppression of accretion onto halos above the atomic cooling thresh-
old is important for understanding high-redshift star formation. In detail
this threshold depends on (1) self-shielding of gas within the potential well
(which in turn depends upon its internal structure); (2) collisional recombi-
nation and cooling inside the halo; (3) the amplitude of the ionizing back-
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Figure 9.14 Effects of the IGM “entropy floor” on gas clumpingfrom virialized miniha-
los (top panel) and the collapse fraction of gas onto dark matter halos (bottom
panel). In each panel, the uppermost solid curve shows the model calculation
with no entropy injection. The lower solid curve, labeledKIGM(z), shows the
effect of a numerical calculation of entropy injection via photoionization and
subsequent recombination (which decreasesK through radiative cooling). The
two dotted curves show estimates for entropy injection at fixed levels (perhaps
by an X-ray background). Figure credit: Oh, S. P. & Haiman, Z.Mon. Not.
R. Astron. Soc.346, 456 (2005). Copyright 2005 by the Royal Astronomical
Society.



THE REIONIZATION OF INTERGALACTIC HYDROGEN 395

ground that impinges on each halo; and (4) the relative timing of gas accre-
tion onto the halo and the first appearance of the ionizing background.

Fortunately, simple arguments provide an estimate for the range of ha-
los in which accretion is eventually suppressed. Halos larger than the Jeans
mass in the heated medium are essentially unaffected; this is usually param-
eterized by a halo circular velocity threshold,VJ (see eq. 3.31), with

VJ = 81

(

TIGM

15, 000 K

)1/2

km s−1. (9.66)

However, the dark matter halo itself actually has an averagedensity∼ 200
times the cosmic mean, so inside of it the gravitational force gradient is
larger than in the mean density IGM (and hence better able to overcome
thermal pressure). The Jeans mass evaluated with this larger density then
determines the smallest halo that can accreteanygas, parameterized by the
limiting circular velocity

Vlim = 34

(

TIGM

15, 000 K

)1/2

km s−1. (9.67)

Halos in the range fromVlim to VJ are able to accrete some, but not their
entire complement, of gas. The point at which halos are able to accrete half
the expected mass is roughly the filtering mass, or time-averaged Jeans mass
(see§3.2). This is somewhatsmallerthan the Jeans mass itself because the
thermal pressure is lower before reionization, allowing the early phases of
assembly to proceed rapidly (and so build up a halo nearVlim.

The filter mass is a very useful approach for addressing this question, be-
cause (as a time integral) it illustrates how the feedback takes time to set in.
Gas already close to accreting is still able to do so, becauseat the higher
density characteristic of gas near to halos, entropy injection is less effi-
cient. This means that photoionization feedback manifestsgradually over a
timescale comparable to the collapse time of dark matter halos – essentially
the Hubble time. Indeed, detailed simulations show that just after a given
region is ionized, the suppression only affects halos with circular velocities
vc < 10 km s−1.183

BecauseVJ typically lies above the atomic cooling threshold for star for-
mation, reionization willsuppressthe formation of stars inside small galax-
ies. In principle a search for such suppression provides another test of reion-
ization models, although as described above it actually occurs gradually
over a timescale comparable to the Hubble time, so it will be difficult to
separate from the many other factors that affect the cosmic star formation
rate. If, however, reionization is highly inhomogeneous and extended over
time, the differing reionization histories in different regions of the Universe
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may induce variations in stellar populations whose observable effects per-
sist to the present day. It may also have implications for understanding the
wide range in stellar populations of Milky Way satellites with V < VJ , if
some of those dark matter halos accreted gas (and formed their stars) before
reionization and some after (see§13.4.2).



PART 3

Observations of the Cosmic Dawn





Chapter Ten

Surveys of High-Redshift Galaxies

The study of the first galaxies has so far been mostly theoretical, but it is
soon to become an observational frontier. How the primordial cosmic gas
was reionized is one of the most exciting questions in cosmology today. As
discussed in the previous chapter, most theorists associate reionization with
the first generations of stars, whose ultraviolet radiationstreamed into inter-
galactic space and broke hydrogen atoms apart in H II bubblesthat grew in
size and eventually overlapped. Others conjecture that accretion of gas onto
low-mass black holes gave off sufficient X-ray radiation to ionize the bulk of
the IGM nearly simultaneously. New observational data is required to test
which of these scenarios describes reality better. The timing of reioniza-
tion depends on astrophysical parameters such as the efficiency of making
stars or black holes in galaxies. The exploration of the reionization epoch
promises to be one of the most active frontiers in cosmology over the com-
ing decade. We are now in a position to understand the first pillar of these
efforts: direct observations of galaxy populations.

What makes the study of the first galaxies so exciting is that it is a work in
progress. Scientific knowledge often advances like a burning front, in which
the flame is more exciting than the ashes. It would obviously be rewarding
if our current theoretical ideas are confirmed by future observations, but it
might even be more exciting if new observations demand that these ideas be
modified.

10.1 TELESCOPES TO OBSERVE HIGH-REDSHIFT GALAXIES

10.1.1 The Hubble Deep Field and its Follow-ups

In 1995, Bob Williams, then Director of the Space Telescope Science Insti-
tute, invited leading astronomers to advise him where to point the Hubble
Space Telescope (HST) during the discretionary time he received as a Di-
rector, which amounted to a total of up to 10% of HST’s observing time.184

Each of the invited experts presented a detailed plan for using HST’s time
in sensible, but complex, observing programs addressing their personal re-
search interests. After much of the day had passed, it becameobvious that
no consensus would be reached. “What shall we do?” asked one of the
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participants. Out of desperation, another participant suggested, “Why don’t
we point the telescope towards a fixed non-special directionand burn a hole
in the sky as deep as we can go?” – just like testing how fast your new car
can go. This simple compromise won the day, as there was no real basis for
choosing amongst the more specialized suggestions. As it turned out, this
“hole burning” choice was one of the most influential uses of HST, produc-
ing the deepest image we have so far of the cosmos.

The Hubble Deep Field (HDF) covered an area of 5.3 square arcminutes
and was observed over 10 days (see Figure 10.1). One of its pioneering
findings was the discovery of large numbers of high-redshiftgalaxies at a
time when only a small number of galaxies atz > 1 were known: the HDF
contained numerous red galaxies, with some reachingz > 6. The wealth of
galaxies discovered at different stages of their evolutionary histories allowed
astronomers to estimate the variation in the global rate of star formation per
comoving volume over the lifetime of the universe.

Subsequent incarnations of this successful approach included the HDF-
South (a near-replica of the original HDF in the southern sky) and the Great
Observatories Origins Deep Survey (GOODS), which was a somewhat shal-
lower survey covering a much larger area. Both of these extensions were de-
signed to increase the original sample of galaxies in HDF, inorder for their
statistics to be quantitatively reliable and avoid spurious effects of clustering
(see the detailed discussion in§10.4). A section of GOODS, occupying a
tenth of the diameter of the full moon (equivalent to 11 square arcminutes),
was then observed for a total exposure time of a million seconds to create
the Hubble Ultra Deep Field (HUDF), the most sensitive (deepest) field im-
age in visible light to date. Red galaxies have been identified in the HUDF
image up to a redshift ofz ∼ 8, and possibly even higher, showing that
the typical UV luminosity of galaxies declines with redshift at z > 4 (see
§10.3). Most of the data we will discuss in this chapter ultimately comes
from the HDF and HUDF.

10.1.2 Future Telescopes

The first stars emitted their radiation primarily in the UV band, but because
of intergalactic absorption and their exceedingly high cosmological redshift,
their detectable radiation is mostly observed in the infrared (see§10.2.2).
The successor to the Hubble Space Telescope, the James Webb Space Tele-
scope (JWST), will include an aperture 6.5 meters in diameter, made of
gold-coated beryllium and designed to operate in the infrared wavelength
range of 0.6–28µm (see Figure 10.2). JWST will be positioned at the La-
grange L2 point, where any free-floating test object stays inthe opposite
direction to that of the Sun relative to Earth. JWST’s large aperture and po-
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Figure 10.1 The first Hubble Deep Field (HDF) image taken in 1995 (seeColor Plate 18for
a color version of this image). The HDF covers an area 2.5 arcminutes across
and contains a few thousand galaxies (with a few candidates up to a redshift
z ∼ 6). The image was taken in four broadband filters centered on wavelengths
of 3000, 4500, 6060, and 8140̊A, with an average exposure time of∼ 0.127
million seconds per filter.
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Figure 10.2 A full scale model of the James Webb Space Telescope (JWST), the successor to
the Hubble Space Telescope (http://www.jwst.nasa.gov/; seeColor Plate 19for
a color version of this image)). JWST includes a primary mirror 6.5 meters in
diameter, and offers instrument sensitivity across the infrared wavelength range
of 0.6–28µm which will allow detection of the first generations of galaxies.
The size of the Sun shield (the large flat screen in the image) is 22 meters×10
meters (72 ft×29 ft). The telescope will orbit 1.5 million kilometers fromEarth
at the Lagrange L2 point. Figure credit: NASA/EPO.

sition outside the Earth’s atmosphere makes it particularly well-suited to de-
tect the faint, compact galaxies we expect to exist during the Cosmic Dawn
and possibly discover “smoking gun” signatures of Population III stars, such
as strong UV sources with no metal lines or strong He II recombination lines
(see§5.4).

Several initiatives to construct large infrared telescopes on the ground
are also underway. The next generation of ground-based telescopes will
have effective diameters of 24-42 meters, roughly three times wider than
the largest existing optical/near-infrared telescopes. Examples of these up-
coming facilities include the European Extremely Large Telescope,185 the
Giant Magellan Telescope,186 and the Thirty Meter Telescope,187 which are
illustrated in Figure 10.3. Along with JWST, they will be able to image
and survey a large sample of early galaxies, and their large collecting areas
will be especially useful in studying individual galaxies and their spectra in
detail.

Additional emission at submillimeter wavelengths from molecules (such
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Figure 10.3 Artist’s conception of the designs for three future giant telescopes that will be
able to probe the first generation of galaxies from the ground(seeColor Plate
20 for a color version of this image): the European Extremely Large Telescope
(EELT, top), the Giant Magellan Telescope (GMT, middle), and the Thirty Me-
ter Telescope (TMT, bottom). Images credits: the European Southern Observa-
tory (ESO), the GMT Partnership, and the TMT Observatory Corporation.
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as CO), ions (such as C II), atoms (such as O I), and dust withinthe first
galaxies would potentially be detectable with the future Atacama Large Mil-
limeter/Submillimeter Array (ALMA).188 This array will contain sixty-six
7 to 12 meter antennas positioned at very high altitudes in Chile, in order to
see past the strong atmospheric absorption at millimeter and submillimeter
wavelengths. It is perfectly positioned to observe emission from dust and
heavy elements in the early Universe, as we will have alreadydiscussed in
§8.9.

Many other instruments are under development, complementing the di-
rect views of the galaxies that one can obtain with these telescopes. For
example, given that these galaxies also created ionized bubbles during reion-
ization, their locations should be correlated with the existence of cavities in
the distribution of neutral hydrogen. Within the next decade it may become
feasible to explore the environmental influence of galaxiesby using infrared
telescopes in concert with radio observatories that will map diffuse hydro-
gen at the same redshifts (see§12 and 13.3).

10.2 METHODS FOR IDENTIFYING HIGH-REDSHIFT GALAXIES

Much of the baryonic mass in the Universe assembled into star-forming
galaxies after the first billion years in cosmic history. Consequently, the
highest-redshift galaxies are a rarity among all faint galaxies on the sky. A
method for isolating candidate high-redshift galaxies from the foreground
population of feeble lower-redshift galaxies is required in order to identify
targets for follow-up studies.

10.2.1 Lyman-α Emitters

One technique makes use of narrow-band imaging to identify galaxies for
which highly-redshifted line emission falls within the selected band. An
object that is bright in the narrow band but faint (or, for these applications,
usually invisible) in nearby broadband measurements can beidentified as a
line emitter. Provided that one can identify the line that isobserved, this
technique has the advantage of identifying the redshift andlocation of the
galaxy. This method is typically applied to the Lyman-α line, which is often
very strong because most ionizing photons absorbed by the galaxy’s inter-
stellar medium (ISM) are reprocessed into Lyman-α line photons through
recombinations (see chapter 11). However, it is also highlysensitive to the
gas geometry and kinematics and can be extinguished by dust.The galax-
ies detected by this technique are termedLyman-α emitters (LAEs). The
primary challenges with this approach are:
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Figure 10.4 “Windows” in theJ-band night-sky spectrum. The black line indicates the
transmission of the night sky (scale on right). The two linesat the bottom show
the night-sky spectrum at two resolutions (R = 1000 and300; intensity scale
on left). The vertical shading shows regions where the emission is less than 1/3
of the mean value. Figure credit: Barton, E. J. et al.,Astrophys. J., 604, L1
(2004). Reproduced with permission of the American Astronomical Society.

• The infrared night sky:Terrestrial telescopes suffer from substan-
tial atmospheric absorption and strong night-sky lines in the infrared
bands (primarily from OH and water vapor). Figure 10.4 showsthe
night sky in the relevant spectral range, including both atmospheric
absorption and night-sky emission lines. The vertical shaded columns
show “windows” where the emission lines are below 1/3 of the aver-
age. The dark and light regions take moderate and high resolution
bands, respectively (withR = λ/∆λ = 300 and 1000). These
open bands cover only 16% and 27% of the available spectrum, re-
spectively, indicating that this technique can only be usedin par-
ticular redshift ranges. So far, the most commonly utilizedare at
z ∼ 6.6, 7, 7.7, and 8.5.

• Contamination from lower-z line emitters:Galaxies have many other
emission lines, of course, some of which can be very strong. Of par-
ticular concern are Hα, [O III], Hβ, and [O II] lines. With only a
single line detection, a firm identification that distinguishes between
these possibilities cannot be made. Such contaminants mustbe ruled
out by detecting other emission lines from the source (unlikely to be
visible for a true LAE, but very plausible for the lower-redshift in-
terlopers) or by measuring the continuum emission (obviously very
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difficult for a faint source). If only a single line is visible, the shape
can help determine whether the object is truly an LAE: as shown in
Figure 10.5, observed Lyman-α lines in galaxies nearly always have
asymmetric profiles, with a sharp cutoff on the blue side (dueto IGM
absorption) and a long tail to the red side (due to radiative transfer
effects). Metal lines, on the other hand, are generally verysymmet-
ric. Unfortunately, while very suggestive these kinds of line shape
diagnostics are not perfect. A robust identification alwaysrelies on
multiple lines. The next best option is deep follow-up of thesource to
observe the continuum break described in the next section.

• Interpretation and followup:Finally, although this method efficiently
finds galaxies at high redshifts, it provides little direct physical infor-
mation – only a single line luminosity, which as we will see inchapter
11 is heavily dependent on dust, the ISM clumpiness and dynamics,
and the IGM ionization state. Even deep followup observations typi-
cally detect little or no stellar continuum emission.

To date, LAE surveys have detected many high-z sources, but their inter-
pretation is still debated. We will return to the Lyman-α line as an important
cosmological probe in chapter 11.

10.2.2 Lyman-Break Galaxies

The second observational technique adopts several broad photometric bands
to estimate the redshifts of galaxies based on the strong spectral break aris-
ing from absorption by intergalactic (or galactic) neutralhydrogen along
the line-of-sight to the source. As we saw in chapter 4, the IGM is opti-
cally thick to Lyman-α photons at high redshifts. Thus, little or no flux
should be detectable shortward of 1216(1 + z) Å (irrespective of the his-
tory of reionization). For example, to identify a galaxy atz = 6 one
needs two filters: one above and the other below the Lyman-α break at
7×1216 = 8512 Å. The relevant bands arei′ (centered at∼ 9000 Å) andz′

(centered at∼ 8000 Å) of HST, as illustrated in Figure 10.6. This method
was first used at lower redshifts,z ∼ 3–4, where the intergalactic H I col-
umn density is smaller and so the related Lyman-limit break at 912 Å was
instead adopted to photometrically identify galaxies. The912 Å break is
not observable at source redshiftsz > 6, because it is washed out by the
strong Lyman-α absorption at lower redshifts. The sources detected by this
techniques are termedLyman-break galaxies (LBGs).

The key challenge for observers is to obtain a sufficiently high signal-to-
noise ratio that LBGs can be safely identified through the detection of a sin-
gle redder band. Figure 10.6 illustrates how a color cut of(i′− z′)AB > 2.3
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(see equation 1.16 for a definition of the AB magnitude system) is effective
at selecting sources at redshiftsz > 6. The reliability of this dropout tech-
nique in rejecting low-redshift interlopers can only be tested through spec-
troscopic observations. Thei′-drop spectra typically show a single emis-
sion line at the Lyman-α wavelength, with no significant continuum; as in
Figure 10.5, the lines are typically asymmetric and can indicate clearly the
source redshift. However, only a fraction of galaxies have Lyman-α lines
and spectroscopic followup is often difficult.

The NIRSpec spectrograph on JWST covers observed wavelengths in the
range0.8 − 5 µm and is ideally suited for the task of identifying the red-
shifts of distant galaxies. This instrument will have the sensitivity to detect
the rest-frame UV and optical continuum emission over the full range of
emission lines from Lyman-α to Hα (6563Å rest wavelength) for galaxies
at z ∼ 6. Analogous studies of galaxies atz ∼ 3 with HST have produced
a detailed understanding of the internal properties of these galaxies.

10.2.3 Using Massive Gravitational Lenses as Natural Telescopes

A massive gravitational lens, such as a cluster of galaxies,can be used to
probe deeper into the early Universe and detect faint sources that are oth-
erwise below the sensitivity of human-made telescopes (see§8.10 for an
overview of the physics of this process). Foreground X-ray clusters can
provide a magnification boost of 5-30 in flux (for unresolved sources) or in
size (for resolved sources). The gain in reaching a fainter flux threshold is
partly offset by a reduction in the sky area being surveyed behind the lens,
producing an overall change in the number of bright sources that depends
on the slope of the luminosity function (see equation 10.10).

The inverse of the2×2 magnification matrix, defined asM−1 ≡ ∂β/∂θ,
is real and symmetric and can therefore be diagonalized and expressed along
its principal axis as

M−1 =

(

1 − κ− γ 0
0 1 − κ+ γ

)

. (10.1)

The so-calledconvergence coefficientκ is associated with an isotropic fo-
cusing of light rays (and is given by the surface density of the lens scaled by
Σcrit), while theshear coefficientγ (defined by the trace-free component of
the matrix and derived from the lens equation) introduces anisotropy. A cir-
cular source of unit radius is distorted to an elliptical image with major and
minor axes of(1 − κ − γ)−1 and(1 − κ + γ)−1, respectively. Since lens-
ing conserves surface brightness, the magnificationµ is the ratio between
the image area and the sources area or equivalently the determinant of the
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magnification matrix,

µ = detM =
1

det(M−1)
=

1

(1 − κ)2 − γ2
. (10.2)

For a point source, the magnification diverges at the so-called the ”critical
lines” in the image plane of the lensing cluster (or the equivalent “caustics”
in the source plane). The magnification is infinite if one of the principal
values ofM−1 equals zero. In the image plane, this defines two closed
lines that do not intersect. Finite size sources, like galaxies, will only be
magnified by a finite factor because most of their observed light rays cannot
get closer to a caustic than the source size. For simple mass distributions,
there are two critical lines: the external critical line where the source is
deformed in thetangentialdirection and the internal critical line where the
deformation isradial.

For a circularly-symmetric surface-density profile (as in the case of a
spherically symmetric lens), the critical lines are circles. The tangential crit-
ical line in this case is located at the Einstein radius, interior to which theav-
eragesurface density equals the critical valueΣ = Σcrit = 0.35 g cm−2(D/1 Gpc)−1.
This provides a simple method for measuring the total projected mass of the
lens out to that radius if the source and lens redshifts are known. The lo-
cation of the radial critical line depends on the inner gradient of the mass
distribution. Deviations from circular symmetry complicate the critical line
geometry, which in the general case needs to be solved numerically. Clearly,
the location and shape of the critical lines depend on the source redshift.

Figure 10.7 shows an example for lensing of a galaxy at a redshift zs =
6.027 by the cluster Abell 383 atzd = 0.187. The inner and outer critical
lines have a non-circular geometry due to the ellipticity and substructure in
the cluster mass distribution. The two images of the background galaxy,
labeled 5.1 and 5.2, are marked by circles. The lens model implies magni-
fication factors ofµ1 = 11.4 ± 1.9 andµ2 = 7.3 ± 1.2 for images 5.1 and
5.2, respectively. This gives an unlensedAB magnitude of 27.2±0.05 for
the source galaxy in the H band. Atz = 6, 1” on the sky corresponds to a
projected distance of 5.7 kpc.

Recent estimates of the faint end slope of the luminosity function of star-
forming galaxies atz > 6 suggest that the bulk of the integrated star forma-
tion at high redshift may originate in low luminosity galaxies, as expected
theoretically. Clarifying whether low luminosity systemsare abundant at
early times requires observations probing well below the sensitivity lim-
its obtainable with current facilities using conventionalmethods. Strong
gravitational lensing by foreground clusters is the only means to advance
this quest before the next generation of telescopes is available. Given the
finite size of background galaxies, a typical lensing cluster can magnify
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Figure 10.7 Image of the core of the cluster Abell 383, including known multiply-imaged
sources (marked 1 to 5) and the non-circular critical lines for sources atzs = 6
(seeColor Plate 21for a color version of this image). The two images of a
galaxy withzs = 6.027 are marked by circles. The long-slit used for spectro-
scopic follow-up is shown in white. Figure credit: Richard,J., et al.,Mon. Not.
R. Astron. Soc.414, L31 (2011). Copyright 2011 by the Royal Astronomical
Society.
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faint galaxies atz > 7 by more than a factor of∼ 15 on the critical lines.
Spectroscopy and detailed studies become feasible at otherwise impossible
unlensed limits. This technique enables the determinationof stellar UV con-
tinuum slopes, Lyman-α emission line profiles and star formation rates for
sources whose intrinsic flux is close to the faintest limits reached with direct
imaging (AB magnitude∼ 30 in theI-band).

Surveys for gravitationally lensed high redshift galaxieshave been con-
ducted using two techniques. The first technique makes use oflongslit
spectrographs on 8–10 meter ground-based telescopes to “scan” the cluster
critical line searching for high-redshift strongly-lensed Lyman-α emitting
galaxies. By focusing on the areas of highest magnification,this technique
is sensitive to the lowest luminosity galaxies at high redshifts. The critical
line mapping technique was extended into the near-infraredto search for
lensed Lyman-α emitters in the redshift interval8.5 < z < 10.2, where
candidate sources were discovered.189

The second technique makes use of sensitive multi-wavelength imaging
of galaxy clusters to select galaxies using the standard Lyman Break tech-
nique. This method generally covers a much larger area than the critical line
survey, albeit with significantly lower average magnifications. Early stud-
ies of lensed dropouts with the Hubble Space Telescope have demonstrated
the potential of this method at locatingz > 6 galaxies. Deep near-infrared
imaging identified a large volume density of faint dropouts likely to lie at
z > 6.190 As with the critical line surveys, these results hinted at a large
ionizing contribution from low luminosity galaxies.

Lensing surveys will improve as more efficient instrumentation is in-
stalled on existing facilities. One of the most exciting developments has
been the installation of the Wide Field Camera 3 (WFC3) onboard the Hub-
ble Space Telescope, providing deeper infrared imaging over a larger area
than previously available. WFC3 imaging of the clusters Abell 1703 and
Abell 383 have yielded a number of promisingz > 6 galaxies, as illustrated
in Fig. 10.7. The magnification provided by gravitational lensing enables
detection of galaxies with a high signal-to-noise ratio, resulting in more
secure measurements of the UV continuum slope and stellar mass. More-
over, the magnified galaxies are ideal for spectroscopic follow-up. Follow-
up observations of one of the lensed galaxies in Abell 1703 produced the
first robust spectroscopic confirmation of az > 7 Lyman-break galaxy us-
ing a near-infrared spectrograph.191 The prevalence of Lyman-α emission
in these galaxies is being used to set constraints on when reionization oc-
curred. Deeper follow-up spectroscopy of these galaxies will provide strong
constraints on the strength of He IIλ1640 emission, offering the potential
to identify the telltale UV signatures of hot Population IIIstars.
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10.2.4 Finding Faint Galaxies With the First Gamma-Ray Bursts

Traditional methods of finding galaxies, including both theLAE and LBG
technique, select galaxies above a given luminosity threshold and so are bi-
ased toward identifying the brightest galaxies. However, as we have seen
much of the activity at high redshifts likely occurs in faintgalaxies far be-
low the luminosity threshold of even extremely deep observations like the
HUDF. Is there any way to find more typical galaxies?

Remarkably, the best way may be to search for individual “stars” rather
than the collective emission of entire galaxies. Explosions of individual
massive stars (such as supernovae) can outshine their host galaxies for brief
periods of time. The brightest among these explosions areGamma-Ray
Bursts ( GRBs), observed as short flashes of high-energy photons followed
by afterglows at lower photon energies (as discussed in§5.6). These after-
glows can be used to study the first stars directly. To date, GRBs have been
discovered by theSwift satellite out toz = 9.4, merely 540 million years
after the Big Bang, and significantly earlier than the farthest known quasar
(z = 7.1).192 It is already evident that GRB observations hold the promise
of opening a new window into the infant Universe.

As discussed in§5.6, long-duration GRBs are believed to originate from
the collapse of massive stars at the end of their lives (Figure 5.18). Since the
very first stars were likely massive, they could have produced GRBs. If so,
we may be able to see their host galaxies one star at a time. Thediscovery of
a GRB afterglow whose spectroscopy indicates a metal-poor gaseous envi-
ronment, could potentially signal the first detection of a Population III star.
The GRB redshift can be identified from the Lyman-α break in its otherwise
power-law UV spectrum. A photometric detection can then be followed up
with spectroscopy on a large telescope. Various space missions are currently
proposed to discover GRB candidates at the highest possibleredshifts.

In addition to individual source detections, GRBs are expected to reside
in typical small galaxies where massive stars form at those high redshifts.
Once the transient GRB afterglow fades away, observers may search for the
steady but weaker emission from its host galaxy. High-redshift GRBs may
therefore serve as signposts of high-redshift galaxies which are otherwise
too faint to be identified on their own. Importantly, GRBs trace the star for-
mation history in a different way than typical galaxy surveys, because they
can reside in arbitrarily faint galaxies below any realistic survey detection
threshold (although other biases, such as metallicity, maybe important).

Moreover, standard light bulbs appear fainter with increasing redshift, but
this is not the case with GRBs, because they are transient events that fade
with time. When studying a burst at a constantobservedtime delay, we are
able to see the source at an earlier time in its own frame. Thisis a simple
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consequence of time stretching due to the cosmological redshift. Since the
bursts are brighter at earlier times, it turns out that detecting them at high
redshifts is almost as feasible as finding them at low redshifts, when they are
closer to us.193 It is a fortunate coincidence that the brightening associated
with seeing the GRB at an intrinsically earlier time roughlycompensates for
the dimming associated with the increase in distance to the higher redshift,
as illustrated by Figure 10.8.

10.3 LUMINOSITY AND MASS FUNCTIONS

The luminosity function (LF) of galaxies,φ(L)dL, describes the number
of galaxies per comoving volume within the luminosity bin betweenL and
L+ dL. It is the most fundamental observable quantity for galaxy surveys,
and a great deal of effort has gone into measuring it in both the nearby
and distant universe. Figure 10.9 shows measurements atz = 4–8 of the
rest-frame ultraviolet galaxy luminosity function, with the most distant data
taken from the HUDF.

A popular fitting form for a wide range of galaxy surveys is provided by
theSchechter function,

φ(L) = φ⋆

(

L

L⋆

)α

exp

(

− L

L⋆

)

, (10.3)

where the normalizationφ⋆ corresponds to the volume density at the charac-
teristic luminosityL⋆ andα is the faint-end slope which controls the relative
abundance of faint and bright (L > L⋆) galaxies. The total number density
of galaxies is given byngal =

∫∞
0 φ(L)dL = φ⋆ΓG(α + 1), and the total

luminosity density isugal =
∫∞
0 φ(L)LdL = φ⋆L⋆ΓG(α + 2), whereΓG

is the Gamma function. Note that at the faint end,ngal diverges ifα < −1
andugal diverges ifα < −2. (In reality, the integrals converge anyway
because there is a minimum luminosity for galaxies, set by a combination
of the minimum halo mass for gas accretion and the minimum halo mass in
which gas can cool.)

The curves in Figure 10.9 show fits of this form to the data; clearly this
simple, empirical structure does an excellent job of matching the observa-
tions. Three points emerge from these fits:(1) the characteristic luminosity
L⋆ declines toward higher redshift;(2) the space density of galaxies atL⋆

also decreases; and(3) the faint-end slope may steepen atz > 7 (though the
evidence for this is still tentative). In light of typical models for structure
formation, in which these galaxies are associated with darkmatter halos,
these results are hardly surprising: at higher redshifts, fewer halos have
formed, and in any hierarchical model those that have formedare preferen-



SURVEYS OF HIGH-REDSHIFT GALAXIES 415

Figure 10.8 Detectability of high-redshift GRB afterglowsas a function of time since the
GRB explosion as measured by the observer. The GRB afterglowflux (in Jy)
is shown at the redshifted Lyman-α wavelength (solid curves). Also shown
(dotted curves) is a crude estimate for the spectroscopic detection threshold
of JWST, assuming an exposure time equal to 20% of the time since the
GRB explosion. Each set of curves spans a sequence of redshifts: z =
5, 7, 9, 11, 13, 15, respectively (from top to bottom). Figure credit: Barkana,
R., & Loeb, A.Astrophys. J.601, 64 (2004). Reproduced with permission of
the American Astronomical Society.
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Figure 10.9 Rest-frame ultraviolet luminosity functions derived for galaxies atz ∼ 7 (large
filled circles) andz ∼ 8 (large open circles) compared to lower redshift data
(from z = 6 to z = 4; the density increases as redshift decreases); seeColor
Plate 22for a color version of this image. The vertical axis gives thenumber
of galaxies per comovingMpc3 per AB magnitude at a rest-frame wavelength
of 1600 Å, as a function of this magnitude on the horizontal axis. Note the
sharp decline in the number density of bright galaxies with redshift and tentative
evidence for a steepening faint-end slope. Figure credit: Bouwens, R., et al.,
Astrophys. J., 737, 90 (2011). Reproduced with permission of the American
Astronomical Society.
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tially smaller. The interesting physics involves the mapping from the halo
mass function to luminous baryons, which we have discussed in chapter 8.

The particular physical insight provided by a galaxy surveydepends upon
the selection technique and waveband used. In general, rest-frame ultravio-
let measurements (such as those shown in Figure 10.9) dependexclusively
on hot stars able to produce the observed UV photons. Becausethese high-
mass stars are short-lived, the UV luminosity is tied to the star formation
rate (SFR) of the galaxies, although there is an uncertain correction that de-
pends on the stellar IMF, because the ratio of high mass to lowmass stars
determines the efficiency with which baryons produce high-energy photons.
In other words, the high-energy photons provide little direct information
about low-mass stars, so the total star formation rate requires some extrap-
olation. In fact, there are several ways to estimate SFRs from astronomical
measurements.i194

• The rest-frame UV continuum (1250–1500 Å) provides a direct
measure of the abundance of high-mass> 5M⊙ main-sequence stars.
Since these stars are short lived, with a typical lifetime∼ 2×108(m⋆/5M⊙)−2.5 yr,
they provide a good measure of the “instantaneous” SFR, with

SFR ≈ 1.4

(

Lν

1028 erg s−1 Hz−1

)

M⊙ yr−1. (10.4)

The primary uncertainty in this determination is extinction via dust,
though that can be estimated from the spectra or from other observa-
tions.

• Nebular emission lines, such as Hα and [OII ], measure the com-
bined luminosity of gas clouds that are photoionized by verymassive
stars (> 10 M⊙). The total amount of line emission therefore mea-
sures the rate at which ionizing photons are produced and hence the
(massive) star formation rate. Dust extinction can be evaluated from
higher-order Balmer lines, but this estimator is highly sensitive to the
assumed IMF. For the Milky Way IMF,

SFR ≈ 0.8

(

L(Hα)

1041 erg s−1

)

M⊙ yr−1, (10.5)

and

SFR ≈ 1.4

(

L([OII])

1041 erg s−1

)

M⊙ yr−1. (10.6)

iUnless otherwise specified, the following conversions assume a standard Salpeter IMF
with solar metallicity to transform luminosity into stellar mass.
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• Far-infrared emission (10–300 µm) measures the total emission from
dust heated by young stars. Again, this heating is due to high-energy
radiation from massive stars, and so the total luminosity measures
how rapidly they form,

SFR ≈ 0.45

(

L(FIR)

1043 erg s−1

)

M⊙ yr−1. (10.7)

• Radio emission, for example at a frequency of1.4 GHz, measures the
synchrotron emission from relativistic electrons produced in super-
nova remnants. The supernova rate is related to the “instantaneous”
production rate of massive stars (> 8M⊙), because these have a short
lifetime, giving on timescales longer than∼ 108 yr,

SFR ≈ 1.1

(

Lν(1.4GHz)

1028 erg s−1 Hz−1

)

M⊙ yr−1. (10.8)

We emphasize again that all of these measures are calibratedlocally, and
their extrapolation to high redshifts is at best uncertain.

Integration of the luminosity function of galaxies over a kernel that mea-
sures their star formation rate yields the star formation rate per comoving
volume in the Universe. Figure 10.10 shows a recent determination of this
rate as a function of redshift based on measurements of the UVluminosity
function of all galaxies brighter than0.05L⋆ at z = 3 (corresponding to
an AB magnitude of –17.7). Most of these measurements are made from
UV data, so the correction for dust extinction is particularly important (the
corrected form is shown by the upper set of measurements here). Also, one
must note that this is alower limit to the true star formation rate density,
because it ignores feeble galaxies below the detection threshold.

One obvious omission from our list of SFR indicators is the Lyman-α
line, which as we discussed is useful in detecting high-redshift galaxies.
However, as we will see in chapter 11, the interpretation of this emission
line is fraught with uncertainties about the galaxy’s dust content, ISM struc-
ture, outflow properties, and environment. Therefore, the Lyman-α line is
not a good star formation rate indicator. However, one can still construct
a luminosity function of emission in this line; Figure 10.11shows recent
determinations in the redshift range ofz = 3–6.6. In contrast to the lu-
minosity function of photometrically-selected LBGs, LAEsdo not appear
to change in comoving number density betweenz = 3–5.7, although their
density appears to decline rapidly beyond that. This may be an indication of
changes in the galaxy environments – and possibly reionization, though we
will describe many reasons such an interpretation is difficult in chapter 11.
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Figure 10.10 The star formation rate density (left verticalaxis) or luminosity density (right
vertical axis) as functions of redshift (lower horizontal axis) and cosmic time
(upper horizontal axis), for galaxies brighter than an AB magnitude of –17.7
(corresponding to0.05L⋆ at z = 3). The conversion from observed UV lu-
minosity to star formation rate assumed a Salpeter IMF for the stars. The
upper curves includes dust correction based on estimated spectral slopes of
the observed UV continuum. Figure credit: Bouwens, R., et al., Astrophys. J.,
737, 90 (2011). Reproduced with permission of the American Astronomical
Society.
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Figure 10.11 Luminosity function of LAEs fromz = 3–6.6 (seeColor Plate 23for a color
version of this image). The light solid circles show the measured luminosity
function atz = 6.6, while the darker solid circles show the same forz = 5.7.
The solid lines show Schechter function fits to these as well as the best fit at
z = 3.1 (lightest curve). The LAE density drops substantially fromz = 5.7
to z = 6.6, much faster than that of LBGs, but is nearly constant at lower
redshifts. Finally, the open symbols show the number densities measured in
the five sub-fields of thez = 6.6 survey, illustrating the substantial variance
between fields. Figure credit: Ouchi, M. et al.Astrophys. J.723, 869 (2010).
Reproduced with permission of the American Astronomical Society.
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Figure 10.12 Stellar mass density (SMD) evolution over redshift in galaxies brighter than
MAB = −18 at a rest-frame wavelength of 1500̊A (left) and with stellar
massM⋆ > 108 M⊙ (right) from several different measurements. All panels
assume a Salpeter IMF andZ = 0.2 Z⊙; the line labeled “Chabrier” shows
the effect of assuming a different IMF. The other line (labeled “Hα”) shows
the effect of systematic contamination from line emission.A minimum stellar
density∼ 1.7 × 106f−1

esc M⊙ Mpc−3 of Population III stars (corresponding
to Ω⋆ ∼ 1.25 × 10−5f−1

esc ) is required to produce one ionizing photon per
hydrogen atom. Figure credit: Gonzalez, V. et al.Astrophys. J.735, L34
(2011). Reproduced with permission of the American Astronomical Society.

Meanwhile, the mass budget of stars atz ∼ 5–6 can be inferred from their
rest frame optical and near-infrared luminosities, which are much closer to
measuring the total stellar content than ultraviolet light, because even low-
mass stars emit in these bands. In many ways, the total stellar content is
more physically interesting than the SFR density because the cumulative
density provides a census of stars that were previously madeinside faint
galaxies below the detection threshold and only later incorporated into de-
tectable galaxies. Moreover, it provides some informationon thepasthis-
tory of star formation (though still subject to uncertaintywith the IMF).
Figure 10.12 shows some recent measurements of the growth ofthe total
stellar mass density in the Universe. Note in particular that only a small
fraction of the stars present atz < 2 formed atz > 6, though this is subject
to an unknown correction from undetected galaxies.
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10.3.1 Emission Lines

Because the Lyman-α line can be very bright, and because its ultraviolet
rest wavelength redshifts it into the optical or near-infrared in distant galax-
ies, this line gets a great deal of attention (we will discussit extensively
in chapter 11). But other emission lines can be as or even moreuseful for
certain diagnostics, and we briefly mention them here. This is of course a
very extensive field of research, and so we refer the interested reader to the
literature and other textbooks for more information (see Appendix B).

1. Other hydrogen lines:The other Lyman-series lines are almost never
visible in high-redshift galaxies; after several scatterings, these pho-
tons are “recycled” via radiative cascades into either Lyman-α pho-
tons or a pair of photons from the forbidden2s → 1s decay (see
§12.2.2). However, Balmer-series photons (and those beginning at
even higher levels) are very useful diagnostics. They are initially
generated through the same process as Lyman-α – recombinations
following ionizations near hot, massive stars – but becausesuch pho-
tons can only interact with atoms already in then = 2 state, they
are not subject to scattering in the interstellar medium andescape
galaxies relatively easily (especially since they have relatively long
wavelengths and so are less subject to dust absorption, e.g., the Hα
line lies at 6563Å). They therefore offer much more robust measures
of star formation rates, subject only to the uncertainty in the IMF and
dust (see equation 10.5).

Unfortunately, although Hα is extremely important for low-redshift
galaxies, its relatively long rest wavelength has so far limited its utility
for high-redshift galaxies.

2. Helium lines: He II has the same electronic structure as H I, but
shifted to four times larger energies. As a result, its ionization po-
tential is well beyond the cutoff of most stars – only rare Wolf-Rayet
stars (i.e., massive stars undergoing rapid mass loss) and the most
massive Population III stars are hot enough to significantlyionize it.
He II Balmer-α photons (with a rest wavelength of 1640Å) are there-
fore the most promising diagnostic of such massive stars: they are
produced through recombination cascades following the ionization of
He II. See§5.4 for a discussion of this signature

3. Metal lines: In nearby galaxies, many metal lines offer diagnostics
of ISM characteristics like the density, metallicity, and temperature
of the nebulae surrounding star-forming regions. As instruments im-
prove, these will no doubt be just as useful for measurementsof high-
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z galaxies, although (with most of the lines having rest wavelengths
in the optical) they are less accessible for the more distantsources.

10.3.2 Gravitational Lensing and the Luminosity Function

At low and moderate redshifts, the measured luminosity function can gener-
ally be taken as the intrinsic luminosity function, with theinteresting phys-
ical interpretation lying in understanding the mapping from luminosity (in
the waveband of interest) to the constituents of the galaxy,its host dark
matter halo, and its large-scale environment. However, atz > 6, an addi-
tional complication arises: gravitational lensing. The measured luminosity
functions are so steep, and the source distance so large, that lensing may
substantially affect the observed luminosity function. Ifso, its interpreta-
tion will require an important extra step. We describe a simple model of this
lensing effect here, making use of the derivations in§8.10.

A SIS lens has the simple property that the deflection angleα̂ is indepen-
dent of the impact parameter of the light ray. The condition for multiple
imaging (and hence strong lensing) is then that the source lies inside the
Einstein radius. The probability that a line-of-sight to a source at a redshift
zs passes within the cross-sectional area associated with theEinstein radius
of SIS lensesπθ2

E gives a lensing optical depth

τlens(zs) =
16π3

H0

∫ zs

0
dz

D2(1 + z)2

(Ωm(1 + z)3 + ΩΛ)1/2

∫ ∞

0
dσv

dn

dσv
σ4

v , (10.9)

where(dn/dσv)dσv is the (redshift-dependent) comoving density of SIS
halos with a one-dimensional velocity dispersion betweenσv andσv + dσv.
This is analogous to the halo mass function, but defined with reference to
the velocity dispersion rather than the halo mass. The two can be related
given a model for the structure of galaxies, as described in chapter 3.

In calculating the probability of lensing it is important toallow for var-
ious selection effects. Lenses magnify the observed flux, and lift sources
that are intrinsically too faint to be observed over the detection threshold.
At the same time, lensing increases the solid angle within which sources
are observed so that their number density in the sky is reduced. If there
is a large reservoir of faint sources, the increase in sourcenumber due to
the apparent brightening outweighs their spatial dilution, and the observed
number of sources is increased due to lensing. This so-called magnification
biascan substantially increase the probability of lensing for source popula-
tions whose number-count function is steep, thus affectingthe interpretation
of the observed luminosity function. The magnification biasfor sources at
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Figure 10.13 Probability for multiple imaging of high redshift galaxies by an unevolving
population of SIS lenses.(a): Lensing probabilityτm for obtaining multiple
images as a function of source redshift.(b): Magnification bias as a function of
the difference between the characteristic magnitude of a galaxy M⋆ (assuming
a Schechter luminosity function) and the limiting survey magnitudeMlim.
Three values of the faint-end slope of the luminosity function (labeled byα
here) are shown.(c): Contours of the fraction of multiply-imaged sources as a
function of source redshift and(M⋆ − Mlim), assuming a faint end slope for
their luminosity function of−2. Figure credit: Wyithe, J. S. B., et al.,Nature
469, 7329 (2011). Copyright 2011 by Nature Publishing Group.

redshiftzs with luminosities betweenL andL+ dL is

B(L) =
1

φ(L)

∫ µmax

µmin

dµ

µ

dP

dµ
φ

(

L

µ

)

, (10.10)

whereφ(L) is the luminosity function and(dP/dµ)dµ is the probability
for magnification betweenµ andµ + dµ within the rangeµmin < µ <
µmax. For example, the brighter SIS image has a magnification distribution
(dP/dµ) = 2(µ− 1)−3 for 2 < µ <∞.

A simple model for the redshift evolution of SIS lenses uses the mass
function of dark matter halos that was derived in§3 and identifiesσv =
Vc/

√
2 at the virial radius. Another simplified approach is to adoptthe

observed(dn/dσv) at z = 0 and assume no evolution in the comoving
density of lenses. The latter approach gives the approximate results shown
in Figure 10.13.

10.4 THE STATISTICS OF GALAXY SURVEYS

Measurements of the statistical properties of galaxies arechallenging, and
in this section we will discuss strategies to constrain their properties, in-
cluding “one-point functions” like the luminosity or stellar mass functions
as well as spatial correlations. The former generally provide insight into the
baryonic physics of galaxy formation – how dark matter halosaccrete gas
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and transform it into stars – while clustering provide insight into the dark
matter halos themselves.

10.4.1 Estimates of Galaxy Clustering

We have already described our primary tool for understanding the spatial
distribution of galaxies, the power spectrum, in§3.6.4, where we developed
it through the halo model. In this representation, it contains two terms: the
two-haloterm, which describes the correlations between distinct dark matter
halos, and theone-haloterm, which describes the distribution of galaxies
within an individual dark matter halo. At high redshifts, where halos are
small and probably host only one “galaxy” (at least as we would define
them observationally), the latter likely disappears in most halos. Thus, in
the language of§3.6.4, we will adopt〈N |m〉 = 1 for all halos above a
minimum mass set by accretion or feedback,mmin, and zero otherwise, and
we will set the variance in that distribution to zero.

The key additional necessary input is some way of mapping thelumi-
nosity (in some photometric band or emission line) or other observable to
halo mass. One framework for doing so is theconditional luminosity func-
tion, in which a functionp(L|m) parameterizes the probability distribution
of galaxy luminosity as a function of mass. This function canbe very com-
plex, of course, but for now we simply assume that it can be constructed
from some theoretical or phenomenological arguments. As a crude example
we could suppose that galaxies are luminous for a fractionfduty of the time
and that there exists a one-to-one relationship between luminosity and mass,
L(m), while they are “on.” In that case,

p(L|m) = (1 − fduty)δ(0) + fdutyδ(L[m]). (10.11)

Assuming only one galaxy per halo, and given a minimum observable
luminosityLmin, the predicted galaxy power spectrum will be

P gal(k, z) = Plin(k, z)

[
∫

dm
f(> Lmin|m)

n̄obs
n(m, z)beff (k|m, z)

]2

,

(10.12)
where

f(> Lmin|m) =

∫ ∞

Lmin

dL p(L|m). (10.13)

Comparison to equation (3.84) shows that we have dropped thehalo profile
(under the assumption that each halo contains only one galaxy) and replaced
〈N |m〉 with f(> Lmin|m), which is the probability that a halo of massm
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hosts an observable galaxy – clearly, these are two different ways of ex-
pressing the occupation fraction of dark matter halos. One can then define
a mean bias for this galaxy sample,b̄eff(k) by averaging over all the ob-
servable galaxies, so thatPgal,obs ≈ b̄eff(k)2Plin(k, z); in the limit of linear
fluctuations, this mean bias is independent of scale and can be predicted
using the excursion set formalism via equation (3.54).

Because this effective bias depends on the underlying mass of the galaxy
halos – a property of the population that is otherwise nearlyimpossible to
measure – the galaxy power spectrum is of fundamental observational im-
portance. We will therefore next describe how it can be measured and the
errors that appear when doing so.

Let us suppose that we have a survey over some finite volumeV . For
now we will assume that the three-dimensional locations of the galaxies are
known through some spectroscopic survey. Let us define the galaxy over-
density for a modeki through the Fourier transform of the galaxy density
field,

δg(ki) =

∫

d3x

V
Wg(x)δg(x)eiki·x, (10.14)

whereWg(x) is thewindow function, which is non-zero only inside the sur-
vey volume and is normalized so that

∫

d3xWg(x) = V , the total survey
volume.ii We then write the observed power spectrum of the galaxy distri-
bution as

〈δg(ki)δg(kj)〉 = CS
ij + CN

ij , (10.15)

whereCS is thesignal covariance matrixandCN is thenoise covariance
matrix. Here the angular brackets denote an average over the density modes
in the Universe.

Substituting equation (10.14) into〈δg(ki)δg(kj)〉, this average operates
on the galaxy overdensity terms, which, from equation (2.16), becomes the
correlation function of the galaxy field:

CS
ij =

1

V 2

∫

d3x d3x′ Wg(x)Wg(x
′)ξgal(x− x′)eiki·xe−ikj ·x

′

. (10.16)

However, the correlation function is simply the Fourier transform of the

ii In practice, we can incorporate any other selection function, such as the likelihood of
detecting a galaxy at a particular redshift given some photometric selection criterion, into
the window function. Such practical considerations make the analysis more complex but do
not change the basic methodology.
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power spectrum (see eq. 2.20), so we can write

CS
ij =

∫

d3k

(2π)3
P gal(k)

W̃g(ki − k)W̃ ∗
g (kj − k)

V 2
, (10.17)

whereW̃g(k
′) is the Fourier transform of the window function. Compari-

son to equation (2.32) shows that this closely related to thevariance in the
fluctuations within the survey volume.

To gain some intuition for this expression, let us consider some concrete
choices for the window function. First, suppose that we observe a spherical
volume of radiusR around some central pointx0.iii Then

W̃g(ki − k) =

∫

|x−x0|<R
d3x ei(ki−k)·x. (10.18)

In the limit thatR → ∞, this is proportional to a Dirac delta function, so
we would have

CS
ij ≈ (2π)3P (ki)δ

D(ki − kj), (10.19)

which matches our original definition of the power spectrum (eq. 2.17). A
finite R broadens the delta function, so that the Fourier transformW̃g has
a non-zero width∼ (2π)/R. This means that the measured signal will be
a weighted average of all modes with|k − ki| < (2π)/R. Modes with
wavelengths larger than the survey volume will be unobservable – they have
such smallk as to be washed out; those withk ≫ 1/R will be essentially
unaffected.

At least for existing and near-future observatories, a morerealistic survey
geometry is a “pencil-beam:” a narrow angular region (a few arcminutes
across for HST or JWST) with a large depth in the radial direction, corre-
sponding perhaps to Lyman-break selection within a particular filter set. In
that case, the volume may reasonably be approximated as a long box with ra-
dial depth∆z and transverse widths∆x and∆y, such that∆z ≫ ∆x, ∆y.
For a rectangular box, the window function is

W̃ (k) = W̃∆x(kx)W̃∆y(ky)W̃∆z(kz), (10.20)

with (kx, ky, kz) the Cartesian components of the wavevector and

W̃∆x(kx) =
sin(kx∆x/2)

(kx∆x)/2
, (10.21)

iii Choosing the central point to be the observer would correspond to a volume-limited
sample of galaxies around us. However, for high-redshift surveys, the center of the survey
would naturally lie at some distant point.
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and similarly forW∆y andW∆z. This function also is∼ 1 for kx ≪ π/∆x
and falls off atkx ∼ π/∆x. The anisotropy of the window means that
the mode sampling depends on their orientations. Modes transverse to the
line of sight must havekx,y ≪ 2π/∆x in order to be sampled cleanly, but
modes along the line of sight must only havekz ≪ 1/∆z. Even these
modes, however, are subject to aliasing from short-wavelength transverse
modes, similarly to the Lyman-α forest power spectrum discussed in§4.3.4
which degrades the ability of such surveys to measure large-scale power.

The noise termCN arises from the finite number of galaxies. This so-
calledshot noiseterm is inevitable in any experiment that samples a discrete
population of objects. Let us assume that the number of galaxies within
a given volume obeys Poisson statistics with the mean expected countN̄
determined by the underlying density field. The probabilityof finding N
galaxies in a region is thenp(N) = N̄Ne−N/N !, with 〈N〉 = N̄ and
〈

N2
〉

= N̄(N̄ + 1). For this discrete shot noise component, the average
in equation (10.15) becomes〈δiδj〉 = N̄−2

〈

(Ni − N̄)(Nj − N̄)
〉

= N̄−1

if i = j and zero otherwise. This expression replaces the power spectrum
in equation (10.17). Finally, we assume that we can choose regions suffi-
ciently small so that each one is either empty or contains at most one galaxy;
in that caseN̄ = n̄, the galaxy number density. Finally, by analogy to equa-
tion (10.17), we define theshot noise power spectrumasP shot(k) = 1/n̄,
or its dimensionless form

∆2
shot(k) =

k3

2π2n̄
. (10.22)

Shot noise is an inevitable source of error in any galaxy survey; fortunately,
provided one has a good estimate forn̄ it can be accurately removed. Shot
noise therefore only poses a significant problem whenn̄ is small, for exam-
ple if the survey targets extremely bright, rare galaxies withL≫ L⋆.

The power spectrum is by far the most common measure of clustering,
owing to the relative ease with which it can be observed. However, it only
measures the variance (as a function of scale) of the underlying distribution;
higher-order correlations, like skewness, must be measured in other ways.
A particularly simple approach to test for these is withcounts-in-cells, in
which one divides the survey volume into small cells and examines the dis-
tribution of galaxy counts in the cells.

Another complication arises if the radial locations of the galaxies are not
available, for example if the galaxies are found through theLyman-break
technique without precise redshifts. In that case, clustering can still be mea-
sured along the plane of the sky. Thisangular correlation function(or its
counterpart the angular power spectrum) was traditionallythe best measure
of clustering, even at low redshifts. Intuitively, the angular correlation func-
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tion will simply be the projection of the three-dimensionalform onto the
plane of the sky. For small angular separations, this is easyto do; we will
discuss it in more detail in§13.2.

We also note that, whenever redshift is used as a proxy for distance (as
in a spectroscopic galaxy survey), peculiar velocities in the galaxy field will
distort the redshift-distance mapping. Fortunately, the velocity effects can
be isolated, because they do not affect positions across theplane of the sky:
we therefore expect a difference in the clustering measuredalong the line of
sight and along the plane of the sky. Because these peculiar velocities them-
selves trace the underlying matter distribution, the correspondingredshift-
space distortionscan provide unique information about it. We will discuss
them farther in§12.5.1.

10.4.2 Measuring the Luminosity Function

In addition to its intrinsic interest as a measure of halo mass, clustering also
affects the statistical uncertainty in the number counts ofgalaxies within
surveys of limited volume, the so-calledcosmic variance.iv This is crucial
to understand for estimates of luminosity and stellar mass functions, because
it determines their precision. By analogy to equation (2.32), the fractional
variance in an estimate of the galaxy number counts is the integral of the
signal and noise power spectra over allk-modes, weighted by the survey
window function:

σ2
tot

〈N〉2
=

∫

dk

k

[

∆2
gal(k) + ∆2

noise(k)
] |Wg(k)|2

V 2
. (10.23)

The cosmic (or sample) variance, which is the first term on theright hand
side of equation (10.23), results from the survey field sometimes lying in a
region of high galaxy density and sometimes lying in an under-dense region
or a void.

Figure 10.14 compares the contributions from cosmic variance and shot
noise as calculated by linear theory for a mock survey as a function of its
opening angle,θ = rt/dA(z), wherert is the transverse width of the survey.
This plot can be used to estimate the effectiveness of futuresurveys with
large fields of view. Here we have used a simple model to assignluminosi-
ties to dark matter halos, takingfduty = 0.25 and a star formation efficiency
f⋆ = 0.16. Note how the shot noise is only important on small scales, even
though the fluctuations from gravitational clustering alsodecrease with the
opening angle of the survey.

ivFormally, “cosmic variance” refers to the residual errors from the finite volume of our
entire Universe, not simply the observed field (which determines thesample variance). In
practice, however, the two terms are used almost interchangeably.
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Figure 10.14 The theoretically predicted contributions tothe total variance (equation 10.23;
solid lines) in Lyman-break galaxy dropout surveys as a sum of cosmic vari-
ance (dashed lines) and Poisson shot noise (dotted lines) contributions. The
top and bottom panels show results for surveys extending from z = 6–8
and z = 8–10, respectively. The thin lines assume a luminosity threshold
of z850,AB=29, while the thick ones make a cut atz850,AB=27, where here
z850,AB refers to the AB magnitude in thez850 photometric band. Figure
credit: Munoz, J., Trac, H., & Loeb, A.Mon. Not. R. Astron. Soc., 405, 2001
(2010). Copyright 2010 by the Royal Astronomical Society.
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According to linear theory, the probability distribution of the count of
galaxies is a Gaussian with variance given by the sum of the cosmic and
Poisson components, so the power spectrum provides a complete repre-
sentation. However, nonlinear evolution in the matter fieldinduces non-
Gaussian structure; because bright high-redshift galaxies are so rare, these
nonlinearities can have important effects. Figure 10.15 shows this in the
context of a pencil-beam survey of galaxies (with a3.4′ × 3.4′ field of view,
as for the HUDF) in the redshift rangez = 6 − 8. When compared to nu-
merical simulations, the galaxy count statistics are well approximated by the
linear-theory expressions at low luminosity limits.

However, for brighter galaxies linear theory begins to fail. The upper
solid curve in the top panel of Figure 10.15 shows the variance calculated
from numerical simulations that include nonlinear evolution. These are
larger than the analytic prediction (shown by the lower solid curve) for halo
massesM > 1010 M⊙. With the simulations, one can investigate how this
happens. Theskewnessis

s3 =

〈

(N − 〈N〉)3
〉

σ3
. (10.24)

The skewness as a function of minimum luminosity is presented in the bot-
tom panel of Figure 10.15. It is large atMh > 1010 M⊙ (the seemingly
large amplitude variations in the skewness at low luminosity for z = 6–8
are due to small numerical fluctuations around the near-zeroskewness from
numerical simulations, plotted on a log scale). The numerical simulations
indicate that the probability distribution of massive halos (and hence pre-
sumably bright galaxies) has a non-Gaussian shape. Deviations between
the analytic and numerical values of the sample variance grow when the
skewness becomes significant. This behavior is a manifestation of nonlin-
ear clustering on the small scales probed by the narrowness of the survey
skewer.

10.4.3 Measuring the Galaxy Power Spectrum

We have now shown how to estimate the galaxy power spectrum and how
its fluctuations affect number counts of galaxies (and hencethe luminosity
function). As a final step, let us briefly discuss the errors ona measurement
of the power spectrum itself: how large of a survey is necessary in order to
reliably measure the clustering of a galaxy sample?

Given that real galaxy surveys have complex selection functions, the best
way to answer this question is ultimately with detailed simulations of the
survey strategy. The next best way is with theFisher information matrix,
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Figure 10.15 Upper panel: Predicted relative contributions to the fractional variance in
the number counts of galaxies as a function of UV luminosity at an emission
wavelength of 1500Å within a Lyman-break dropout survey spanning the
redshift intervalz = 6–8 with a 3.4′ × 3.4′ field-of-view (matching HUDF
and approximately that of JWST). Solid lines show the total variance, while
long-dashed and dotted lines show the contributions from cosmic variance and
Poisson noise, respectively. The upper curves show the results from numeri-
cal simulations, while the lower curves were calculated analytically based on
linear perturbation theory. Vertical lines bracket the region where the vari-
ance is higher than expected due to the skewness of the full count probabil-
ity distribution but is not Poisson-dominated. The middle and top horizontal
axes translate the monochromatic luminosity toz-band AB magnitude and
host halo mass, respectively.Lower panel:Skewness of the full galaxy count
probability distribution calculated from a numerical simulation based on equa-
tion (10.24). Figure credit: Munoz, J., Trac, H., & Loeb, A.Mon. Not. R.
Astron. Soc., 405, 2001 (2010). Copyright 2010 by the Royal Astronomical
Society.
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which provides a robust lower limit to the errors on a given set of parameters
in any experiment. We will consider this latter approach here. Suppose one
wishes to measure the amplitude of the power spectrum over a range of
wavenumbers(k, k + ∆k) in a survey of volumeV (these are known as
band powers). Ignoring boundary effects from the finite survey volume, the
minimal error on the band powers is195

∆P (k)

P (k)
= (2π)

√

2

k2∆k∆µV

[

1 + n̄P (k)

n̄P (k)

]

. (10.25)

This expression is straightforward to understand. Recall that the power
spectrum quantifies the variance in the density field amongsta set of modes.
Suppose we haveN independent estimates of these mode amplitudes. From
elementary statistics, the mean squared error on an estimate of the variance
from this dataset will be(∆P )2 ∼ σ2

P/N , whereσ2
P is the variance of the

measurements: in our case,σP = P + n̄−1. We thus only need determine
the number of independent samples of the density field in a given power
spectrum bin. First, let us write the Fourier space volume ofa binned mea-
surement of the power spectrum as2πk2∆k∆µ, whereµ is the cosine of the
angle between the bin’s central wavevector and the line of sight. (As men-
tioned briefly in§10.4.1 and more extensively in§12.5.1, peculiar velocities
induce an anisotropy with respect toµ. For a crude measurement, however,
we can average over all modes with a single amplitude, so that∆µ = 2 and
the volume corresponds to a spherical shell ink-space.)

The final question is how many samples lie within this Fourierspace vol-
ume. Recall from§10.4.1 that the finite survey volume mixes all modes
closer together than∼ (2π)3/V . However, the reality of the density field
imposes a constraint on its Fourier transform, relating pairs of modes with
k and −k to each other. Thus, the number ofindependentsamples is
N ≈ 2πk2∆k∆µ × [V/(2π)3] × 1/2. The prefactor in equation (10.25)
is simply1/

√
N .

This approach provides a reasonable estimate for the volumerequired
to measure galaxy bias from a survey. In the regime where shotnoise is
unimportant (i.e.,P ≫ n̄−1), a measurement with 10% precision requires
a volume of∼ 104(k/0.1 Mpc−1)−3 Mpc3. High-k modes evidently do
not require particularly large volumes, but surveys run into shot noise lim-
itations unless they go very deep; even the faintest HUDF galaxies have
n̄ ∼ 0.01 Mpc−3 (see Figure 10.9). Shot noise compromises modes with
n̄P < 1. In that regime, it is generally advantageous to construct adeeper,
rather than wider, survey.



Chapter Eleven

The Lyman-α Line as a Probe of the Early

Universe

Early in the book, we explored the physics behind structure formation, lead-
ing to the first sources of light in the Universe. In chapter 10, we began
applying this framework to observable systems: galaxies. We now arrived
to the point where we can study a number of specific observational probes of
the high-redshift Universe. We begin that endeavor in this chapter by exam-
ining the Lyman-α line, an extraordinarily rich and useful – albeit complex
– probe of both galaxies and the IGM. In the next two chapters,we will
describe a variety of other observables.

11.1 LYMAN-α EMISSION FROM GALAXIES

We saw in§10.2.1 that young star-forming galaxies can produce very bright
Lyman-α emission;196 indeed searching for such line emitters is one of the
most effective ways to find high-z galaxies. Although the radiative trans-
fer of these photons through their host galaxies is typically very complex,
a good starting point is a simple model in which a fraction of stellar ion-
izing photons are absorbed within their source galaxy, forming embedded
H II regions. The resulting protons and electrons then recombine, produc-
ing Lyman-α photons. Assuming ionization equilibrium, the rate of these
recombinations must equal the rate at which ionizing photons are produced.
However, about 1/3 of these recombinations do not cascade through the
Lyman-α transition and so do not contribute to this line.197

Because only hot, massive stars – which live for only severalmillion years
– produce ionizing photons, it is a good approximation to assume that the
rate at which any given galaxy generates these photons is proportional to
its instantaneous star formation ratėM⋆. The proportionality constant de-
pends on the initial mass function (IMF) of stars, because that determines
what fraction of stellar mass enters these massive, hot stars. For example,
a galaxy with a constant star formation rate, a Salpeter IMF,a metallicity
Z = 0.05 Z⊙, and no binary stars produceṡQi = 4.3 × 1053 ionizing
photons per second perM⊙ yr−1 in stars formed.198 However, a top-heavy
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Population III IMF has an order-of-magnitude larger ionizing efficiency.
Finally, if we assume as usual thatfesc of the ionizing photons escape

their host galaxy, then the intrinsic line luminosity of a galaxy is

Lint
Lyα =

2

3
Q̇ihνα(1 − fesc)Ṁ⋆. (11.1)

For context, a Salpeter IMF from 1 to 100M⊙ with Z = 0.05Z⊙ has a pref-
actor4.4×1042(1−fesc) erg s−1, if the star formation rateṀ⋆ is measured
in M⊙ yr−1.

Unfortunately, inferring physical properties about distant galaxies from
the Lyman-α line is complicated not only by the uncertain factorsfesc and
Q̇i but also by the radiative transfer of these line photons through the inter-
stellar and circum-galactic medium surrounding each galaxy. Because the
Lyman-α line is so optically thick in both the galaxy’s ISM and the nearby
IGM, line photons scatter many times before they can escape the galaxy,
and once they leave it they can be scattered away from the lineof sight and
vanish. This scattering can change not only the overall brightness of the
line but also its frequency structure and relation to the galaxy’s continuum
photons. Theobservedline luminosity is then

Lobs
Lyα =

2

3
T IGM

Lyα T ISM
Lyα Q̇ihνα(1 − fesc)Ṁ⋆, (11.2)

whereT ISM
Lyα is the fraction of Lyman-α photons that are transmitted through

the galaxy’s ISM andT IGM
Lyα is the fraction transmitted through the IGM. We

will see later that the latter factor can inform us about the properties of the
IGM and reionization.

11.1.1 Radiative Transfer of Lyman-αPhotons Through the Interstellar Medium

We will first consider radiative transfer within a galaxy andits immediate
environs; we will defer discussion of IGM scattering until§11.2. The im-
portant difference from continuum transfer is that line photons can scatter
many times (changing both their direction and frequency) asthey traverse
the ISM. In the case of Lyman-α photons, scattering cannot destroy them
(unless collisions mix the2s and2p electron states, which requires much
higher densities than typical for the IGM), but dust absorption can. De-
pending on the geometry of the ISM, the increased path lengthcan increase
or decrease the brightness of the line relative to the continuum.

Some simple toy models of radiative transfer help to developsome intu-
ition for this situation. We will generally assume that the absorption cross-
section follows theVoigt profile, σα(ν) = σ0φV (ν), which allows for both
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thermal effects (causing gaussian broadening in the core ofthe line) and nat-
ural broadening in the wings (coming from the finite lifetimeof the upper
state). The full Voigt profile may be written as a convolutionof these two
mechanisms,

φV (ν) =

∫ ∞

−∞
pM (v)L[ν(1 − v/c)]dv, (11.3)

where the integral is over the line-of-sight thermal velocities of the particles.
HerepM(v) is the Maxwell-Boltzmann distribution at a temperatureT ,

pM (v)dv =
1√
πb2

e−v2/b2dv, (11.4)

with b =
√

2kBT/mp the thermal velocity of the atom.i L is the natural
line profile, which for Lyman-α is given by equation (4.8). This is often
approximated by a Lorentzian function,ii

L(ν) ≈ 1

π

γ

(ν − να)2 + γ2
, (11.5)

whereγ = A21/(4π) is the decay constant. In this approximation, the Voigt
profile can be written

φV (x)dx =
1√
π

(να

ν

)

V (x)dx, (11.6)

wherex = (ν−να)/νD is the normalized frequency, with a Doppler broad-
eningνD/να = b/c and

V (x) =
A(x)

π

∫ ∞

−∞
dy

e−y2

[B(x) − y]2 +A2(x)
. (11.7)

Finally, A(x) = (γ/νD) × (να/ν) andB(x) = (ν/να)x. A low-order
approximation to the Voigt function makes the line structure apparent:

V (x) ≈ e−B2

+
1√
π

A

A2 +B2
. (11.8)

We will be particularly interested in the profile far from theline core (where
B ≫ 1). There,σα ≈ a/(

√
πx2) wherea ≡ γ/νD = 4.72 × 10−4T

−1/2
4

iThe Doppler parameter can include turbulence as well by adding the turbulent velocity
in quadrature.

ii However, in many cosmological applications the optical depth can be so high that the
asymmetry of the full profile is visible.
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Figure 11.1 Cross-section for Lyman-α absorption, as a function of wavelength offset from
line center (bottom axis) or velocity difference (top axis). The calculation in-
cludes thermal and natural broadening generated by gas withT = 104 K. Fig-
ure credit: Santos, M.R.,Mon. Not. R. Astron. Soc., 349, 1137 (2004). Copy-
right 2004 by the Royal Astronomical Society.

andT4 ≡ (T/104 K) for the Lyman-α line. Figure 11.1 shows the absorp-
tion cross-section for absorbing gas withT = 104 K (including the full line
broadening); note the Gaussian core with width∼ 10 km s−1 and the much
weaker, but broader, damping wings.

With these fundamental ingredients established, let us consider how line
photons can escape from several toy models of gas clouds. We describe the
physics quantitatively below and illustrate it in Figures 11.2 and 11.3.

• Homogeneous, static H I slab, moderately optically thick(Figure 11.2a):
First consider a Lyman-α photon produced inside a homogeneous
static medium of pure H I, with total line-center optical depth τ0 ≫ 1.
Becauseτ is proportional to distance in the medium, we can (and usu-
ally will) use it as a proxy for physical location within the system. So
long as the photon remains in the Doppler core of the line, it barely
diffuses spatially before being scattered by an atom. When aline pho-
ton of frequencyxin is absorbed by an atom, it re-emits a line photon
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Figure 11.2 Schematic illustrations of the radiative transfer of Lyman-α photons through
a dust-free, homogeneous interstellar medium.(a) For a moderately optically
thick cloud, a Lyman-α photon undergoes a random walk until its frequency
diffuses into the wings of the line, escaping once the optical depthτν < 1 at the
photon frequencyν. This produces a double-peaked emission line and spatially
compact emission.(b) For a very optically thick cloud, the photon may need
to diffuse out of the cloud in space rather than frequency. Inthat case, the two
peaks are substantially broader, and the emission is spatially extended. (c) If
the scattering medium has a velocity gradient (here we imagine an expanding
shell of gas), photons initially directed toward the observer are scattered away
by the blueshifted near side of the shell. However, photons directed toward the
far side of the shell that backscatter toward the observer pass through the near
side of the shell far out of resonance and escape toward the observer. The result
is a single emission line centered on the velocity of the far side of the shell.

of the same frequency in its own rest frame. However, in an observer’s
frame there will be a net frequency shift determined by the Lorentz
transformation between the frames. To linear order, this is

xout ≈ xin − va · kin

b
+

va · kout

b
+ g(kin · kout − 1), (11.9)

whereva is the velocity vector of the atom, andkin andkout are the
propagation directions of the incoming and outgoing photons, respec-
tively. The last termg accounts for recoil; it is unimportant here,
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but we will revisit it in §12.2.2. Typically, the scattering atom will
have the same velocity along the photon’s direction of motion as the
atom that emitted it, but it can have a much larger total velocity. In
that case, the scattered photon will be far from the line center, in the
damping wings.

If the medium is not too optically thick, so that these damping wings
are themselves optically thin, the resulting photon can escape so long
as it is produced at a frequency whereτ(x) < 1; for τ0 = 103, this
corresponds tox ∼ 2.6. We therefore generically expect that the
resulting emission will have a double-peaked profile: photons near
line-center are trapped in the cloud; only when they diffuseto large
positive or negative velocity are they able to escape. The Lyman-α
surface brightness distribution will also be compact, because photons
escape after a single scattering.

• Homogeneous, static H I slab, very optically thick(Figure 11.2b):
Thus, in a moderately optically thick medium, these escaping photons
simply result from rare scatterings off high-velocity atoms. If, on the
other hand, the damping wings are themselves optically thick, τ >
103, the problem is more complicated, though the net result is easy to
understand: the photons must make it even farther into the wings to
escape. In this regime, a photon in the wings is more likely toscatter
off an atom with a small thermal velocity (in its damping profile) than
an atom traveling at a matched velocity,

To escape, the photon must then undergo a random walk of repeated
scatterings, which occasionally take them far enough from line cen-
ter to escape. Because scatterings usually occur in the core, each
one induces an rms frequency shiftx ∼ 1, with a small bias−1/x
toward returning to line center; a photon thus typically undergoes
Ns ∼ x2 scattering events before returning to line center. Between
scatterings, the photon traverses a path length (in opticaldepth units)
of τφV (x) ∼ 1. Thus, over its entire random walk, it diffuses a dis-
tanceτ rms

0 ∼
√
Nsτ ∼ |x|/φV . If this distance exceeds the size of

the system (τ0 in these units), the photon can escape. In the wings of
the line whereφV ∼ a/x2, this requires that the photon have a critical
normalized escape frequency

|xesc| ∼ [aτ0]
1/3 ≈ 30T

−1/3
4 N

1/3
21 , (11.10)

whereN21 is the column density of the system in units of1021 cm−2.
Thus, in this highly-optically thick case, the photons mustscatter far
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enough in the wings of the line to physically escape the system be-
fore scattering back to line center. This, combined with thepower
law form of φV in the wings, also makes the blue and red emission
peaks wider than than in the moderate optical depth case. Thesurface
brightness of the line will be extended even if the source is compact,
because photons diffuse spatially as well as in frequency before es-
caping.

• Homogeneous H I slab, with velocity gradient(Figure 11.2c): We
next consider a medium with a velocity gradient. Such a gradient can
either correspond to expansion, arising from winds (which we believe
to be ubiquitous in the star-forming galaxies likely to hostLyman-α
emission lines), or contraction, from the infall of surrounding material
around the galaxy.

First consider an expanding medium. Then, according to equation (11.9),
scattered photons typically obtain a redshift:va · kin is positive for
photons propagating outward, while (assuming isotropic emission)
〈va · kout〉 = 0, soxout < xin on average. Photons withx < 0 are
therefore moved farther into the line wings, facilitating their escape,
while photons withx > 0 are moved back toward line center. So
long as the expansion velocity is much larger than the thermal veloci-
ties, this will prevent photons that experience large positive frequency
jumps from escaping. Thus, we expect only a single emission line on
the red side. In contrast, in a contracting medium photons typically
obtain a blueshift, producing a single emission line on the blue side.

In this case the frequency shift of the surviving line depends upon the
velocity and density structure of the medium. The case of most prac-
tical relevance is a wind, in which a large column of H I occursat
±vwind along the line of sight, with negligible absorption elsewhere.
In this case photons that begin their escape toward the observer (i.e.,
through the blueshifted wind) are absorbed. After their first scatter-
ing, photons that begin their escape toward the far component of the
wind lie to the red side of the line. Those that scatter back toward the
observer are then far to the red of the (blueshifted) line center of the
near component of the wind and can continue to the observer. The
observed velocity offset is thenvwind and provides a good diagnostic
of the wind velocity.

• Homogeneous H I slab with dust(Figure 11.3a): Now we can add
dust to a (static) medium and see how it can destroy the Lyman-α
photons. We let thetotal dust interaction cross-section, per hydrogen
nucleus, beσd; this includes both absorption, with a cross-section
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Figure 11.3 Schematic illustrations of the radiative transfer of photons through an interstel-
lar medium with dust.(a) If the scattering medium is homogeneous, with dust
(black circles) uniformly distributed through it, Lyman-α photons (solid black
arrows) undergo a random walk in space and frequency before they can escape
(see Figure 11.2). Their long path length implies that they have an increased
probability of extinction by dust compared to a continuum photon (dot-dashed
arrow). The result is suppression of the emission line (shown for simplicity
as a single line).(b) If the dust is instead confined to discrete, optically thick
clouds, the line can instead be enhanced. In this case, Lyman-α photons scatter
off the outskirts of each cloud until they escape the system,so they pass through
relatively little dust. Continuum photons, on the other hand, pass through the
clouds and so suffermoredust extinction.

σa = ǫaσd = (σa,21/10
−21 cm2) per hydrogen atom, and scattering

(with cross sectionσd − σa). For the well-studied dust in the Milky
Way, σa,21 ≈ 1 and ǫa ≈ 0.5; of course this will depend on the
metallicity and dust formation mechanisms in high-redshift galaxies
(see§8.9.2). The average absorption probability per interaction (with
either dust or H I) is therefore

ǫdust =
σa

xHIφV (x)σ0 + σd
≈ β

φV (x)
, (11.11)

whereβ = σa/(xHIσ0) = 1.69 × 10−8T
1/2
4 σa,21/xHI and we have

assumed that dust interactions are rare compared to H I scattering.

Now recall that, in order to escape the H I cloud, the photon must first
scatter far into the wings of the line and then remain in the wings as it
spatially diffuses out of the system. During that process, the photon
will scatterNs times; the probability that it is absorbed by dust and



442 CHAPTER 11

destroyed is thereforePabs ∼ Nsǫdust ∼ x4β/a in the damping wing.
This is near unity if|x| > xabs, where

xabs ∼ (a/β)1/4 ∼ 12.9

(

xHI

T4σa,21

)1/4

. (11.12)

A typical photon will therefore be unable to escape ifxesc > xabs; if
the line center optical depth exceeds a critical valueτc ∼ (aβ3)1/4,
the emission line will be strongly suppressed. This corresponds to
a column density of onlyN21,c = 0.08T

1/4
4 (xHI/σa,21)

3/4, well be-
low the typical column densities of galaxies (which are comparable to
damped Lyman-α absorbers [DLAs]). Thus Lyman-α destruction can
be very important inside a dusty ISM. As a rule of thumb, in a uni-
form medium line photons are more affected by dust than continuum
photons, because the many scatterings suffered by the former force
them to follow a much longer path length than continuum photons,
providing a much larger opportunity for destruction by dust.

• Multiphase medium with dust(Figure 11.3b): Finally, we consider a
medium in which both the H I and dust are confined to optically thick,
discrete clouds separated by a highly-ionized, dust-free “inter-cloud
medium.” Here details of the results will clearly depend on the geom-
etry of the system, but some general considerations do apply. First,
note that an inhomogeneous medium will allowmore transmission
than a homogeneous slab with identical column density of neutral gas,
because of the same arguments we saw for Lyman-α transmission in
an inhomogeneous IGM (see§4.3.2). Moreover, in some cases the
line photons can belessaffected by dust than continuum photons, be-
cause the line photons scatter off thesurfaceof the clouds, while the
continuum photons plow through them and can encountermoredust.

Detailed calculations show that the frequency shift necessary for dust
absorption to dominate over resonant scattering in the linewings,
xabs, is similar in magnitude to the homogeneous case.199 However,
dust was so important in the uniform example because Lyman-α pho-
tonsneededto diffuse in frequency in order to escape the medium.
This is not the case for a multiphase medium.200 In this case, Lyman-
α photons enter each cloud on their surface and suffer relatively few
scattering events inside each cloud before spatially diffusing back out.
They can then travel a large distance before hitting anothercloud, and
spatial diffusion through the inter-cloud medium providesmost of the
impetus toward escape. Thus, dust absorption will be relatively weak
provided that the typical frequency shift before escape is less than
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xabs.

In this case, photons obtain frequency shifts both from the thermal
motions of the scattering atoms and from the velocity dispersion be-
tween the absorbing clouds; if the latter is large (as would be the case
if most of the dust were buried in dense molecular clouds), itdom-
inates the frequency diffusion, because – just as for a wind –each
cloud is so optically thick that in the observer’s frame the photon
leaves each cloud with a velocity offset corresponding to that cloud’s
velocity. If the clouds have a large velocity dispersion, then dust ab-
sorption within each cloud will dominate over resonant scattering,
because the photons will enter each cloud in the wings of the line.

Although each of these toy models is obviously much simpler than a real
galaxy, together they illustrate the complexity of the radiative transfer prob-
lem and the many parameters that can dramatically affect theLyman-α line’s
amplitude and shape, as well as the surface brightness of a line emitter. In
general, even discounting uncertainties from IGM transmission discussed
below, the Lyman-α line is typically very difficult to interpret and is not re-
garded as, for example, a very reliable measure of the star formation rate.
However, its extreme brightness in many galaxies makes it such a useful
signpost that it is still the subject of intense study.

11.2 THE GUNN-PETERSON TROUGH

We now briefly discuss the fate of continuum photons that begin their lives
blueward of Lyman-α during the reionization era. These photons will red-
shift through the IGM; if they should pass through the Lyman-α resonance,
they will experience substantial absorption from that gas.The scattering
cross-section of the H I Lyman-α resonance line is given by equation (4.8),
and we have already computed the total optical depth for a photon that red-
shifts through the Lyman-α resonance as it travels through the IGM, the
so-called Gunn-Peterson optical depth in equation (4.11).The most im-
portant aspect of this calculation is the enormous overall optical depth in
a fully-neutral IGM,τα ∼ 6.5 × 105xHI at z ∼ 9. Thus we expect that,
before reionization, photons that redshift across the Lyman-α transition will
be completely extinguished (and, indeed, the same will be true so far as
xHI > 10−3).

However, not all photons will redshift through the resonance during the
reionization era. Suppose that a photon is emitted by a source at a redshift
zs beyond the “redshift of reionization”zreion, which for the purposes of
this calculation is simply the last redshift along the particular line of sight
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of interest wherexHI = 1. (Note that this differs from the conventional def-
inition of the end of reionization as the moment of “overlap”between the
ionized bubbles; the variations along different lines of sight can themselves
contain interesting astrophysical information.) For simplicity, we will fur-
ther assume thatxHI = 1 for all z > zreion. The corresponding scattering
optical depth of a uniform, neutral IGM is a function of the observed wave-
lengthλobs,

τα(λobs) =

∫ zs

zreion

dz
cdt

dz
nH,0(1 + z)3σα [νobs(1 + z)] . (11.13)

At wavelengths corresponding to the Lyman-α resonance between the
source redshift and the reionization redshift,(1 + zreion)λα ≤ λobs ≤ (1 +
zs)λα, the optical depth is given approximately by equation (4.11). Since
τα ∼ 105, the flux from the source is entirely suppressed in this regime.
However, photons blueward of this minimum wavelength do notredshift
into resonance untilafter reionization is over, so we should see a recovery
in the forest at the blue end of the spectra that in principle informs us about
reionization. Similarly, the Lyman-β resonance produces another trough at
wavelengths(1+zreion)λβ ≤ λobs ≤ (1+zs)λβ , whereλβ = (27/32)λα =
1026 Å, and the same applies to the higher Lyman series lines. If(1+zs) ≥
1.18(1 + zreion) then the Lyman-α and the Lyman-β resonances overlap
and no flux is transmitted between the two troughs. The same holds for
the higher Lyman-series resonances down to the Lyman limit wavelength of
λH I = 912 Å.

At wavelengths shorter thanλH I, the photons may be absorbed when
they photoionize atoms of hydrogen or helium, even if they donot redshift
into the Lyman series lines. The bound-free absorption cross-section of
hydrogen is given by equation (4.14); the appropriate parameters for He II
are given in§4.5 as well. A reasonable approximation to the total cross-
section for a mixture of hydrogen and helium with cosmic abundances in
the range of4hνH I = 54.4 eV < hν < 103 eV is σbf ≈ σ0(ν/νH,0)

−3,
whereσ0 ≈ 6 × 10−17 cm2. The redshift factor in the cross-section then
cancels exactly the redshift evolution of the gas density and the resulting
optical depth depends only on the elapsed cosmic time,t(zreion)− t(zs). At
high redshifts this yields

τbf (λobs)=

∫ zs

zreion

dz
cdt

dz
n0(1 + z)3σbf [νobs(1 + z)]

≈ 1.5 × 102

(

λobs

100 Å

)3 [ 1

(1 + zreion)3/2
− 1

(1 + zs)3/2

]

.(11.14)

The bound-free optical depth only becomes of order unity in the extreme
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UV to soft X-rays, aroundhν ∼ 0.1 keV, a regime which is unfortunately
difficult to observe due to absorption by the Milky Way galaxy.

Together, these effects imply very strong absorption of nearly all photons
that begin blueward ofλα(1+ zr), except for a recovery at very short wave-
lengths and the gaps between the Lyman-series troughs (though these will
be blanketed by the Lyman-α and other forests just belowzreion, so even
they will be extremely optically thick).

11.3 IGM SCATTERING IN THE BLUE WING OF THE LYMAN- α LINE

We now return to the fate of photons emitted within (or near) the Lyman-
α line of a galaxy or quasar. In this case, the relative velocity and broaden-
ing of the line from bulk, thermal, or turbulent motions is very significant,
because it determines whether the photons pass through the Lyman-α res-
onance – and so experience the full Gunn-Peterson absorption – or remain
redward of line center, experiencing much less absorption.We also must
consider the environment of the source: whether it is embedded in com-
pletely neutral gas or in an ionized bubble, and the surrounding velocity
field. In this section we will focus on photons emitted blueward of, but still
near to, line center.

11.3.1 Resonant Scattering Inside Ionized Bubbles

Photons that begin slightly blueward of line center redshift into the Lyman-
α resonance near to their source. In most models, this nearby region will
already have been ionized, either by the source itself or by its neighbors
(if it is part of a much larger ionized bubble). Thus it may seem that these
photons will survive their journey through the IGM.

However, if we recall thatτα > 105xHI at these redshifts, it is imme-
diately apparent that even in highly-ionized media the absorption can be
substantial. In practice, the short mean free paths at high redshifts will
most likely prevent the gas from becoming extremely ionized. We can
estimate the residual ionized fraction inside an H II regionin which the
comoving mean free path isλ (which could be restricted either by the ion-
ized bubble walls or by LLSs; see§9.5) by assuming ionization equilib-
rium and a uniform emissivity (or in other words that each bubble contains
many sources). The equilibrium condition is thenΓnHI = αBnenH, with
Γ ≈ ǫionσ̄HIλ/(1 + z), ǫion the proper emissivity of ionizing photons (by
number), and̄σHI ∼ 2 × 10−18 cm2 the frequency-averaged cross-section.
If we use the simplest model for the ionizing sources, in which the rate of
ionizing photon production is proportional to the rate at which gas accretes
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onto galaxies, we can write (see equation 9.2)ǫion = ζḟcollnH . But we also
knowQHII = ζfcoll/(1+ n̄rec), wheren̄rec is the mean number of recombi-
nations per atom. So we can rewrite the ionizing efficiencyζ in terms of the
filling fraction of ionized bubbles and solve for the resonant optical depth
due to residual neutral gasxHI inside the bubble:

τ res
α (δ) ≈ 40

(1 + δ)2

QHII(1 + n̄rec)

(

10 Mpc
λ

)(

fcoll

dfcoll/dz

)

, (11.15)

where we have assumed that the IGM is isothermal to compute the recom-
bination coefficient. The factor involving the collapsed fraction is typically
of order a few.

Clearly the optical depth for these photons is large in realistic models;
note, however, that it is small enough that many of the radiative transfer
effects important for photon escape from galaxies (discussed in §11.1.1)
can be ignored, so the absorption from each gas parcel will not have a large
frequency width.

11.3.2 The Proximity Effect and Quasar “Near-Zones”

Equation (11.15) shows that an average location inside an ionized bubble
is not likely to be ionized strongly enough to allow significant transmis-
sion before reionization. However, the region immediatelyoutside the of an
ionizing source will be more ionized than average thanks to photons from
that very source. At moderate redshifts, this “proximity effect” is a useful
measure of the ionizing background, and it is a very attractive probe of the
reionization era as well.

The profile of the ionization rate around a quasar at moderateredshifts is
simple to understand. Suppose that there is a uniform metagalactic back-
ground with amplitudeΓbg. The central quasar with a luminosityLν pro-
duces a specific intensityJν ∝ Lν/R

2, whereR is the proper distance from
the quasar. Thus, we expect an ionization rateΓq = Γq,0/R

2. Assuming
ionization equilibrium, we then have

τ(R) ∝ (Γbg + Γq,0/R
2)−1. (11.16)

In principle, a simple fit to the absorption profile as a function of dis-
tance from the quasar is sufficient for derivingΓbg, especially ifΓq,0 can
be estimated from the observed luminosity of the quasar redward of the
Lyman-α line. In practice, these estimates are complicated by variations
in the Lyman-α forest lines themselves and by the biased environments of
quasars: the quasar will only induce substantial changes inthe radiation field
within a compact “proximity zone” around the quasar whereΓq > Γbg. This
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corresponds to

Rprox =
1.2Γ

−1/2
12

α+ 3

(

νLν

1044 erg s−1

)1/2

proper Mpc, (11.17)

whereα is the quasar spectral index andLν is evaluated at the H I ionization
edge. This places the proximity zone within the overdense environment of
the quasar’s halo; the increased absorption from this excess gas partially
cancels the effect of the increased ionizing background (the [1 + δ]2 factor
in equation 11.15), making the proximity effect more difficult to see.

Because the ionizing background is much smaller during the reionization
era, it may at first appear that the proximity effect will be easier to observe.
However, in reality the effect is much more difficult to interpret because
the IGM is so optically thick. In this situation, the observable pattern near
a luminous source will be gradually increasing absorption until saturation
is reached. Figure 11.4 shows some examples; the curves herehave each
been averaged over several independent lines of sight to reduce the scatter
from the inhomogeneous IGM. Here the horizontal dotted linemarks 10%
transmission; this is conventionally used to mark the edge of the near-zone,
or region with observable transmission.

The key point is that, during the reionization era, there aretwo possible
reasons why such saturation can occur. The first is if the source (usually
a quasar) is still in the process of ionizing its neutral surroundings. Then
there will be a sharp transition between the highly-ionizedH II region and
the nearly neutral gas at its edge, which will manifest itself as a dramatic
increase in the local optical depth. The second is more similar to the clas-
sical proximity effect, except that the absorption may saturate long before
the local ionization rate reaches the background value, ifΓbg ≈ 0. Because
the observed edge of the transmission does not necessarily correspond to
the classical proximity zone, this feature is usually referred to as the “near-
zone.”

In the first case, the size of the H II region depends on the ionizing lumi-
nosity of the quasar (which can be estimated from the spectrum redward of
Lyman-α), the age of the quasartQ, and the average neutral fraction before
the quasar appeared,x̄HI. The basic radiative transfer problem has already
been solved in sections 9.1 and 9.8.2; for the purposes of a simple estimate,
if recombinations can be neglected, the proper radius of theH II region is
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Figure 11.4 Average absorption profiles near the Lyman-α line for quasars in three dif-
ferent redshift bins. Note that the Lyman-α emission lines have been fitted
and removed. The three redshift bins average over 8 (5.75 < z < 5.95), 9
(5.95 < z < 6.15), and 4 (z > 6.15) quasars. The horizontal dotted line marks
10% transmission, conventionally taken as the edge of the near-zone. Figure
credit: Carilli, C.L. et al.,Astrophys. J., 714, L834 (2010). Reproduced with
permission of the American Astronomical Society.

(c.f. equation 9.3)iii

Rb ≈
4.2

x̄
1/3
HI

(

ṄQ

2 × 1057 s−1

)1/3(
tQ

107 yr

)1/3(1 + z

7

)−1

Mpc, (11.18)

whereṄQ is the rate at which the quasar produces ionizing photons and
we have assumed that all the ionizing photons are absorbed but ignore sec-
ondary ionizations. Note thatRb ∝ (ṄQtQ/x̄HI)

1/3, varying relatively
slowly with these parameters.

However, the absorption can become saturated well before this limit is
reached. To estimate this, we suppose that the edge of the near-zone is where

iii Here we ignore relativistic effects in the expansion, whichare important at early times.
See equation (9.12) for a more accurate expression.
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the transmission falls belowTlim, or the optical depth rises aboveτlim. We
adoptTlim = 0.1 as a fiducial value (see Figure 11.4). Assuming that the
background ionization rate can be neglected (likely a good assumption at
these very high redshifts), the transmission reaches this limiting value at a
proper radius

Rlim ≈ 3.1 Mpc

(

ṄQ

2 × 1057 s−1

)1/2
(

T

2 × 104 K

)0.38 (τlim
2.3

)1/2

×
[

3α

(α+ 3)

]1/2(1 + z

7

)−9/4

, (11.19)

where theT dependence enters through the recombination coefficient for
ionization equilibrium. Note that this limiting radius is independent of the
neutral fraction of the material outside of the ionized zone, and it is slightly
more sensitive to the quasar luminosity,Rlim ∝ Ṅ

1/2
Q .

There are two caveats on these size estimates. First, equation (11.19) can
only apply if the quasar light has reached that distance. This requires

tQ > 4.2 × 106x̄HI

(

Rlim

3.1 Mpc

)3
(

ṄQ

2 × 1057 s−1

)−1
(

1 + z

7

)3

yr.

(11.20)
(Adding recombinations and clumping will increase this scale by a factor
of no more than a few.) Interestingly, this timescale is comparable to the
canonical quasar lifetimetQ ∼ 107 yr in fully neutral gas, but for quasars
positioned near the end of reionization (which are actuallyaccessible to
observations) it is very short.

Moreover, our expressions forRb andRlim implicitly ignore the possi-
bility of LLSs or even denser regions in the IGM. If the quasarradiation
encounters a highly overdense region that can maintainτ > 1 in ionization
equilibrium, the ionizing radiation will be highly attenuated at larger dis-
tances. Although these systems are likely to be rare near thequasar (where
the radiation field is particularly strong), they are difficult to identify in the
highly saturated forest spectra found during reionization, and they present
an important systematic concern for measurements of “near zones.”

We therefore expect most quasar near-zones be limited by theproximity
effect rather than the bubble size. If so, these zones can tell us little about
the ionization state of the surrounding gas. In principle, this supposition can
be tested by examining the luminosity dependence of the near-zone size, al-
though the modest variation between the two models, and the large scatter
intrinsic to any measurement in an inhomogeneous IGM, has made differ-
entiating them difficult to date. Figure 11.5 shows the measured near-zone
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Figure 11.5Left: Measured radii of near zones in a set of high-z quasars; the symbols de-
note the method used to compute the quasar’s redshift. All near-zone measure-
ments have been scaled to a common quasar luminosity using the Rb relation
in equation (11.18) to better illustrate the trend with redshift. Typical errors in
the near-zone size are∼ 1 Mpc. The two lines are fits to the trend with redshift.
Right: Dependence of the near-zone size on quasar absolute magnitude; all the
data points have been scaled to a common redshift using the mean relation in
the left-hand panel to better illustrate the behavior with luminosity. The dotted
line showsRb ∝ Ṅ

1/3

Q with arbitrary scaling; note that it is not a fit but is
merely meant to guide the eye. Figure credit: Carilli, C.L. et al., Astrophys. J.,
714, L834 (2010). Reproduced with permission of the American Astronomical
Society.

sizes for a number of quasars atz > 5.75. The left panel shows the trend
with redshift (here all the near-zone sizes have been normalized to a com-
mon luminosity using theRb ∝ Ṅ

1/3
Q relation), while the right panel shows

the dependence on absolute magnitude (with the mean trend over redshift
removed).

In the right panel, the dotted curve showsRb ∝ Ṅ
1/3
Q (with arbitrary scal-

ing); this is not a fit but is shown only for illustrative purposes. Clearly the
large scatter in the near-zone sizes, even after a simple redshift correction,
make it difficult to distinguish this behavior from that expected for the more
classic proximity effect,Rb ∝ Ṅ

1/2
Q .

Nevertheless, there is clearly a steady increase in the near-zone size as
redshift declines. One possible interpretation is a decrease inx̄HI with cos-
mic time; the data would require a decline by∼ 10 over the rangez = 6.4
to z = 5.8. However, presuming thatz ∼ 6 is the tail end of reionization,
the proximity effect is more likely to fix the near-zone size.In that case, the
trend with redshift is most likely attributable to a rapid increase in the back-
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ground ionization rate (by a factor of> 3), which can substantially boost
the total ionization rate in the outskirts of the quasar’s proximity zone.

Currently, the most challenging aspect of this measurement– other than
finding these quasars in the first place – is determining the quasar’s loca-
tion. The only tools we have are the redshifts of the source’semission lines.
Unfortunately, most quasars have strong internal motions and winds, which
displaces many of the emission lines from the systemic redshift of the host.
The best choices are low-excitation lines (such as Mg II) or,even better,
lines from the host galaxy itself. Any such lines in the optical or UV are
overwhelmed by the quasar’s own emission, so the most usefullines turn
out to be those of CO, which are strong in these rapidly star-forming galax-
ies.

There is one additional, and very attractive, way to differentiate between
Rb andRlim: by examining the absorption in higher Lyman-series lines.
BecauseRlim depends on the maximum detectable optical depthτ

1/2
lim , it

will increase by the square root of the optical depth ratio between different
lines; for Lyman-β, this meansRβ

lim ≈ 2.5Rα
lim. However, at the edge of

the ionized bubble the neutral fraction presumably increases by an enormous
amount over a very small distance, so both Lyman-α and Lyman-β should
become optically thick at nearly the same radius. Unfortunately, this test is
still sensitive to the large amount of scatter in the IGM density field (and in
the lower-redshift Lyman-α forest that coincides with and hence obscures
the Lyman-β measurement), so the current sample of< 10 quasars cannot
distinguishRb from Rlim – even though coincident Lyman-α and Lyman-
β absorbers have been detected, it is not clear if they are due to a large
swath of neutral IGM gas or a single absorber.iv Simulations suggest that
increasing the sample of such quasars by a factor of a few could lead to
useful constraints when̄xHI > 0.1, the regime in which the finite bubble
size starts to affect the Lyman-β near-zone size.

Another difficulty with near-zone measurements, just as with the classical
proximity effect, is the biased region in which the quasar lives. Although the
gas is only significantly overdense in a relatively small region immediately
around the quasar, even modest overdensities in the dark matter can lead
to substantial overdensities in the biased galaxy population. Moreover, the
ionized bubble generated by these galaxies reaches much larger distances
than the galaxy overdensity itself – even the tens of comoving Mpc typical
of a bright quasar’s near-zone. The easiest way to understand this is to think
of the overdense region as a piece of a Universe withΩm > 1: in that
case structure formation proceeds faster, because of the increased gravity,

ivThese kinds of identifications are further complicated by the damping wing absorption
that we will examine next.
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and both the local ionized fraction and the ionized bubbles themselves grow
faster as well. This implies that the ionized fraction measured from the
quasar near-zone will be biased relative to the true average.

11.4 THE RED DAMPING WING

If photons generated near to the Lyman-α line, but still redward of it, en-
counter nearly neutral gas withτα > 105, the broad Lyman-α absorption
line can significantly affect their transfer through the IGMeven though they
remain relatively far from resonance. Considering only theregime in which
|ν− να| ≫ Λα (and neglecting the broadening introduced by the finite tem-
perature of the IGM), we may ignore the second term in the denominator
of equation (4.8). If we assume that the IGM has a uniform neutral frac-
tion x̄D at all points between the edge of a source’s local ionized bubble
(which we callzb) andzreion, this leads to an analytical result valid within
the red damping wingof the Gunn-Peterson trough for the optical depth at
an observed wavelengthλobs = λα(1 + z):201

τD(z) = ταx̄D

(

Λ

4π2να

)(

1 + zb
1 + z

)3/2 [

I

(
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)
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(
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)]
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(11.21)
for z > zb, where

I(x) ≡ x9/2
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Note that here we definez as the redshift at which the observed photon
would have passed through Lyman-α; however, whenz > zb this never
actually happens. This expression is formally only valid far from line center,
but that is usually acceptable because the central optical depth is so large that
the prediction there need not be precise. It also assumesΩm(z) ≈ 1, which
is adequate at the high redshifts of interestz ≫ 1.

At wavelengths for which|x − 1| ≪ 1, one can approximate theI(x)
factors with their asymptotic limits; in that case,

τD(z) ≈ ταx̄D

(

Λ

4π2να

)

c(1 + z)

H(z)

(

1

Rb1
− 1

Re

)

, (11.23)

whereRb1 is the comoving distance to the edge of the source’s ionized
bubble andRe is the comoving distance to the surface defining the “end”
of reionization. As a rule of thumb, the damping wing opticaldepth ap-
proaches unity at a velocity offset of∼ 1500 km s−1, which corresponds to
∼ 1 proper Mpc atz ∼ 10.
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The exciting observational prospect is that, within this red damping wing,
the optical depth experienced by the photons approaches order unity over a
fairly wide range of redshifts: this means that the damping wing optical
depth can be measured relatively easily, in contrast to the strongly saturated
absorption at line center. Crudely, if we can therefore measurezs andτ(z)
we can obtain an estimate for the IGM neutral fraction.

Figure 11.6 illustrates the resulting absorption profiles for three choices of
x̄D = 0.9, 0.5, and 0.1 (thin dashed, solid, and dotted curves, respectively);
in all cases we takezreion ≪ zb. Here the abscissa measures the wavelength
offset from the source redshiftzs; we takezb, where neutral gas first appears,
to be 5 comoving Mpc from the source. Note that, especially for the more
neutral cases, the absorption extends to fairly large redshift offsets from line
center:z− zs = 0.01(1+ zs) translates to an observed wavelength offset of
12(1+ zs) Å. The differences between these curves suggests that the profile
of absorptionredward of Lyman-α may be a powerful probe of the IGM
ionization state.

The dot-dashed line in Figure 11.6 shows the absorption profile of a sin-
gle absorbing cloud at a fixed location (i.e., a DLA), normalized to have the
same transmission atzs as thēxD = 0.1 curve. Obviously, the IGM absorp-
tion profile is much gentler than that from a DLA, extending tomuch larger
redshift offsets. Indeed, equation (11.23) shows that the optical depth scales
as the inverse of the wavelength offset between the observedwavelength
andλα at the source redshift. In contrast, DLAs haveτ ∝ ∆λ−2; the differ-
ence arises because a photon traveling through the IGM continues to redshift
away from line center, so a photon at a given final (observed) wavelength
therefore began its travels closer to line center and must have experienced
a larger optical depth than one would expect had it remained at a constant
frequency through the entire column. In practice, this may be a crucial
discriminant between absorption intrinsic to a high-redshift source (taking
the form of a DLA) and that from the IGM. For example, nearly all GRBs
at lower redshifts have associated high-column absorbers.202 The different
absorption profiles are crucial for identifying the nature of the Lyman-α ab-
sorption.

Unfortunately, the simple toy model we have used so far does not accu-
rately describe the IGM during reionization, and real damping wing absorp-
tion profiles are likely to be somewhere between these two limits. We have
already seen that in most reionization scenarios the IGM hasa two-phase
structure, with seas of neutral gas surrounding bubbles of ionized matter. A
typical line of sight through the IGM will therefore pass through a “picket
fence” of absorbers composed of alternating patches of nearly neutral and
nearly ionized gas. The resulting absorption profiles, shown for a toy model
by the thick lines in Figure 11.6, are steeper than those in a uniform IGM
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Figure 11.6 Damping wing absorption profiles, as a function of fractional wavelength offset
from the source (at redshiftzs). The thick curves show the absorption profiles
for x̄D = 0.9, 0.5, and0.1 assuming the “picket fence” model of absorption
(with the dashed, solid, and dotted curves, respectively).Note that the two
dashed curves overlap and are practically indistinguishable. The corresponding
thin curves show the absorption profiles for uniformly ionized IGM normalized
to the same transmission atzs. The dot-dashed curve shows the profile of a
DLA, normalized to the same transmission as thex̄D = 0.1 curves atzs. Figure
credit: Mesinger, A. & Furlanetto, S.R.,Mon. Not. R. Astron. Soc., 385, 1348
(2008). Copyright 2008 by the Royal Astronomical Society.
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(unless the ionized bubbles are very rare) but shallower than for a DLA:
essentially, the photon passes through a series of quasi-DLAs punctuated
by clear, non-absorbing H II regions. Nevertheless, because their frequency
still changes as they travel, they experience more absorption than for a single
cloud.

Obviously, this introduces some significant complicationsinto interpret-
ing the damping wing. The easiest way to see this is to consider a crude
estimate for the average ionized fraction in a uniform IGM from inverting
equation (11.23). Here we can estimatex̄D from the absorption at a single
wavelength, provided that we assume a1/∆λ profile to be accurate. (Note
that we could also estimatezb from the peak of the absorption line.) In this
“picket fence” model, the true optical depth is a sum over that from all the
neutral stretches of the IGM, or

τ(z) ≈ τα

(

Λ

4π2να

)

(1 + z)2
∑

i

(

1

z − zb,i
− 1

z − ze,i

)

. (11.24)

where theith neutral patch stretches betweenzb,i and ze,i. If we naively
equate this true expression to equation (11.23) and solved for x̄D, we find

x̄D ≈ (z − zb,1)
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〉
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If we take a particularly simple model for the picket fence absorbers, in
which the ionized and neutral patches have fixed lengthsRb andfRb, where
f = (1 −QHII)/QHII ensures the proper filling fraction of the bubbles, we
can perform this sum and calculate the bias in our estimatorx̄D:

x̄D =
1

2

∞
∑
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1
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− 1
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(11.26)
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2

]
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This differencēxD − (1−QHII) is always positive and peaks at∼ 0.3 when
QHII = 0.5, though the fractional bias continues to increase asQHII →
1. The actual amount of the bias of course depends upon the particular
model of reionization (and in particular the size distribution and clustering
of the H II regions); more detailed simulations have comparable (though
slightly smaller) bias. This means that the damping wing requires non-trivial
modeling to interpret it properly in the context of reionization.

Even if this bias can be corrected, a second problem is that different lines
of sight inevitably pass through different sets of ionized and neutral patches,
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so there can be large scatter in the absorption profiles even for a givenQHII

and bubble size distribution. This scatter becomes particularly important in
the late stages of reionization, because the damping wing optical depth is
rather sensitive to the size of the first neutral patch.

Figure 11.7 illustrates these two problems in the context ofa more realis-
tic semi-numerical model of reionization. The curves show the probability
distribution ofδxD

≡ x̄D/(1−QHII)− 1 for a variety of bubble filling fac-
tors. Note that the means of these distributions are non-zero (implying a bias
in the estimator) and the scatter increases dramatically inthe later stages of
reionization. This means that reliable estimates of the IGMproperties will
require a large number of lines of sight with measured damping wings.

Figure 11.7 Probability distributions of the fractional bias in a simple damping wing esti-
mate of the ionized bubble filling factor,δxD

≡ x̄D/(1 − QHII) − 1. The
different curves show different stages in reionization; all are computed with a
semi-numerical simulation of reionization. Note that the mean is always non-
zero, and the distribution becomes both wider and more biased as reionization
progresses. Figure credit: Mesinger, A. & Furlanetto, S.R., Mon. Not. R.
Astron. Soc., 385, 1348 (2008). Copyright 2008 by the Royal Astronomical
Society.

Because the damping wing absorption profile must itself be measured
at high signal-to-noise, damping wing constraints on reionization require
very bright sources. The two most likely candidates are quasars and GRBs.
The former have the advantage of lying inside large H II regions, which
decreases the bias and scatter in the estimators; however, they often also
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have substantial Lyman-α lines with unknown intrinsic properties, which
complicates the measurement of the damping profile.

Figure 11.8 illustrates some of the complexities of a damping wing mea-
surement with a quasar atz = 7.085, ULAS J1120+0641. We show the
spectrum normalized to a composite constructed from lower-redshift quasars,
which provides a surprisingly good fit to the data (though it appears to un-
derestimate the Lyman-α line strength in this particular object). Provided
that the template is accurate, the binned curve in the Figuretherefore shows
the measured transmission. As expected, this declines rapidly slightly blue-
ward of the Lyman-α line center; this is the “near-zone” discussed above.
This quasar has a very small near-zone, indicating either a high column den-
sity absorber along the line of sight, the presence of a substantially neutral
IGM that the quasar still must ionize, or a very young age for the quasar.
The smooth curves show the expected absorption for several IGM scenar-
ios. The second curve from the top at the Lyman-α wavelength shows the
absorption profile from a DLA 21 comoving Mpc in front of the source. The
others show the absorption expected from a uniformly neutral IGM begin-
ning 17.8 comoving Mpc in front of the quasar; these takex̄D = 0.1, 0.5,
and 1, from top to bottom. Of these, the DLA profile appears to provide the
best fit; however, more sophisticated fits taking into account the inhomoge-
neous ionization structure of the IGM could also match the data.

GRBs have much simpler intrinsic spectra (nearly power-lawover this
range), which makes extracting the damping wing easier. However, their
host galaxies often have strong DLA absorbers, which interfere with the
damping wing, and their position inside of small galaxies makes the bias
and scatter large. It is not clear which will eventually prove more useful,
though in either case constructing samples of many sources will be diffi-
cult. Also, in contrast to quasars, GRBs (and their faint host galaxies) have
a negligible influence on the surrounding intergalactic medium. This is be-
cause the bright UV emission of a GRB lasts less than a day, compared with
tens of millions of years for a quasar. Therefore, bright GRBs are unique in
that they probe the true ionization state of the surroundingmedium without
modifying it.

11.5 THE LYMAN- α FOREST AS A PROBE OF THE REIONIZATION TOPOL-

OGY

Given the utility of the Lyman-α forest for understanding the ionization state
of the IGM at low and moderate redshifts, the extension of these techniques
to the cosmic dawn appears to provide an obvious test of the topology and
nature of the reionization process. However, we have already seen that the
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Figure 11.8 Rest-frame transmission profile of ULAS J1120+0641, in the region of the
Lyman-α emission line, compared to several model absorption profiles. The
transmission profile of ULAS J1120+0641, obtained by dividing the spectrum
by a lower redshift quasar composite spectrum, is shown as the binned curve.
The random errors are plotted below the data (across all wavelengths). The
other error curve shows the uncertainty in the Lyman-α equivalent width. Three
of the four smooth curves in the upper panel show the expectedabsorption from
an IGM damping wing with̄xD = 1, 0.5, 0.1 located a distanceRb = 17.8 Mpc
in front of the quasar (bottom, second from bottom, and top curves at the
Lyman-α wavelength). The other curve (second from top) shows a DLA ab-
sorber withNHI = 4 × 1020 cm−2 located a distance21 Mpc in front of the
quasar. Figure credit: Mortlock, D. et al.,Nature, 474, 616 (2011). Copyright
2011 by Nature Publishing Group.
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Gunn-Peterson optical depth is large at this time, even in highly ionized gas.
It is thus not obvious that we should expect a clear signatureof the ionized
bubbles.

Nevertheless, the nature of the transformation from a bubble-dominated
IGM to the post-reionization “web-dominated” IGM does offer some hope.
Once the ionized bubbles become larger than the mean free path of the ioniz-
ing photons, the ionizing background saturates – even if theUniverse were
fully-ionized, the metagalactic background would not increase. Thus, in
bubbles that have reached this saturation limit, we can expect nearly as much
transmission as in the post-reionization IGM.

On the other hand, there is one additional factor to consider: the damping
wing from the neutral gas surrounding each ionized bubble. With the rule of
thumb thatτD < 1 only at distances> 1 proper Mpc from fully neutral gas,
this requires that ionized bubbles be at least a few proper Mpc large in order
to allow for any transmission. Fortunately, in most reionization models this
constraint is easily fulfilled, at least in the latter half ofreionization (see
Fig. 9.5, for example).

Bubbles that allow transmission must be very large in order to build up
a high enough ionizing background and avoid the damping wing, so they
contain an enormous number of luminous sources. This in turnmeans that
their ionizing background is fairly uniform (except at the edges of the bub-
ble, but there the damping wing is large anyway). Thus, just as in the
post-reionization IGM, transmission will most likely comefrom highly-
underdense voids in which the neutral fraction is small. Equation (11.15)
shows thatτα < 1 requiresδ < 0.1–0.2. Such deep voids are very rare
at high redshifts, because structure formation is still in its infancy – and of
course such regions are very far from galaxy concentrationsand so are likely
to remain in neutral regions throughout nearly all of reionization.

Thus, we expect transmission spikes to be extremely rare (but not impos-
sible) during reionization. With models for the H II region sizes, the emis-
sivity of the galaxies driving reionization, and of the density distribution
of the IGM, it is not difficult to estimate the possible abundance of trans-
mission features. Figure 11.9 shows an optimistic example calculation for
transmission atz = 6.1 (in the range probed by the highest-redshift known
quasars). The curves show that observable transmission gaps with τ < 2.3
occur only about once per total observed forest path length of ∆z ∼ 3.

In reality, transmission will be even more rare because thissimple cal-
culation makes the optimistic assumption that photons travel to the edge of
their bubble, without any limits from LLSs in the IGM. But even so, Fig-
ure 11.9 shows that they are sufficiently rare that precise quantitative con-
straints on reionization from any such transmission spikeswill require much
larger samples of quasars or GRBs than currently available.Drawing con-
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Figure 11.9 A model for the expected cumulative number of Lyman-α forest transmission
features atz = 6.1 if the IGM hasQHII = 0.9, 0.85, 0.8, and0.75 (solid,
long-dashed, short-dashed, and dotted curves, respectively). The calculation
uses the excursion set model for reionization (see§9.4) and an inhomogeneous
IGM density distribution calibrated to simulations at lower redshifts. Figure
credit: Furlanetto, S.R. et al.,Mon. Not. R. Astron. Soc., 354, 695 (2004).
Copyright 2004 by the Royal Astronomical Society.

clusions about reionization from the forest is instead verydifficult. Indeed,
some simulations of the reionization process show that the present data can-
not even rule out reionization ending atz < 6, since some small pockets
of neutral gas could remain, buried inside the long stretches of saturated
absorption that are common at this time.203

Overall, the Lyman-α forest (especially together with absorption in Lyman-
β and Lyman-γ) is best at constraining the very end of the reionization era,
as discussed in§4.7, unless the red damping wing can be measured on its
own.
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Figure 11.10 Halo of scattered Lyman-α line photons from a galaxy embedded in the neutral
IGM prior to reionization (also called aLoeb-Rybicki halo); seeColor Plate 24
for a color version of this figure. The line photons diffuse infrequency due to
the Hubble expansion of the surrounding medium and eventually redshift out
of resonance and escape to infinity. A distant observer sees aLyman-α halo
surrounding the source, along with a characteristically asymmetric line profile.
The observed line should be broadened and redshifted by∼ 1000 km s−1

relative to other lines (such as Hα) emitted by the galaxy.

11.6 LYMAN-α HALOS AROUND DISTANT SOURCES

11.6.1 The Scattering of Damping Wing Photons

As we have already discussed in the context of Lyman-α scattering within
galaxies, Lyman-α line photons emitted by these galaxies are not destroyed
but instead are absorbed and re-emitted as they scatter. Forscattering in the
uniform IGM, this problem is particularly simple and illuminates more of
the physics of the scattering process. For simplicity, we will neglect the H II
regions surrounding a galaxy here and imagine photons that begin on the red
side of the line and scatter through the Hubble flow away from their source.

Due to the Hubble expansion of the IGM around the source, the frequency
of the photons is slightly shifted by the Doppler effect in each scattering
event. As a result, the damping wing photons diffuse in frequency to the red
side of the Lyman-α resonance. Eventually, when their net frequency red-
shift is sufficiently large, they escape and travel freely towards the observer
(see Figure 11.10). As a result, the source creates a faint Lyman-α halo on
the sky.v TheseLoeb-RybickiLyman-α halos can be simply characterized

vThe photons that begin blueward of Lyman-α and get absorbed in the Gunn-Peterson
trough are also re-emitted by the IGM around the source. However, since these photons
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by the frequency redshift relative to the line center,ν⋆ = |ν − να|, which is
required in order to make the optical depth from the source equal to unity.
At high redshifts, the leading term in equation (11.21) yields

ν⋆ = 8.85 × 1012 Hz ×
(

Ωbh

0.05
√

Ωm

)(

1 + zs
10

)3/2

, (11.28)

as the frequency interval over which the damping wing affects the source
spectrum. A frequency shift ofν⋆ = 8.85 × 1012 Hz relative to the line
center corresponds to a fractional shift of(ν⋆/να) = (v/c) = 3.6 × 10−3

or a Doppler velocity ofv ∼ 103 km s−1. The Lyman-α halo size is then
defined by the corresponding proper distance from the sourceat which the
Hubble velocity provides a Doppler shift of this magnitude,

r⋆ = 1.1

(

Ωb/0.05

Ωm/0.3

)

Mpc. (11.29)

Typically, the observable Lyman-α halo of a source atzs ∼ 10 occupies an
angular radius of∼ 15′′ on the sky (corresponding to∼ 0.1r⋆) and yields an
asymmetric line profile as shown in Figures 11.10 and 11.11. The scattered
photons are highly polarized, with the polarization direction determined by
the orientation of the observer relative to the last scattering atom. Thus, the
shape of the halo would be different if viewed through a polarized filter.204

Detection of the diffuse Lyman-α halos around bright high-redshift sources
(which are sufficiently rare so that their halos do not overlap) would pro-
vide a unique tool for probing the gas distribution and the velocity field of
the neutral IGM before the epoch of reionization. The Lyman-α sources
serve as lamp posts which illuminate the surrounding H I fog.However,
due to their low surface brightness, the detection of Lyman-α halos through
a narrow-band filter is much more challenging than direct observation of
their sources. Moreover, the velocity fields around these galaxies may be
complicated by winds and infall, which would affect the linebrightness and
profile in similar ways to those discussed in§11.1.1.

11.6.2 Lyman-α Blobs

A particularly interesting example of Lyman-α line emission in the interface
between galaxies and the IGM are the so-called “Lyman-α blobs” (LABs)
originally discovered in narrowband images at moderate redshifts (z ∼

originate on the blue side of the Lyman-α resonance, they travel a longer distance from the
source, compared to the Lyman-α line photons, before they escape to the observer. The
Gunn-Peterson photons are therefore scattered from a larger and hence dimmer halo around
the source.
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Figure 11.11 Monochromatic photon luminosity of a Lyman-α halo as a function of normal-
ized frequency shift from the Lyman-α resonance,̃ν ≡ (να − ν)/ν⋆. Note
that only the photons inside the red damping wing scatter in this compact halo;
those on the blue side of Lyman-α scatter at much larger distances. The ob-
served spectral flux of photonsF (ν) (in photons cm−2 s−1 Hz−1) from the
entire Lyman-α halo isF (ν) = (L̃(ν̃)/4πd2

L)(Ṅα/ν⋆)(1 + zs)
2 whereṄα

is the production rate of Lyman-α photons by the source (inphotons s−1),
ν = ν̃ν⋆/(1 + zs), anddL is the luminosity distance to the source. Figure
credit: Loeb, A. & Rybicki, G. B.Astrophys. J.524, 527 (1999). Reproduced
with permission of the American Astronomical Society.
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3).205 So far, several tens of LABs have been found in the redshift range
z ∼ 2–7, making them much more common than initially expected.206

These blobs have a range of properties, but all are characterized by sig-
nificantly extended Lyman-α line emission (ranging in size from∼ 10 kpc
“halos” around star-forming galaxies to> 150 kpc giants with no obvious
central galaxy in the rest-frame ultraviolet). Some appearto be diffuse ellip-
tical objects, while others are much more filamentary. The brighter objects,
with line luminositiesL > 1044 erg s−1, are extraordinarily powerful, cor-
responding to star formation rates> 50 M⊙ yr−1 if their energy source is
attributed to obscured star formation. The lines can be quite broad but do
not show any unusual features like double-peaked profiles. Two example
objects are shown in Figure 11.12.

Bright LABs are typically located near massive galaxies that reside in
dense regions of the Universe. Multi-wavelength studies ofLABs reveal
a clear association of the brighter blobs with sub-millimeter and infrared
sources which form stars at exceptional rates of∼ 103 M⊙ yr−1, or with
obscured active galactic nuclei (in fact, strong Lyman-α emission has been
known for many years to surround some high-redshift radio galaxies).207

However, other blobs have been found that are not associatedwith any
source powerful enough to explain the observed Lyman-α luminosities.208

The origin of LABs is still unclear. Some models relate LABs to cooling
radiation from gas assembling into the cores of galaxies.209 Other mod-
els invoke photoionization of cold (T ∼ 104 K), dense, spatially extended
gas by an obscured quasars210 or extended X-ray emission;211 the compres-
sion of ambient gas by superwinds to a dense Lyman-α emitting shell;212 or
star formation triggered by relativistic jets from AGN.213 The latest mod-
els relate LABs to filamentary flows of cold (∼ 104K) gas into galaxies,
which are generically found in numerical simulations of galaxy formation
(see§8.2).214 These cold flows contain∼ 5–15% of the total gas content in
halos as massive asMhalo ∼ 1012–1013M⊙.215

Although these objects have only been observed in detail so far at low
redshifts, similar mechanisms offer the prospect of learning not only about
star formation inside of high-redshift galaxies and the gross properties of
the IGM but also about the detailed structure of the gas accreting onto, or
flowing out of, young galaxies. Lyman-α studies may therefore ultimately
hold the key to understanding the initial stages of galaxy formation and
growth.

11.6.3 Lyman-α Emission From the Intergalactic Medium

One additional source of diffuse Lyman-α emission may be important in
the pre-reionization era: photons generated by IGM gas.216 In principle,
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Figure 11.12Left: A false color image of a Lyman-α blob (LAB) at a redshiftz = 2.656.
The hydrogen Lyman-α emission is shown in blue, and images in the optical
V-band and the near-infrared J and H bands are shown in green and red, re-
spectively. Note the compact galaxies lying near the northern (top) end of the
LAB. The Lyman-α image was obtained using the SuprimeCam imaging cam-
era on the Subaru Telescope, and the V, J, and H band images were obtained
using the ACS and NICMOS cameras on the Hubble Space Telescope. This
LAB was originally discovered by the Spitzer Space Telescope. Image credit:
Prescott, M., & Dey, A. (2010).Right: A false color image of an LAB at a
redshiftz = 6.6, obtained from a combination of images at different infrared
wavelengths. SeeColor Plate 25for a color version of this figure. Image
credit: Ouchi, M. et al.Astrophys. J.696, 1164 (2009). Reproduced with
permission of the American Astronomical Society.

this may allow us to image the ionized phase as it fills the Universe.
Conceptually, there are two possible sources for such emission. First, in

any portion of the ionized medium, the gas will continually recombine, gen-
erating Lyman-α photons at roughly two-thirds of this recombination rate.
These photons will then propagate toward the observer. If wecharacterize
the clumpiness of the volume byC ≡

〈

n2
e

〉

/ 〈ne〉2, this Lyman-α photon
production rate, per unit volume, is

ṅα,IGM =
2

3
αB 〈ne〉 〈np〉C, (11.30)

where we conservatively adopt the case-B recombination rate, assuming that
the ionizing photons generated by recombinations directlyto the ground
state escape to fully neutral gas at the edge of the ionized region. A region
of volumeV will therefore produce a number flux of Lyman-α photons∼
ṅα,IGMV/4πd

2
L. Assuming that the region is expanding at the usual Hubble

flow rate, the relevant column density over a given observingband is simply
determined by the radial distance corresponding to the band, so the surface
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brightness per unit wavelength of the emissionvi is

dΦ

dλobs
≈ 1

4π

ṅα,IGM

(1 + z)3
drp
dz

dz

dλobs
(11.31)

≈ 0.032C

(

1 + z

10

)1/2

photons cm−2 s−1 sr−1 Å
−1
,(11.32)

where the factor(1 + z)−3 is the usual cosmological surface dimming,
(dA/dL)2, modified for our definition in terms of photon number flux rather
than energy flux.

In principle, a spectrum along any given line of sight would thus show an
enhancement in the background atλα(1 + zr), wherezr is the location of
the reionization surface, followed by an alternating pattern of high and low
intensity as the line of sight passes through the patchwork of H II regions.
However, unless the IGM is extremely clumpy, the surface brightness pro-
vided by equation (11.32) is very small and unlikely to be detectable in any
reasonable observation for the foreseeable future.

Fortunately, there is a second effect that can substantially increase the
photon flux emerging from the hot “skin” of an ionization front propagating
into the nearly-neutral IGM: collisional excitation. Hydrogen line cooling is
by far the most important cooling mechanism for gas of primordial compo-
sition andT ∼ 104–105 K, and a substantial fraction of that line emission
is deposited in the Lyman-α line. The emissivity in this case is

ṅα,CE = nenHIq
tot
Lyα(T ), (11.33)

whereqtotLyα is the rate at which collisions generate Lyman-α photons (in-
cluding those generated through cascades from higher electronic levels).
This last function increases rapidly nearT ∼ 104 K and peaks atT ∼
4 × 105 K; however, at those high temperatures the gas is nearly entirely
ionized, sonHI is small and the Lyman-α emission rate decreases again.

Put another way, thetotal amount of Lyman-α emission thus depends
upon the thermal energy imparted to each parcel of gas duringthe photoion-
ization process:ṅα,CEtcool ∼ nk(Ti − Tf ), whereTi is the initial post-
ionization temperature andTf is the final value. The physics of line exci-
tation then determines the relevant cooling time as well as afactor of order
unity determining the fraction of the thermal energy released as Lyman-
α photons. The strongest emission will therefore surround spectrally hard
sources, which heat the gas to high temperatures (see§9.9).

viThe surface brightness is the flux per solid angle from an object, or the flux divided by
As/d2

A whereAs is the proper area of the object.
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BecauseqtotLyα depends sensitively on temperature, and becausenHI changes
rapidly within the ionization front, a detailed estimate ofthe surface bright-
ness requires a radiative transfer simulation. A simple estimate, informed
by such simulations, is to simply integrate the specific intensity through the
ionization front, so that

ILyα ≈ 1

π

∫

nα,CEdr (11.34)

∼ f

π
CAn2

p

(

1

σHI,〈ν〉np

)

qtotLyα(〈T 〉), (11.35)

whereA is a geometric factor of order unity describing the run ofxHI

through the ionized front and we have evaluated the collisional excitation
rate at an effective temperature〈T 〉. The factor1/π accounts for the frac-
tion of photons directed toward the observer. We have also introduced the
clumping factorC to describe the enhancement in the collision rate inside a
clumpy medium. Finally, we have characterized the thickness of the ioniza-
tion front by the mean free path of a photon at a mean energy〈ν〉, andf is
the fraction of the Lyman-α photons that escape to the observer.

The corresponding surface brightness (integrated across the entire ioniza-
tion front) is thenΦ ∼ ILyα/(1 + z)3, which is independentof redshift
because the decreased thickness of the ionization front compensates for sur-
face brightness dimming. With〈T 〉 = 3 × 104 K and〈ν〉 = 3νHI,217

Φ ∼ 10C

(

f

0.5

A

1/4

)

photons cm−2 s−1 sr−1. (11.36)

The fiducial choice forA simply takesxHI(1 − xHI) ∼ 1/4 in the primary
emission zone.

Even with reasonably optimistic clumping factors ofC ∼ 5, this is still
a rather low surface brightness, and its detection presentsa substantial chal-
lenge for the largest telescopes available. Even if a signalcan be detected,
another challenge remains in distinguishing IGM emission from the inte-
grated background generated inside the ISM of unresolved high-redshift
galaxies (see§13.2.1). However, searches around known bright quasars
with relatively large H II regions allow one to integrate over substantial
areas on the sky and search for a “coherent” signal representing the entire
outer boundary of the ionized bubble.

11.7 LYMAN-α EMITTERS DURING THE REIONIZATION ERA

We now return to discuss the properties of more normal galaxies that have
Lyman-α lines, commonly referred to as Lyman-α emitters or LAEs. We
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saw in§10.2.1 that this strong emission line provides a convenientmarker
for young star-forming galaxies, and one of the most efficient ways to find
distant galaxies is with narrowband searches that identifysources with strong
emission lines in a narrow redshift range.

We have seen in§11.1.1 that the intrinsic properties of the Lyman-α
line depend on a host of complex factors. However, we have also found
in §11.3.1 and 11.4 that resonant absorption in the ionized IGM and much
stronger absorption from neutral gas – even from the dampingwing for pho-
tons that do not pass through resonance – can also strongly affect the line
(both in its amplitude and profile); this latter factor is denotedT int

Lyα in equa-
tion (11.2). These effects make the Lyman-α emission lines of galaxies an
interesting and potentially powerful probe of IGM properties. However, we
must always bear in mind the complexity of the intrinsic lineas an important
source of systematic confusion for such a probe.

Figure 11.13 shows how this IGM reprocessing can dramatically alter the
observed line intensity and profile; the top panel shows the lines, while the
bottom panel shows the corresponding optical depth profiles. In the top
panel, the upper dotted curve shows the assumed intrinsic line, which we
place atz = 10 and take as a Gaussian with width27 km s−1 (these are
arbitrary choices chosen for illustrative purposes). The other curves show
the effects of IGM reprocessing, including both the dampingwing from
fully neutral gas at a distanceRb from the line source (withRb decreas-
ing from top to bottom) and resonant scattering from the ionized medium
within (except for the lower dotted curve). The optical depths providing this
absorption are shown in the bottom panel: the nearly-horizontal lines are
the damping wing optical depths (withRb increasing from bottom to top),
while the dotted curve shows the resonant value.

Note that the resonant absorption is large everywhere blueward of line
center, but it is modest or negligible on the red side. This isa rather generic
result (here we have included only the ionization from the galaxy itself,
which dominates on the relevant scales, so the ionization structure on large
scales is negligible); in general, we expect LAEs atz > 5 to have asymmet-
ric line profiles, with the blue side cut off by resonant IGM absorption.vii

However, the damping wing absorption that affects the red side (as well
as the blue side) depends sensitively on the large scale environment, and in
particular the displacement from the source to the nearest neutral gas. As
described above, a bubble withRb = 1 proper Mpc producesτD ≈ 1;

vii In principle, this could be avoided if the line center is displaced redward of the galaxy’s
redshift, owing to reprocessing through a wind (see§11.1.1). However, nearly all observed
LAEs (and Lyman-α emission lines from other moderate- and high-redshift galaxies) are
asymmetric, even if they have large wind velocities.
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Figure 11.13Top: Example line profiles for a galaxy atz = 10. The upper dotted curve
shows the intrinsic line profile, assumed to be a Gaussian with standard de-
viation27 km s−1. The solid, long-dashed, and short-dashed curves show the
observed line after reprocessing through the IGM; they place the galaxy in ion-
ized bubbles with radiiRb = 10, 5, and3 comoving Mpc, respectively. The
lower dotted curve shows the line if we neglect resonant absorption within the
ionized bubble, assumingRb = 10 Mpc. Bottom: The dotted line shows
the resonant absorption from the ionized bubble. The solid,long-dashed,
short-dashed, and dot-dashed curves show the damping wing optical depth
for Rb = 10, 5, 3, and1 Mpc, respectively. Figure credit: Furlanetto, S.R. et
al.,Mon. Not. R. Astron. Soc., 354, 695 (2004). Copyright 2004 by the Royal
Astronomical Society.

in fact, this rule of thumb works reasonably well throughoutthe relevant
high-z regime.

We therefore expect that as we penetrate farther back into the reionization
era, with the bubbles growing smaller and smaller, more and more of their
Lyman-α lines will be extinguished by the neutral gas. In the remainder of
this section we will explore the consequences of this naive expectation for
LAE surveys during reionization.
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11.7.1 Galaxies within Ionized Bubbles

In order to understand the interplay between the damping wing and galaxy
populations, we must first understand how galaxies populatethe H II re-
gions that surround them. Fortunately, because we can use the same method
– the excursion set formalism – to compute the halo and ionized bubble
abundances, this is a relatively easy task.

Consider an ionized bubble with massmb and a mean overdensityδb;
according to the model in§9.4, this overdensity is exactly that required for a
collapse fraction large enough to produce one ionizing photon per hydrogen
atom inside the bubble, soδb = B(mb).viii We wish to know the abundance
of galaxies as a function of massm within this ionized bubble,n(m|mb).

In the excursion set picture (see§3.4.2), this is simply proportional to
the fraction of random walks that begin at(mb, δb) and end at(m, δcrit),
whereδcrit is the critical linearized overdensity for halo collapse (which is a
function ofm in, for example, the Sheth-Tormen model). But this problem
is actually identical to the “extended Press-Schechter” problem, in which
we calculated the progenitors of a given halo at an earlier redshift: the only
difference is that here our “descendant halo” is a bubble andwe work at the
same redshift – which is possible because the criterion for an ionized bubble
requires a lower overdensity than halo collapse itself.

Thus we can immediately write

n(m|mb) =

√

2

π

ρ̄

m2

∣

∣

∣

∣

d lnσ

d lnm

∣

∣

∣

∣

σ2[δcrit(z) −B(mb)]

(σ2 − σ2
b )

3/2
exp

{

− [δcrit(z) −B(mb)]
2

2[σ2 − σ2
b ]

}

,

(11.37)
whereσ2 = σ2(m) andσ2

b = σ2(mb).
We can also perform the reverse calculation (analogous to the distribution

of halo descendants) to compute the probabilitypb(mb|m) that a halo of
massm is part of a bubble of massmb. Figure 11.14 shows the results of
this calculation for a small halo (mh = 109 M⊙) and a large one (mh =
1011 M⊙). The different curves in each panel correspond to a sequence
of ionized fractions in a model of reionization. Unsurprisingly, the median
bubble size increases as reionization progresses (becauseall bubbles grow
with time), but note that it also strongly depends on the halomass: large
galaxies are far more likely to reside in large bubbles than average galaxies.
This is just another manifestation of the increasing bias ofgalaxies with
their mass.

viii Here, for simplicity, we ignore recombinations in the calculation.



THE LYMAN-α LINE AS A PROBE OF THE EARLY UNIVERSE 471

Figure 11.14 Probability that halos withmh = 109 and1011 M⊙reside in ionized bubbles
larger than a given radiusRb. Here we use the excursion set model of reioniza-
tion with ζ = 40; the bubble sizes are relatively independent of this choice, for
a fixedQHII, but the halo populations themselves are highly-redshift depen-
dent. In each panel, the curves correspond toz = 12 (QHII = 0.74, solid),
z = 13 (QHII = 0.48, long dashed),z = 14 (QHII = 0.3, short-dashed),
z = 15 (QHII = 0.19, dotted),z = 16 (QHII = 0.11, dot-dashed), Figure
credit: Furlanetto, S.R. et al.,Mon. Not. R. Astron. Soc., 354, 695 (2004).
Copyright 2004 by the Royal Astronomical Society.

11.7.2 LAE Number Counts During Reionization

Next let us imagine performing a sequence of narrowband LAE searches at
progressively larger redshifts. We expect that, once the typical bubble size
falls below∼ 1 proper Mpc, the IGM damping wing will start to extinguish
the Lyman-α emission lines even if the galaxies still exist. We might there-
fore imagine a simple counting exercise as a test for reionization, aiming to
see a decline in the abundance of LAEs.

Of course, there are many other reasons why the LAE density may de-
cline – most obviously, the halo mass function changes rapidly with z at
these early times, so the galaxy abundance most likely does as well. Ideally
one would therefore calibrate the experiment to a broadbandgalaxy sur-
vey that is not subject to the same selection effects – if the LAE abundance
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declines precipitously while the overall galaxy density declines only gen-
tly, that would be good evidence for IGM absorption. Similarly, one could
also imagine identifying a galaxy sample using photometrictechniques (as
in §10.2.2) and then following them up spectroscopically to determine how
their Lyman-α lines evolve. Note, however, that the complicated physics of
Lyman-α generation and transfer within galaxies always leaves someroom
for doubt, since such a decline could also be attributed to the evolving IMF
of stars or changes in their dust content.

Nevertheless, this simple test is very attractive. We can use the excursion
set formalism described in§11.7.1 to estimate how the abundance would
decline. We ignore the effects of resonant absorption (since they depend on
the local environment of the galaxy and hence are unlikely toevolve rapidly
during reionization) but include the damping wing absorption from neutral
IGM gas. Let us suppose that the survey is sensitive to all sources with
L > Lmin. If we then takeL ∝ m for simplicity, a galaxy halo of massm
will be detected only if the damping wing hasτD < ln(m/mmin), where
L(mmin) = Lmin. Then the number density of observable galaxies is

n(> L) =

∫

dmb nb(mb)Vb

∫ ∞

mD

dmn(m|mb), (11.38)

wheremD is the minimum halo mass that remains observable inside a bub-
ble of massmb and volumeVb. Note thatmD decreaseswith mb, since
larger bubbles cause less damping wing absorption. Of course, in realityτD
is a function not only of bubble size but of a galaxy’s position within the
bubble: those at the edge always experience strong absorption.

This simple model is in good agreement with more detailed calculations
using simulations of reionization (either full-scale or semi-numerical). Fig-
ure 11.15 shows the luminosity function at several different neutral fractions
(including fully ionized, top curve) measured in a semi-numerical simula-
tion. Clearly damping wing absorption from the neutral gas can have an
enormous effect on the observed abundance of galaxies in these surveys.

The detailed calculation reveals two interesting effects.First, the frac-
tional decline is relatively modest (no more than a factor∼ 2) until QHII <
0.5; beyond that point the abundance declines precipitously. This is be-
cause the ionized bubbles have characteristic sizes∼ 10 comoving Mpc, or
∼ 1 proper Mpc, whenQHII ∼ 0.5. Larger bubbles, late in reionization,
haveτD < 1 and so have only a small effect on the observed abundance.

The second factor is visible in the bottom panel of Figure 11.15: evidently
the fractional decline in LAE abundance is nearly independent of halo mass
(or intrinsic luminosity). This occurs because the distribution ofτD is quite
broad (roughly lognormal), due not only to the range of halo sizes but also
to the distribution of galaxies within each bubble. For faint galaxies, which
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Figure 11.15 Luminosity function of LAEs atz = 9 in a semi-numeric simulation of reion-
ization, as a function of the mean neutral fractionx̄HI = 1 − QH II. The
sequence of curves from top to bottom goes from small to largex̄HI. The
bottom panel shows the ratio of the curves to that in a fully-ionized Universe.
Figure credit: Mesinger, A. & Furlanetto, S.R.,Mon. Not. R. Astron. Soc.
386, 1990 (2008). Copyright 2008 by the Royal Astronomical Society.

roughly follow a power-law intrinsic distribution, the convolution of these
two effects preserves the power law. At the bright end, wherethe intrinsic
luminosity function declines exponentially, the breadth of the τD distribu-
tion masks the change in slope.

11.7.3 LAE Clustering During Reionization

The fact that galaxies within large ionized bubbles remain (relatively) unat-
tenuated while those inside of small bubbles will be extinguished by the
damping wing suggests that not only will the mean number density of LAEs
evolve throughout reionization, but their spatial distribution will evolve as
well. Figure 11.16 shows this explicitly. Each panel shows aslice through
a semi-numeric simulation of reionization; here we fixz = 9 and vary
the ionized fraction across the panels (from fully-ionizedat left to x̄HI ≡
1 − QH II = 0.77 at right). Each white dot corresponds to a galaxy with
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Figure 11.16 Maps of visible LAEs atz = 9 in a semi-numeric simulation, assumingx̄HI ≈
0, 0.26, 0.51, 0.77, from left to right. All slices are 250 Mpcon a side and 20
Mpc deep. We assume that all halos with observed luminosities greater than
that corresponding to an unattenuated galaxy withMh > 1.67×1010 M⊙ are
visible and thatL ∝ Mh. Figure credit: Mesinger, A. & Furlanetto, S.R.,
Mon. Not. R. Astron. Soc.386, 1990 (2008). Copyright 2008 by the Royal
Astronomical Society.

Figure 11.17 Toy model for the excess clustering induced in aLyman-α selected galaxy
population during reionization.(a) First, assume that we have a randomly-
distributed galaxy population. A continuum survey, sensitive to all these
galaxies, would detect no clustering signal.(b) The H II regions generated by
these galaxies: note that, when galaxies are close together, their H II regions
overlap, producing long stretches of nearly ionized gas through which Lyman-
α photons can easily propagate.(c) A LAE survey would only see galaxies
inside these large H II regions, all of which have neighbors (by construction),
so theapparentclustering would be large even though the underlying popula-
tion is randomly distributed.

an observable Lyman-α line, assuming the same model as the last section
for their luminosity function. The overall trend is clear: galaxies that are
relatively isolated in the left-most panel disappear first,while those that are
part of a strong overdensity (near the bottom center of the image) remain
visible even to large neutral fractions.

The best way to describe this phenomenon quantitatively is through the
clustering of the galaxies. A simple toy model illustrates how it enhances the
apparent clustering on small scales (relative to galaxies observed in the con-
tinuum, for example); see Figure 11.17. Suppose that galaxies with number
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densityn̄ are distributed randomly throughout the universe but that we can
only observe those with at least one neighbor within a sphereof volume
V ≪ n̄−1. In other words, the ionized bubbles surrounding such clumped
sources overlap, creating a large enough common bubble to hold the damp-
ing wing at bay. Assuming a Poisson distribution, the numberdensity of
observed objects would be

nobs = n̄(1 − e−n̄V ). (11.39)

As usual the correlation function of the observed sample is defined through
the total probability of finding two galaxies in volumesδV1 andδV2,

δP = n2
obs (1 + ξ) δV1 δV2. (11.40)

However, we know that every observed galaxy has a neighbour within V ;
thus

δP = nobs δV1 (δV2/V ) (11.41)

for small separations (where the factorδV2/V assumes the neighbor to be
randomly located withinV ). Thus,

ξ = 1/(nobsV ) − 1 (11.42)

on such scales: even though the underlying distribution is random, the se-
lection criterion induces clustering. Note that it can be extremely large if
V ≪ n−1

obs.
On large scales, the modulation takes a different form. An observed

galaxy resides in a large bubble, corresponding to an overdense region. Be-
cause of the bias of the underlying dark matter field, that overdense region
will tend to lie near other overdense regions – and hence other large bubbles.
Thus, we will be more likely to see galaxies near the originalobject than in
an average slice of the universe. Because we do not see similar galaxies in
small (less-biased) bubbles, the large-scale bias will generically be larger
than that intrinsic to the galaxies.

Because these two effects have different amplitudes, the bubbles intro-
duce a scale-dependent bias to the correlation function of galaxies, with a
break atr ≈ Rc, whereRc is the characteristic size of the ionized bubbles.
Again using the excursion set formalism, we can estimate this modified bias
in the limitsr ≪ Rc andr ≫ Rc.

By analogy with the halo model for the density field, these limiting regimes
correspond to correlations between galaxies within a single bubble and within
two separate bubbles. We begin with large scales: the observed clustering is



476 CHAPTER 11

the average bias of the bubbles weighted by the number of galaxies in each
H II region (analogous to the two-halo term for the density field):

b∞ =

∫

dmb nb(mb) bH II(mb)Vb

∫ ∞

mD

dmh
nh(mh|mb)

n̄gal
, (11.43)

where we integrate only over those haloes visible after damping wing ab-
sorption,n̄gal is the mean number density of observable galaxies, andbH II(mb)
is the bias of an ionized bubble of massmb (see equation 9.24).

The behavior on small scales is somewhat more subtle. If galaxies were
randomly distributed within each bubble, the simple argument in the first
paragraph of this section suggests that the correlation function would just
be the weighted average of the number of pairs per H II region.However,
in addition to the increase in the number of galaxies in each bubble, the
galaxies also trace density fluctuations within each bubble. On moderately
small scales where nonlinear evolution in the density field may be neglected,
we therefore write

b2sm =

∫

dmb nb(mb)Vb b
2
h(mb)

〈Ngal(Ngal − 1)|mb〉
N̄2

gal

, (11.44)

whereN̄gal = n̄galVb, 〈Ngal(Ngal−1)|mb〉 is the expected number of galaxy
pairs within each bubble andb2h measures the excess bias of these haloes
inside each bubble. Note the similarity to the halo-model calculation of
the galaxy power spectrum here; in fact this form can be derived formally
by constructing the galaxy density field from bubbles and their constituent
haloes, in analogy to the halo model. This term then corresponds to the
“two-halo, one-bubble” term in such a treatment; i.e., correlations between
two particles that lie in the same bubble but different dark matter haloes. The
“bubble profile” describing the distribution of galaxies within the bubble
turns out to be proportional to the square root of the linear matter correlation
function. Provided that the typical bubbles have more than two galaxies, we
can write the expected number of pairs as

〈Ngal(Ngal − 1)|mb〉 ≈ max{0, N̄gal(mb)[N̄gal(mb) − 1]}. (11.45)

The remaining factor isbh(mb). It may seem reasonable to take this
to be the mean value of the usual excursion set halo bias, evaluated over
n(mh|mb). However, the pair density inside each bubblealready includes
much of this bias because it counts the number of galaxies in aregion with
overdensityδb = B. We therefore only want the “excess” bias of the galax-
ies relative to density fluctuations on scales smaller thanmb, which is the
bias evaluated from the conditional mass function in equation (11.37). Fol-
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lowing the excursion set definition of this bias, we have

bh(mh|mb) = 1 +
(δc − δx)2/(σ2 − σ2

b ) − 1

δc(z = 0) − δx(z = 0)
. (11.46)

We show the resulting limiting bias cases atz = 10 as a function ofQHII

in Figure 11.18. In each panel, the different curves take different galaxy
populations, with smaller galaxies having less net bias. Panels(a) and(b)
showbsm andb∞. We scale the results to the biasb̄h intrinsic to the galaxy
population if absorption could be ignored. Panel(c) shows the ratiob∞/bsm,
illustrating the magnitude of the “break” in the linear bias. We emphasize
that the scale at which the break occurs will evolve throughout reionization
along with the characteristic bubble sizeRc; for illustrative purposes we
mark several values ofRc.

Clearly, bothbsm and b∞ decrease throughout reionization. The large-
scale bias decreases because the ionized regions must lie nearer to the mean
density (and hence be less biased) asQHII → 1: this behaviour must be
generic to any model in which reionization begins in overdense regions.
The small-scale bias decreases because bubbles large enough to allow trans-
mission become common: early on, only those galaxies with near neighbors
are visible, so the correlations are strong. In the middle and final stages of
reionization, most galaxies lie inside bubbles large enough to permit trans-
mission, so more typical galaxies become visible andbsm → b̄h.

These qualitative results also hold true in more detailed calculations with
numerical simulations. Figure 11.19 shows the estimated angular correla-
tion function (i.e., the three-dimensional correlation function projected on
the plane of the sky) from a radiative transfer simulation ofLAEs atz = 6.6,
the highest redshift window easily visible to a ground-based telescope. The
different curves in each panel correspond to different ionized fractions; the
different panels describe different surveys, with the top panel comparable
to existing capabilities and the others a few times larger. Note the enhance-
ment in small scale correlations at small ionized fractions; this is the same
effect we have described withbsm. The large-scale power is also enhanced,
but it is much less sensitive toQH II.

Although the correlation function and power spectrum (and through them
the linear bias) are the most straightforward manifestations of the increased
clustering, the “mask” applied to the galaxy distribution is itself non-Gaussian,
so other clustering statistics – such as counts-in-cells orhigher-order corre-
lations – are also useful. All of these probes follow the qualitative behavior
of the bias, increasing most dramatically early in the reionization process.

Both the analytic and numeric approaches show that the bias increases
rapidly with neutral fraction whenQH II < 0.5, at least doubling and some-
times increasing by an even larger amount, especially on large scales. This,



478 CHAPTER 11

Figure 11.18(a): Predicted small-scale bias of LAEs atz = 10, relative to the bias ex-
pected if all galaxies above the mass threshold were visible. This applies
to separations larger than the nonlinear scale but smaller than the character-
istic bubble sizeRc. The solid, long-dashed, and short-dashed curves take
mobs,min = 108, 109, and1010M⊙, respectively. The dotted curves show
the predicted galaxy bias, neglecting absorption, relative to its true value (the
small errors at early times result from the approximations described in the
text). (b): Predicted large-scale bias atz = 10, relative to the bias expected
if all galaxies above the mass threshold were visible.(c): Ratio of large to
small scale bias; the transition between the two regimes will occur roughly
at Rc, which is marked for a few different values of the bubble filling factor
QH II = x̄i. Figure credit: Furlanetto, S.R. et al.,Mon. Not. R. Astron. Soc.,
365, 1012 (2006). Copyright 2006 by the Royal Astronomical Society.
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Figure 11.19 Angular correlation function of LAEs in a radiative transfer simulation of
reionization. The simulation takesz = 6.6 and assumes all LAEs with
an observed luminosity greater than the intrinsic luminosity of a halo with
m = 7 × 1010 M⊙are visible. The different curves in each panel assume
different ionized fractions. The top panel estimates the errors for existing sur-
veys with the Subaru Deep Field in which LAEs are detected photometrically.
The other two panels assume larger surveys (with∼ 5 times more LAEs); the
middle panel assumes a photometric survey, while the bottomone assumes the
LAEs can be selected spectroscopically. In each one, the smaller error bars in-
clude Poisson fluctuations in the galaxy counts, while the larger spreads also
include cosmic variance. Figure credit: McQuinn, M. et al.,Mon. Not. R.
Astron. Soc., 381, 75 (2007). Copyright 2007 by the Royal Astronomical
Society.
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together with the change in the shape of the LAE correlation function with
respect to the dark matter, makes the clustering signature much more robust
to uncertainties in the nature of the LAE hosts. This is because the linear
bias is a relatively slowly-varying function of halo mass and redshift; mim-
icking the shift due to the ionized bubbles would require a drastic change in
the properties of the galaxies.

However, it is worth emphasizing again that the radiative transfer of Lyman-
α photons through the IGM is a complex process, and it can affect the ob-
served clustering even after reionization is complete (thus the resonant ab-
sorption, which we have neglected in this section, can also be important).
Interestingly, the frequency dependence of the scatteringprocess induces
anisotropies, generating clustering signatures analogous to redshift-space
distortions. Fortunately, this component should not evolve as rapidly during
reionization as the damping wing.218



Chapter Twelve

The 21-cm Line

As powerful as it is, the Lyman-α transition has several major disadvantages
for studying the high-z Universe:

• Most importantly, the Gunn-Peterson optical depth is enormous. Even
a very small neutral fraction, of order∼ 10−3, suffices to render the
IGM opaque in this line. Thus, we are not able to use it to studythe
early, or even middle, phases of reionization except in special circum-
stances.

• Because the Lyman-α transition lies in the UV band, observing it
requires bright UV sources that are very rare at high redshifts, limiting
forest studies to only a modest number of lines of sight.

• The high excitation energy of the Lyman-α transition prevents us from
using it to study the cold pre-reionization IGM, because thetempera-
tures are much too low there to collisionally excite the line. Moreover,
the large optical depth for absorption prevents us from measuring the
IGM temperature through the line width.

The first of these can be remedied by using a resonant transition of a
rarer element, such as metals, but of course such elements are rare, and their
distribution introduces extra uncertainty into the interpretation (see§6.5).
We can address all these problems by searching for a weaker, lower-energy
line of atomic hydrogen: the best candidate is thespin-flip or hyperfine
line. This transition was predicted theoretically by Hendrik van de Hulst in
1944 (following a suggestion by Jan Oort) and first observed from the sky
by Harold Ewen and Ed Purcell through an office window at the Harvard
Physics department in 1951. It is driven by the interaction of the spins of
the proton and electron, whose relative directions affect the energy of the
electron’s orbit. An atom in the upper state will then eventually undergo a
“spin-flip” transition, emitting a photon with a wavelengthof 21 cm. As
we shall see, this transition is extremely weak, so the effective IGM optical
depth is only of order 1%: this makes the entire neutral IGM accessible
during the “cosmic dawn.” Moreover, the transition energy is so low that
it provides a sensitive thermometer of the low-temperatureIGM, and – as
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Figure 12.1 21-cm imaging of ionized bubbles during the epoch of reionization is analogous
to slicing Swiss cheese for a color version of this figure). The technique of
slicing at intervals separated by the typical dimension of abubble is optimal for
revealing different patterns in each slice.

a low-frequency radio transition – it can be seen across the entirety of the
IGM against the CMB.

Figure 12.1 illustrates the power of the spin-flip transition with an anal-
ogy to the well-known structure of “Swiss cheese”. Each slice of cheese
has a different structure, depending on where the air bubbles happen to lie
within it. In the case of the spin-flip transition, by observing different wave-
lengths of21(1 + z) cm, one is slicing the Universe at different redshiftsz.
Moreover, the redshifted 21-cm emission should display angular structure
as well as frequency structure due to inhomogeneities in thegas density, the
hydrogen ionized fraction, and the fraction of excited atoms – the analog of
the air bubbles in Swiss cheese. A full map of the distribution of H I as a
function of redshift would provide a three-dimensional image of the Swiss-
cheese structure of the IGM during reionization. This mapping tomography
provides the only way to map the distribution of> 90% of the Universe’s
baryonic matter during the Dark Ages and cosmic dawn.

Figure 12.2 shows a more concrete overview of the expected spin-flip
signal. This has two interesting aspects. The first is the sky-averaged, or
monopole, brightness, which records the average properties of the H I as
a function of observed wavelength (or equivalently cosmic time). This is
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Figure 12.2 Overview of the expected 21 cm signal (seeColor Plate 26for a color version
of this figure).Top panel:Time evolution of fluctuations in the 21 cm bright-
ness from just before the first stars form through to the end ofreionization.
This evolution is pieced together from instantaneous redshift slices through a
(100 comoving Mpc)3 numerical simulation volume. Coloration indicates the
strength of the 21 cm brightness as it transitions from absorption (blue) to emis-
sion (red) and finally disappears (black) due to ionization.Bottom panel:Ex-
pected evolution of the sky-averaged 21cm brightness from the “Dark Ages”
at z = 150 to the end of reionization sometime beforez = 6. The frequency
structure is driven by the interplay of gas heating, the coupling of gas and 21 cm
temperatures, and the ionization of the gas. There is considerable uncertainty
in the exact form of this signal arising from the poorly understood properties of
the first galaxies. Figure credit: Pritchard, J. R. & Loeb, A., Nature468, 772
(2010). Copyright 2010 by Nature Publishing Group.

shown in the bottom panel in brightness temperature units relative to the
CMB (see below for a detailed discussion). Several different phases are
labeled; we will discuss each in turn in this chapter. The toppanel shows the
fluctuations inherent in this signal, which arise from the discrete, clustered
luminous sources. The spin-flip background measures the ultraviolet and
X-ray radiation fields over a broad swath of cosmic history, complementing
the direct probes of individual galaxies that we have already described.

This chapter will describe how we use the 21-cm line to study the high-z
Universe. Following convention in the literature, we will often refer to the
signal as “21-cm radiation,” although in reality theobservedwavelengths
are larger by a factor of(1 + z).
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12.1 RADIATIVE TRANSFER OF THE 21-CM LINE

The radiative transfer equation for the specific intensityIν of a spectral line
reads

dIν
dℓ

=
φ(ν)hν

4π
[n1A10 − (n0B01 − n1B10) Iν ] , (12.1)

wheredℓ is a proper path length element,φ(ν) is the line profile function
normalized by

∫

φ(ν)dν = 1 (with an amplitude of order the inverse of
the frequency width of the line and centered around the line frequency),
subscripts 0 and 1 denote the lower and upper atomic levels,ni denotes
the number density of atoms at the different levels, andAij andBij are
the Einstein coefficients for the transition between these levels (withi and
j the initial and final states, respectively). In our case, theline frequency
ν21 = 1420.4057 MHz corresponds to a wavelength ofλ21 = 21.1061
cm. We can then make use of the standard relations in atomic physics:
B10 = (g0/g1)B01 andB10 = A10(c

2/2hν3), whereg is the spin degener-
acy factor of each state. For the 21-cm transition,A10 = 2.85 × 10−15 s−1

andg1/g0 = 3.
The relative populations of hydrogen atoms in the two spin states define

the so-called spin temperature,TS , through the relation,
(

n1

n0

)

=

(

g1
g0

)

exp

{−T∗
TS

}

, (12.2)

whereT∗ ≡ E10/kB = 68 mK is equivalent to the transition energyE10. In
the regime of interest,T⋆ ≪ Tγ as well as the spin temperatureTS , and so
all related exponentials can be expanded to leading order.

For convenience, we will quantifyIν by the equivalentbrightness tem-
perature, Tb(ν), required of a blackbody radiator (with spectrumBν) such
that Iν = Bν(Tb). Throughout the range of frequencies and temperatures
relevant to the 21 cm line, the Rayleigh-Jeans formula is an excellent ap-
proximation to the Planck curve, soTb(ν) ≈ Iν c

2/2kBν
2.

In the Rayleigh-Jeans limit, the equation of radiative transfer along a line
of sight through a cloud of uniform excitation temperatureTS becomes

T ′
b(ν) = TS(1 − e−τν ) + T ′

R(ν)e−τν (12.3)

where theoptical depthτν ≡
∫

dsαν is the integral of the absorption co-
efficient (αν) along the ray through the cloud,T ′

R is the brightness of the
background radiation field incident on the cloud along the ray, ands is the
proper distance. Because of the cosmological redshift, theemergent bright-
nessT ′

b(ν0) measured in a cloud’s comoving frame at redshiftz creates an
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apparent brightness at the Earth ofTb(ν) = T ′
b(ν0)/(1 + z), where the ob-

served frequency isν = ν0/(1 + z). Henceforth we will work in terms of
these observed quantities.

The absorption coefficient is determined from the Einstein coefficients
via219

α = φ(ν)
hν

4π
(n0B01 − n1B10). (12.4)

Because all astrophysical applications haveTS ≫ T∗, approximately three
of four atoms find themselves in the excited state (n0 ≈ n1/3). As a result,
the stimulated emission correction is significant (and the net absorption de-
pends onTS).

In an expanding Universe with a local hydrogen number density nH and
with a velocity gradient along the line of sight ofdv‖/dr‖, the 21-cm optical
depth can be derived similarly to equation (4.11).i Writing φ(ν) ∼ 1/(∆ν)
we obtain

τ10 =
3

32π

hc3A10

kBTSν
2
10

xHInH

(1 + z) (dv‖/dr‖)
(12.5)

≈ 0.0092 (1 + δ) (1 + z)3/2 xHI

TS

[

H(z)/(1 + z)

dv‖/dr‖

]

, (12.6)

In the second part we expressTS in Kelvins and have scaled to the mean
IGM density atz and to the average velocity gradient (the Hubble flow). In
the latter case,∆Iν ∝ ∆ℓφ(ν)ν = |cdt/dz|(νdz/dν) = c/H, providing
the analog of the Gunn-Peterson optical depth.

In practice, the background radiation source is usually theCMB, soT ′
R =

Tγ(z), and we are observing the contrast between high-redshift hydrogen
clouds and the CMB. Because the optical depth is so small, we can expand
the exponentials in equation (12.3), which yields

Tb(ν)≈
TS − Tγ(z)

1 + z
τν0

(12.7)

≈ 9 xHI(1 + δ) (1 + z)1/2

[

1 − Tγ(z)

TS

] [

H(z)/(1 + z)

dv‖/dr‖

]

mK.(12.8)

HereTb < 0 if TS < Tγ , yielding an absorption signal, or emission oth-
erwise; both regimes are important for the high-z Universe. Note thatδTb

saturates ifTS ≫ Tγ , but the absorption can become arbitrarily large if
TS ≪ Tγ . The observability of the 21 cm transition therefore hingeson the

i Interestingly, the 21 cm case was actually computed by George Field in 1959, several
yearsbeforethe Gunn-Peterson calculation.220
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spin temperature; we will next describe the mechanisms thatdriveTS either
above or belowTγ(z).

12.2 THE SPIN TEMPERATURE

Three competing processes determineTS : (i) absorption of CMB photons
(as well as emission stimulated by them);(ii) collisions with other hydrogen
atoms, free electrons, and protons; and(iii) scattering of UV photons. In the
presence of the CMB alone, the spin states reach thermal equilibrium with
TS = Tγ on a time-scale of∼ T∗/(TγA10) = 3 × 105(1 + z)−1 yr. This
time scale is much shorter than the age of the Universe at all redshifts after
cosmological recombination. However, the other two processes break this
coupling. We letC10 andP10 be the de-excitation rates (per atom) from
collisions and UV scattering, respectively. We also letC01 andP01 be the
corresponding excitation rates. The spin temperature is then determined in
equilibrium byii

n1 (C10 + P10 +A10 +B10ICMB) = n0 (C01 + P01 +B01ICMB) ,
(12.9)

whereICMB is the specific intensity of CMB photons. With the Rayleigh-
Jeans approximation, equation (12.9) can be rewritten as

T−1
S =

T−1
γ + xcT

−1
K + xαT

−1
c

1 + xc + xα
, (12.10)

wherexc andxα are coupling coefficients for collisions and UV scattering,
respectively, andTK is the gas kinetic temperature. Here we have used the
principle of detailed balance through the relation

C01

C10
=
g1
g0
e−T⋆/TK ≈ 3

(

1 − T⋆

TK

)

. (12.11)

We have alsodefinedthe effective color temperature of the UV radiation
field Tc via

P01

P10
≡ 3

(

1 − T⋆

Tc

)

. (12.12)

We will next calculatexc, xα, andTc. In the limit in whichTc → TK (a
reasonable approximation in most situations of interest),equation (12.10)

ii Because the relevant timescales are all much shorter than the expansion time, equilib-
rium is an excellent approximation.
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may be written as

1 − Tγ

TS
=

xc + xα

1 + xc + xα

(

1 − Tγ

TK

)

. (12.13)

12.2.1 Collisional Coupling

We will first consider collisional excitation and de-excitation of the hyper-
fine levels, which dominate in dense gas. The coupling coefficient for colli-
sions with speciesi is

xi
c ≡

Ci
10

A10

T⋆

Tγ
=
ni κ

i
10

A10

T⋆

Tγ
, (12.14)

whereκi
10 is the rate coefficient for spin de-excitation in collisionswith that

species (with units of cm3 s−1). The totalxc is the sum over all species
i, which in principle includes collisions with (1) other hydrogen atoms, (2)
free electrons, (3) protons, and (4) other species (helium and deuterium);
the last turn out to be unimportant.

These rate coefficients are ultimately determined by the quantum mechan-
ical cross sections of the relevant processes. We will not list them in detail
but merely present the results in Figure 12.3.221 Although the atomic cross-
section is small, in the unperturbed IGM collisions betweenneutral hydro-
gen atoms nearly always dominate these rates because the ionized fraction
is small. Free electrons can be important in partially ionized gas; collisions
with protons are only important at the lowest temperatures.

Crucially, the collisional coupling is quite weak in a nearly neutral, cold
medium. Thus, the overall density must be large in order for this process to
effectively fixTS . A convenient estimate of their importance is the critical
overdensity,δcoll, at whichxc = 1 for H–H collisions:

1 + δcoll = 0.99

[

κ10(88 K)

κ10(TK)

] (

0.023

Ωbh2

) (

70

1 + z

)2

, (12.15)

where we have inserted the expected temperature at1 + z = 70. In the
standard picture, at redshiftsz < 70, xc ≪ 1 andTS → Tγ ; by z ∼ 30 the
IGM essentially becomes invisible. It is worth emphasizing, however, that
κ10 is extremely sensitive toTK in this regime. If the universe is somehow
heated above the fiducial value, the threshold density can remain modest:
δcoll ≈ 1 at z = 40 if TK = 300 K.

12.2.2 The Wouthuysen-Field Effect

We therefore require a different mechanism to break the coupling to the
CMB during the era of the first galaxies. This is known as theWouthuysen-
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Figure 12.3 De-excitation rate coefficients for H-H collisions (dashed line), H-e− collisions
(dotted line), and H-p collisions (solid line). Note that the net rates are also pro-
portional to the densities of the individual species, so H-Hcollisions still domi-
nate in a weakly-ionized medium. Figure credit: Furlanetto, S. R. & Furlanetto,
M. R., Mon. Not. R. Astron. Soc.379, 130 (2007). Copyright 2007 by the
Royal Astronomical Society.

Field mechanism(named after the Dutch physicist Siegfried Wouthuysen
and Harvard astrophysicist George Field who first explored it222 ). It is
illustrated in Figure 12.4, where we have drawn the hyperfinesub-levels
of the 1S and2P states of HI. Suppose a hydrogen atom in the hyperfine
singlet state absorbs a Lyman-α photon. The electric dipole selection rules
allow ∆F = 0, 1 except thatF = 0 → 0 is prohibited (hereF is the total
angular momentum of the atom). Thus the atom will jump to either of the
central2P states. However, these same rules allow this state to decay to the
1S1/2 triplet level.iii Thus, atoms can change hyperfine states through the
absorption and spontaneous re-emission of a Lyman-α photon (or indeed
any Lyman-series photon).

The Wouthuysen-Field coupling must depend on the total rate(per atom)

iii Here we use the notationF LJ , whereL andJ are the orbital and total angular mo-
mentum of the electron.
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Figure 12.4 Level diagram illustrating the Wouthuysen-Field effect. We show the hyperfine
splittings of the1S and2P levels. The solid lines label transitions that mix
the ground state hyperfine levels, while the dashed lines label complementary
allowed transitions that do not participate in mixing. Figure credit: Pritchard,
J. R. & Furlanetto, S. R.,Mon. Not. R. Astron. Soc.367, 1057 (2006). Copy-
right 2006 by the Royal Astronomical Society.

at which Lyman-α photons are scattered within the gas,

Pα = 4πσ0

∫

dν Jν(ν)φα(ν), (12.16)

whereσν ≡ σ0φα(ν) is the local absorption cross section,σ0 ≡ (π e2/me c)fα,
fα = 0.4162 is the oscillator strength of the Lyman-α transition,φα(ν) is
the Lyman-α absorption profile, andJν is the angle-averaged specific inten-
sity of the background radiation field.iv The line typically has a Voigt profile
φV as described in§11.1.1.

What about transitions to higher Lyman-n levels? Suppose that a pho-
ton redshifts into the Lyman-n resonance. After absorption, it can either
scatter (through a decay directly to the ground state) or cascade through

ivBy convention, we use the specific intensity in units of photons cm−2 Hz−1 s−1 sr−1

here, which is conserved during the expansion of the Universe (whereas energy redshifts
away).
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a series of intermediate levels and produce different photons. The direct
decay probabilities are∼ 0.8, so a Lyman-n photon will typically scatter
Nscatt ≈ (1 − PnP→1S)−1 ∼ 5 times before instead initiating a decay cas-
cade. In contrast, Lyman-α photons scatter hundreds of thousands of times
before being destroyed (see§11.1.1 for some examples). As a result, cou-
pling from the direct scattering of Lyman-n photons is suppressed compared
to Lyman-α by a large factor.

However, Lyman-n photons can still be important because of their cas-
cade products. Consider the decay chains shown in Figure 12.5. For Lyman-
β, the only permitted decays are to the ground state (regenerating a Lyman-β
photon and starting the process again) or to the2S level. The Hα photon
produced in the3P → 2S transition (and indeed any photon produced in a
decay to an excited state) escapes to infinity. Thus the atom will eventually
find itself in the2S state, which decays to the ground state via a forbidden
two photon process withA2S→1S = 8.2 s−1. These photons too will es-
cape to infinity. Thus coupling from Lyman-β photons can be completely
neglected.v

But now consider excitation by Lyman-γ, also shown in Figure 12.5. This
can cascade (through3S or 3D) to the2P level, in which case the original
Lyman-n photon is “recycled” into a Lyman-α photon, which then scatters
many times through the IGM. Thus, the key quantity for determining the
coupling induced by Lyman-n photons is the fractionfrec(n) of cascades
that terminate in Lyman-α photons. We have seen thatfrec(n = 3) vanishes,
but detailed quantum mechanical calculations show that thehigher states all
havefrec ∼ 1/3.223

Focusing again on the Lyman-α photons themselves, we must relate the
total scattering ratePα to the indirect de-excitation rateP10. We first label
the1S and2P hyperfine levels a–f, in order of increasing energy, and letAij

andBij be the spontaneous emission and absorption coefficients fortransi-
tions between these levels. We write the background flux at the frequency
corresponding to thei→ j transition asJij . Then

P01 ∝ BadJad
Adb

Ada +Adb
+BaeJae

Aeb

Aea +Aeb
. (12.17)

The first term contains the probability for an a→d transition (BadJad), to-
gether with the probability for the subsequent decay to terminate in state b;
the second term is the same for transitions to and from state e. Next we need
to relate the individualAij toAα = 6.25×108 Hz, the total Lyman-α spon-
taneous emission rate (averaged over all the hyperfine sublevels). This can

vIn a medium with very high density, atomic collisions can mixthe two angular mo-
mentum states, but that process is unimportant in the IGM.



THE 21-CM LINE 491

Figure 12.5 Decay chains for Lyman-β and Lyman-γ excitations. We show Lyman-n tran-
sitions by dashed curves, Lyman-α by the dot-dashed curve, cascades by solid
curves, and the forbidden2S → 1S transition by the dotted curve. Figure
credit: Pritchard, J. R. & Furlanetto, S. R.,Mon. Not. R. Astron. Soc.367,
1057 (2006). Copyright 2006 by the Royal Astronomical Society.

be accomplished using a sum rule stating that the sum of decayintensities
(giAij) for transitions from a givennFJ to all then′J ′ levels (summed over
F ′) is proportional to2F +1;224 the relative strengths of the permitted tran-
sitions are then(1, 1, 2, 2, 1, 5), where we have ordered the lines (bc, ad,
bd, ae, be, bf) and the two letter labels represent the initial and final states.
With our assumption that the background radiation field is constant across
the individual hyperfine lines, we findP10 = (4/27)Pα .

The coupling coefficientxα may then be written

xα =
4Pα

27A10

T⋆

Tγ
= Sα

Jα

Jc
ν

, (12.18)

where in the second equality we evaluateJν at line center and setJc
ν ≡

1.165 × 10−10[(1 + z)/20] cm−2 s−1 Hz−1 sr−1. We include here a cor-
rection factorSα that accounts for variations in the intensity near the line
center (see below). This coupling threshold forxα = Sα can also be writ-
ten in terms of the number of Lyman-α photons per hydrogen atom in the
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Universe, which we denotẽJc
ν = 0.0767 [(1 + z)/20]−2. This threshold is

relatively easy to achieve in practice.
Two challenges remain: calculatingTc and the correction factorSα. The

former is the effective temperature of the UV radiation field, defined in equa-
tion (12.12), which is determined by the shape of the photon spectrum at the
Lyman-α resonance. That the effective temperature of the radiationfield
mustmatter is easy to see: the energy deficit between the different hyperfine
splittings of the Lyman-α transition (labeled bc, ad, etc. above) implies that
the mixing process is sensitive to the gradient of the background spectrum
near the Lyman-α resonance. More precisely, the procedure described after
equation (12.17) yields

P01

P10
=
g1
g0

nad + nae

nbd + nbe
≈ 3

(

1 + ν0
d ln nν

dν

)

, (12.19)

wherenν = c2 Jν/2ν
2 is the photon occupation number. Thus, by compar-

ison to equation (12.12) we find

h

kBTc
= −d lnnν

dν
. (12.20)

A simple argument shows thatTc ≈ TK :225 so long as the medium is ex-
tremely optically thick, the enormous number of Lyman-α scatterings must
bring the Lyman-α profile to a blackbody of temperatureTK near the line
center. This condition is easily fulfilled in the high-redshift IGM, where
τα ≫ 1. In detail, atomic recoils during scattering (the last termin equa-
tion 11.9) tilt the spectrum to the red and are primarily responsible for es-
tablishing this equilibrium.

The scattering process is actually much more complicated than naively
expected because scattering itself modifies the shape ofJν . Intuitively, a
flat input spectrum develops an absorption feature because of the increased
scattering rate near the Lyman-α resonance. Photons continually lose en-
ergy by redshifting, but they also lose energy through recoil whenever they
scatter. If the fractional frequency drift rate is denoted by A, continuity
requiresnνA = constant; whenA increases near resonance, the number
density must fall. On average, the energy loss (or gain) per scattering is226

∆Erecoil

E
=

hν

mpc2

(

1 − TK

Tc

)

, (12.21)

where the first factor comes from recoil off an isolated atom and the second
factor corrects for the distribution of initial photon energies; the energy loss
vanishes whenTc = TK , and whenTc < TK , the gas is heated by the
scattering process.
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To compute the suppression factor in the intensity we must calculate the
photon spectrum near Lyman-α. We begin with the radiative transfer equa-
tion in an expanding universe (written in comoving coordinates, and again
using units of cm−2 s−1 Hz−1 sr−1 for Jν ; c.f. equation 4.42):

1

cnHσ0

∂Jν

∂t
= −φα(ν)Jν +Hνα

∂Jν

∂ν
+

∫

dν ′R(ν, ν ′)Jν′ + C(t)ψ(ν).

(12.22)
Here the first term on the right-hand side describes absorption, the second
is redshifting due to the Hubble flow, and the third accounts for re-emission
following absorption.R(ν, ν ′) is the “redistribution function” that describes
the frequency of an emitted photon, which depends on the relative momenta
of the absorbed and emitted photons as well as the absorbing atom. The
last term describes injection of new photons:C is the rate at which they are
produced andψ(ν) is their frequency distribution.

The redistribution functionR is the complicated aspect of the problem,
but it can be simplified if the frequency change per scattering (typically
of order ∆νD) is “small.” In that case, we can expandJν′ to second or-
der in (ν − ν ′) and rewrite equation (12.22) as a diffusion problem in fre-
quency. The steady-state version of equation (12.22) becomes, in this so-
calledFokker-Planckapproximation,

d

dx

(

−A J + D dJ

dx

)

+ Cψ(x) = 0, (12.23)

wherex ≡ (ν − να)/∆νD, A is the frequency drift rate, andD is the
diffusivity. In general, the Fokker-Planck approximationis valid when (i)
the frequency change per scattering (∼ ∆νD) is smaller than the width of
any spectral features, and either (iia) the photons are outside the line core
wheredφα/dx is small, or (iib) the atoms are in equilibrium withTc ≈ TK .

Solving for the background spectrum thus reduces to specifying A and
D. The first involves the Hubble flow, which causes a driftAH = −τ−1

α

(without any associated diffusion). The remaining terms come fromR and
incorporate all the physical processes relevant to energy exchange in scat-
tering. The drift from recoil is227

Dscatt =φα(x)/2, (12.24)

Ascatt =−(η − x−1
0 )φα(x), (12.25)

wherex0 ≡ να/∆νD andη ≡ (hν2
α)/(mpc

2∆νD). The latter is the recoil
parameter measuring the average loss per scattering in units of the Doppler
width.

Finally, to solve equation (12.23) we must specify the boundary condi-
tions, which essentially correspond to the input photon spectrum (ignoring
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scattering) and the source function. Because the frequencyrange of inter-
est is so narrow, two cases suffice: a flat input spectrum (which approxi-
mately describes photons that redshift through the Lyman-α resonance, re-
gardless of the initial source spectrum) and a step function, where photons
are “injected” at line center (through cascades or recombinations) and red-
shift away. In either case, the first integral overx is trivial. At high temper-
atures where spin flips are unimportant to the overall energyexchange, we
can write

φ
dJ

dx
+ 2{[η − (x+ x0)

−1]φ+ τ−1
α }J = 2K/τα. (12.26)

The integration constantK equalsJ∞, the flux far from resonance, both for
photons that redshift into the line and for injected photonsat x < 0; it is
zero for injected photons atx > 0.

The formal analytic solution, whenK 6= 0, is most compactly written in
terms ofδJ ≡ (J∞ − J)/J∞:vi

δJ(x) = 2η

∫ ∞

0
dy exp

[

−2{η − (x+ x0)
−1}y − 2

τα

∫ x

x−y

dx′

φα(x′)

]

.

(12.27)
(An analogous form also exists for photons injected at line center.) The full
problem, including the intrinsic Voigt profile of the Lyman-α line, must be
solved numerically,228 but including only the Lorentzian wings from natural
broadening allows a simpler solution. Fortunately, this assumption is quite
accurate in the most interesting regime ofTK < 1000 K.

The crucial aspect of equation (12.27) is that (as expected from the qual-
itative argument above) an absorption feature appears nearthe line center;
its strength is roughly proportional toη, our recoil parameter. The feature is
more significant whenTK is small (or the average effect of recoil is large).
Figure 12.6 shows some example spectra (both for a continuous background
and for photons injected at line center).

Usually, the most important result is the suppression of theradiation spec-
trum at line center compared to the assumed initial condition. This decreases
the total scattering rate of Lyman-α photons (and hence the Wouthuysen-
Field coupling) below what one naively expects. The suppression factor
(from equation 12.18) is

Sα =

∫ ∞

−∞
dxφα(x)J(x) ≈ [1 − δJ (0)] ≤ 1, (12.28)

viHere we assume the gas has a sufficiently high temperature that the different hyperfine
sub-transitions can be treated as one.
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Figure 12.6 Background radiation field near the Lyman-α resonance atz = 10; x ≡ (ν −
να)/∆νD is the normalized deviation from line center. The upper and lower
sets are for continuous photons and photons injected at linecenter, respectively.
(The former are normalized toJ∞; the latter have arbitrary normalization.) The
solid and dashed curves takeTK = 10 and1000 K, respectively. Figure credit:
Furlanetto, S. R., & Pritchard, J. R.,Mon. Not. R. Astron. Soc.372, 1093
(2006). Copyright 2006 by the Royal Astronomical Society.

where the second equality follows from the narrowness of theline profile.
Again, the Lorentzian wing approximation turns out to be an excellent one;
whenTK ≫ T⋆, the suppression is

Sα ∼ exp

[

−0.803

(

TK

1 K

)−2/3
( τα

106

)1/3
]

. (12.29)

Note that this form applies to both photons injected at line center as well
as those that redshift in from infinity. As we can see in Figure12.6, the
suppression is most significant in cool gas.

Again, the fundamental reason for the suppression is the recoil from scat-
tering. Momentum conservation during each scattering slightly decreases
the frequency of the photon. The strongly enhanced scattering rate near line
center means that photons “flow” through that region of the spectrum more
rapidly than elsewhere (where only the cosmological redshift applies), so
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the amplitude of the spectrum is smaller. Meanwhile, the scattering in such
an optically thick medium also causes photons to diffuse away from line
center, broadening the feature well beyond the nominal linewidth.

12.3 THE BRIGHTNESS TEMPERATURE OF THE SPIN-FLIP BACKGROUN D

With the basic atomic physics of the 21-cm line in place, we now turn to
estimating the astrophysical inputs that determine its properties. Of course,
these inputs are at the moment unknown, so we will at first keepthe dis-
cussion general and then later focus on some particular simple models as
examples.

12.3.1 Feedback: The Lyman-α Background

After z ∼ 30, when collisional coupling becomes unimportant, the spin
temperature is determined by the scattering of Lyman-α photons. In prac-
tice, the relevant photons do not start at the Lyman-α wavelength, because
those redshift out of resonance very soon after they are created and do not
contribute to the coupling except very near their sources. Instead, the impor-
tant photons begin in the ultraviolet and redshift into a Lyman-series line,
possibly cascading down to a Lyman-α photon.

To computeJα, we therefore begin with the proper ultraviolet emissivity
at a frequencyν, ǫ(ν, z). Here we will consider the simple limit in which
this emissivity is nearly uniform.

In fact, we have already discussed this background in some detail, for
these photons, which range in energy from 10.2–13.6 eV, are (nearly) the
same as those which contribute to the Lyman-Werner background that dis-
sociates H2 molecules in the early Universe (see§6.1.4). The difference is
that we are concerned not with the photons between the Lyman resonances
but with those photons that do redshift into those resonances (and then cas-
cade into Lyman-α, in the case of higher-n transitions). Given the ultraviolet
emissivity, the desired background is

Jα(z) =

nmax
∑

n=2

J (n)
α (z)

=
c

4π

nmax
∑

n=2

frec(n)

∫ zmax(n)

z
dz′

∣

∣

∣

∣

dt

dz′

∣

∣

∣

∣

(

1 + z

1 + z′

)3

4π
c

H(z′)
ǫ(ν ′n, z

′),(12.30)

whereν ′n is the frequency at redshiftz′ that redshifts into the Lyman-n reso-
nance at redshiftz, andzmax(n) is the largest redshift from which a photon
can redshift into the Lyman-n resonance. This equation is very similar to
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equation (6.7) – and hence equation (4.43) – because the Lyman-Werner and
Wouthuysen-Field backgrounds arise from nearly the same photons. The
only major difference is that the latter includes photons that cascade from
higher Lyman-series absorptions, so it requires a sum over all those line fre-
quencies. The sum must be truncated at some largenmax that is determined
by the typical size of ionized regions around the sources, but the result is
not sensitive to the precise cutoff value.

Just as with the Lyman-Werner background, the Lyman-α intensity is
fairly uniform in the standard cosmological model: in fact the effective
“horizon” within which a given source is visible is even larger than in that
other case, because the gap between Lyman-α and Lyman-β corresponds to
∼ 250 comoving Mpc. However, unlike for the Lyman-Werner background,
Wouthuysen-Field coupling is rather sensitive to the precise intensity of the
background, so the fluctuations are still very important. Moreover, just as
for the Lyman-Werner background, this horizon is comparable to the scales
over which the relative baryon and dark matter velocities vary, so that may
induce much stronger fluctuations in the Wouthuysen-Field coupling (see
§3.2.2).229 For simplicity, we will ignore the latter effect here.

These fluctuations, in turn, depend on the sources of the photons, most
likely star-forming galaxies. If the star formation rate traces the rate at
which matter collapses into galaxies, the comoving emissivity at frequency
ν is

ǫ(ν, z) = f⋆
ρb

mp
ǫLn(ν)

dfcoll

dt
, (12.31)

whereǫLn(ν) is the number of photons produced in the frequency interval
ν±dν/2 per baryon incorporated into stars. Although real spectra are rather
complicated, a useful quantity is the total numberNα of photons per baryon
in the interval 10.2–13.6 eV (which is very similar toNLW in equation 6.10).
For low-metallicity Pop II stars and very massive Pop III stars, this isNα =
9690 andNα = 4800, respectively.230

Of course, processes other than star formation can also create a Lyman-
α background. These include especially UV photons from quasars (which
can be modeled in the same way at stars, thoughǫLn changes) and colli-
sional excitation by higher energy X-rays. For the latter, afraction fc ∼
fi ∼ xHI/3 of the energy is typically lost to excitations, and≈ 0.8 of that
energy ends up in Lyman-α photons.231 It is easy to see that it can be quite
significant. The critical intensity for the Wouthuysen-Field effect corre-
sponds to∼ 1 photon per10 hydrogen atoms, or∼ 1 eV per atom. Because
the fraction of energy deposited as ionization and collisional excitation are
comparable, any scenario that appeals to X-rays for significant ionization
would also induce strong coupling once the IGM becomes∼ 10% ionized.
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In any case, computing the fluctuations in the intensity is a more difficult
task. The simplest approach is to use a modified version of thehalo model
(introduced in§3.6.1) applied to the radiation background instead of the
density field. Here we construct the background by imaginingthat each
galaxy is surrounded by a radiation field with a specified shape, Jh(r|Ψ),
whereΨ labels all the parameters that may determine an individual galaxy’s
luminosity (principally, we will presume below, the host halo’s mass). The
total radiation backgroundJ(x) is then the sum of that from each halo, just
as the density field is the sum of the density profiles of each dark matter
clump in the usual halo model. We can therefore use the usual machinery of
the halo model to describe the radiation background. Then

PJ(k) = P 1h
J (k) + P 2h

J (k), (12.32)

whereP 1h
J describes correlations from a single galaxy’s radiation and P 2h

J
those between different galaxies.

The key input is therefore to determine the intensity profileof each galaxy.
If we consider only the radiation between Lyman-α and Lyman-β, the pro-
file of photons that redshift into the Lyman-α resonance will follow the usual
1/r2 law with just two modifications: (1) the profile will be truncated where
those photons with the largest initial energies (just belowLyman-β) redshift
into the Lyman-α resonance, and (2) the relevant emitted frequency (chosen
so that it redshifts into Lyman-α resonance atr) varies with radiusr. How-
ever, we must also add those photons which redshift into a higher Lyman-n
series resonance and then cascade to Lyman-α. Thus, the total profile is

Jh,α(r) =
∞
∑

n=1

frec(n)
L(ν ′n|Ψ)/hν ′n

(4πr)2
, (12.33)

whereL(ν|Ψ) is the luminosity per unit frequency from the source (with
parametersΨ) andν ′n is the frequency that redshifts into the Lyman-n reso-
nance atr and each term in the sum is only included whenr is smaller than
the effective horizon for these photons. The left panel in Figure 12.7 shows
this profile for a massive galaxy atz = 20. Note that it is slightly steeper
than the1/r2 expectation at moderate distances from the source, owing to
the cascade effects.

In practice, the light travel time over the Lyman-α horizon is> 100 Myr,
a substantial fraction of both the age of Universe and the lifetime of a typical
source (either stars or quasars). As a result, the source luminosity likely
changes significantly during the time period of interest, and some estimate
of source evolution is necessary. In the simplest models, one can takeL ∝
dfcoll/dt in order to reflect the overall evolution of gas inside galaxies.
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Figure 12.7Left: Lyman-α flux profile of a massive galaxy atz = 20. The solid line
shows the full calculation, the dashed line assumesfrec = 1 for all n, and the
dotted line ignores all cascades from higher energies (all are normalized to have
the same total luminosity). The vertical dashed lines alongthe horizontal axis
mark the horizons of the respective Lyman transitions. The right axis converts
the local flux to the Wouthuysen-Field coupling coefficient assumingSα = 1;
for context, the dashed horizontal line shows the collisional coupling coefficient
at z = 20 assuming no IGM heating.Right: Dimensionless power spectrum of
the Lyman-α background for several simple star formation scenarios. The solid
and dashed curves are chosen to be near the peak of the Lyman-α fluctuations
in each scenario. They assumeMmin = 106 M⊙ atz = 30 (bottom curve) and
Mmin = 108 M⊙ at z = 20.5 (top curve); both takef⋆ = 0.1 to normalize
the background. The dashed curve takesMmin = 106 M⊙ at z = 30 but
assumes that each halo can only form stars for 3 Myr,∼ 2% of the age of the
Universe. Figure credit: Pritchard, J. R. & Furlanetto, S. R., Mon. Not. R.
Astron. Soc.367, 1057 (2006); copyright 2006 by the Royal Astronomical
Society. Holzbauer, L. N. & Furlanetto, S. R.,Mon. Not. R. Astron. Soc., in
press (2011). Copyright 2011 by the Royal Astronomical Society.

The right panel of Figure 12.7 shows some example power spectra for the
intensity of this background. We consider two cases: one in which the lumi-
nous sources are extremely small (existing in all halos above106 M⊙, solid
curves) and one in which only massive halos host sources (above 108 M⊙,
dashed curves). In both cases, we have normalized the mean amplitude of
the Lyman-α background so that the background just reaches the coupling
threshold,xα ≈ 1,vii by settingf⋆ = 0.1 andz = 20 andz = 30 for the
high and low mass case, respectively. In both cases, intensity fluctuations
are small on large scales:< 1% for k < 0.1 Mpc−1, comparable to the

vii More precisely, these curves haveβα = 1 (see equation 12.45).
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horizon of each source.
If sources are common, the fluctuations remain small at smaller scales as

well, thanks to the enormous number of them. But if sources are rare, the
“one-halo” term representing the intensity profile of each source becomes
important at moderate or large scales, and the fluctuations can be moderately
large on these scales. The dashed curve illustrates this: itassumes that each
halo can only form stars in a single burst lasting 3 Myr (such as if each
halo hosts a single short burst of Population III star formation). In this
case, the fluctuations are much stronger because at any giventime most of
the halos are invisible (in the language of the halo model, the occupation
fraction is very small even above the minimum mass for star formation),
but the average radiation background also falls well below threshold. As
mentioned above, the fluctuations also increase substantially if the relative
streaming of baryons and dark matter is included.

In §12.5 we will consider how fluctuations in this background translate
into fluctuations in the 21-cm signal.

12.3.2 Feedback: IGM Heating

The Wouthuysen-Field background couples the spin temperature to the gas
kinetic temperature, so we must also compute the latter. A number of pro-
cesses may contribute to it: shock heating from structure formation, ultravi-
olet photons, and X-rays.

The role of shock heating is unclear: very little of the IGM gas has been
incorporated into sheets or filaments at these times, so the usual shocks that
surround the cosmic web are unimportant. However, the very low temper-
ature gas (T < 30 K) has large peculiar velocities from gravitational in-
fall, and shocks may occur earlier in such an environment. The large-scale
baryon velocities generated during recombination (see§2.1.2) may be im-
portant in this regard.

On the other hand, we have seen that ionizing photons very effectively
heat the gas, but the ionized gas itself does not of course contribute to the
21-cm signal.viii

The photons that trigger Lyman-α coupling do exchange energy with the
IGM, through recoil. The typical energy exchange per scattering is small
(see eq. 12.21), but the number of scatterings is large. If the net heating
rate per atom followed the naive expectation,∼ Pα × (hνα)2/mpc

2, the
gas temperature would exceedTγ soon after Wouthuysen-Field coupling
becomes efficient.

viii Moreover, the ionized regions will not significantly recombine unless somehow the
source emissivity declines dramatically. The best examplewould be a highly luminous
quasar that ionizes a large region around itself and then shuts off shortly thereafter.
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However, the details of radiative transfer radically change these expecta-
tions. In a static medium, the energy exchangemustvanish in equilibrium
even though scattering continues at nearly the same rate. Scattering induces
an asymmetric absorption feature nearνα (Figure 12.6) whose shape de-
pends on the combined effects of atomic recoils and the scattering diffusiv-
ity. In equilibrium, the latter exactly counterbalances the former.

In an expanding universe without scattering, the absorption feature would
redshift away; thus, the equilibrium energy exchange rate is simply that re-
quired to maintain the feature in place. For photons redshifting into reso-
nance, the absorption trough has total energy

∆uα = (4π/c)

∫

(J∞ − Jν)hνdν, (12.34)

whereJ∞ is the input spectrum (thus, the integration extends over the dip
in Figure 12.6). The radiation background losesǫα = H∆uα per unit time
through redshifting; this energy goes into heating the gas.Relative to adi-
abatic cooling by the Hubble expansion, the fractional heating amplitude
is232

2

3

ǫα
kBTKnHH(z)

=
8π

3

hνα

kBTK

J∞ ∆νD

cnH

∫ ∞

−∞
dxδJ (x) (12.35)

≈ 0.80

T
4/3
K

xα

Sα

(

10

1 + z

)

, (12.36)

Here we have evaluated the integral for the continuum photons that redshift
into the Lyman-α resonance; the “injected” photons actually cool the gas
slightly. The net energy exchange when Wouthuysen-Field coupling be-
comes important (atxα ∼ Sα) is therefore just a fraction of a degree, and in
practice gas heating through Lyman-α scattering is usually unimportant.

The reason for the inefficiency of heating is that the scattering diffusivity
acts to cancel the effects of recoil. From Figure 12.6, it is obvious that
the background spectrum is weaker on the blue side of the linethan on the
red. Scattering tends to return the photon toward line center, with the extra
energy deposited in or extracted from the gas. Because more scattering
occurs on the red side, this tends to transfer energy from thegas back to the
photons, canceling the recoil exchange.

Thus, IGM heating is likely dominated by X-rays – whether from Popula-
tion III stars, supernova remnants, stellar-mass black holes, or quasars. We
have already seen in equation (9.65) that X-rays from a “reasonable” quasar
population can have a dramatic effect on the IGM, but even theweaker X-
ray emissivity of stellar-mass black holes can also be significant.

A simple, but plausible, way to parameterize this emissivity is with the
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local correlation between the star formation rate (SFR) andthe X-ray lumi-
nosity in the photon energy band of 0.5–8 keV,233

LX = 3 × 1039fX

(

SFR

M⊙ yr−1

)

erg s−1, (12.37)

wherefX is an unknown renormalization factor appropriate for high red-
shifts. We can only speculate as to the accuracy of this correlation at higher
redshifts. Certainly the scaling is appropriate so long as recently-formed
remnants dominate, butfX will likely evolve with redshift.

The X-ray emission has two major sources. The first is inverse-Compton
scattering off of relativistic electrons accelerated in supernovae. In the
nearby Universe, only powerful starbursts have strong enough radiation fields
for this to be significant; however, at high-redshifts it probably plays an in-
creasingly important role because the CMB energy densityuγ ∝ (1 + z)4.
Assuming that∼ 5% of the supernova energy is released in this form yields
fX ∼ 5 if ∼ 1051 ergs are released in supernovae per 100M⊙ in star for-
mation. The second class of sources, which dominate in locally observed
galaxies, are high-mass X-ray binaries, in which material from a massive
main sequence star accretes onto a compact neighbor. Such systems are
born as soon as the first massive stars die, only a few million years after
star formation commences. So they certainly ought to exist in high-redshift
galaxies, although their abundance depends on the metallicity and stellar
initial mass function. To the extent that massive stars are more abundant at
high redshifts (see the discussions of the IMF in chapter 5),we would ex-
pect such binaries to also be more abundant, which is consistent with some
observational hints of evolution in this relation toward higher redshifts.

Regardless of the details of the sources, the heating rate and tempera-
ture profile around each source can be computed following themethods in
§9.8.2. Note that, unlike the Wouthuysen-Field background,the IGM tem-
perature depends not on theinstantaneousemissivity of sources but on the
accumulated emissivity over the entire history of structure formation. Thus
the IGM temperature structure is more complicated to compute, although
the same basic picture – built from the effects of each sourcehalo – applies.

Figure 12.8 shows the temperature histories and power spectra ofTK for
two models in which the heating is due to star-forming galaxies. In the left
panels, the thick lines takefX = 10 and standard Population II stars, form-
ing with an efficiencyf⋆ = 0.1 in halos withTvir > 104 K; the thin lines
are identical but takef⋆ = 0.01 and use very massive Population III stars
to determine the UV properties. Note that, even with this relatively modest
heating rate, heating begins atz ∼ 15 and the IGM temperature surpasses
Tγ shortly thereafter. The right panels show the corresponding temperature
power spectra; the top and bottom panels are for the Population III and Pop-
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Figure 12.8Left: Thermal history of two models of X-ray heating, Wouthuysen-Field cou-
pling, and reionization. In the top panel, the solid, dashed, and dotted lines
showTK , Tγ , andTS , respectively. The thick and thin lines take Population II
and III star formation properties (see text for details). The bottom panel shows
the mean spin-flip brightness temperatureTb in the same two models.Right:
Power spectrum of temperature fluctuations in the same models, fromz = 20
(where the mean temperature is nearly that of an adiabatically cooling IGM)
to z = 10 (whereTK ≫ Tγ ). The upper and lower panels are for the Pop-
ulation II and Population III models shown at left, respectively. The peak at
late times corresponds to the typical mean free path of X-rayphotons. The
thin curves show the fluctuations for uniform heating for comparison (in this
case the fluctuations arise from variations in the expansioncooling rate). Fig-
ure credit: Pritchard, J. R. & Furlanetto, S. R.,Mon. Not. R. Astron. Soc.376,
1680 (2007). Copyright 2007 by the Royal Astronomical Society.

ulation II models, respectively. In absolute terms, the temperature fluctua-
tions begin quite modestly; atz = 20 they are driven primarily by variations
in the adiabatic cooling rate with IGM density. Byz = 15, the fractional
fluctuations are∼ 20% – which will translate into large 21-cm fluctuations.
The absolute amplitude of the fluctuations continues to increase at lower
redshifts, but the fractional fluctuations decrease as moresources appear;
moreover, in the limitTK ≫ Tγ , the 21-cm brightness temperature is inde-
pendent ofTK , so these fluctuations are unimportant.

12.4 THE MONOPOLE OF THE BRIGHTNESS TEMPERATURE

We are now in a position to compute the time evolution of the brightness
temperatureTb in some simple models. We will begin in this section with
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Figure 12.9 Monopole of the spin-flip brightness temperature (so-called the “global 21-cm
signal”) in several models of early structure formation (see Color Plate 27for
a color version of this figure).Left: Major variations around our fiducial model
(solid curve with several turning points), as indicated. Each curve either elim-
inates a physical process (like heating or ionization) or maximizes it. Right:
Suites of models in which we vary the Lyman-α (lower panel) and X-ray heat-
ing (upper panel) efficiencies by a factor of104. Figure credit: Pritchard, J. R.
& Loeb, A., Phys. Rev.D82, 023006 (2010). Copyright 2010 by the American
Physical Society.

the monopole, or sky-averaged brightness, as a function of frequency. Fig-
ure 12.9 shows the results (as functions of both redshift andobserved fre-
quency) for a range of models, illustrating the wide range ofpossible histo-
ries. At left we show some highly simplified models. The solidcurve with
several turning points is our fiducial model, in which we takefX = 1 and
standard Population II stars, forming with an efficiencyf⋆ = 0.1 in halos
with Tvir > 104 K. The other two solid lines show histories with no star for-
mation (flat belowz ∼ 30) and with a hot, fully-coupled IGM (descending
from largeTb). The dashed curve shows a history in which reionization does
not occur, and the dotted curve shows a history in which heating is turned
off.

The right panels take somewhat more sophisticated models, in which we
vary the X-ray heating efficiency (viafX , see eq. 12.37) and Lyman-α in-
tensity (via a parameterfα, defined so that the intensity from each galaxy is
fα times that in the fiducial model) by factors of104.

These different models are essentially cartoons, but they illustrate several
important points about the 21-cm background. The most important is the
presence of five critical points in the spin-flip background,separating the
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Figure 12.10 Cartoon of the different phases of the 21 cm signal (seeColor Plate 28for
a color version of this figure). The signal transitions from an early phase
of collisional coupling to a later phase of Lyman-α coupling through a short
period where there is little signal. Fluctuations after this phase are dominated
successively by spatial variation in the Lyman-α , X-ray, and ionizing UV
radiation backgrounds. After reionization is complete there is a residual signal
from neutral hydrogen in galaxies. Figure credit: Pritchard, J. R., & Loeb A.,
Reports on Progress in Physics, in press (2012), http://arxiv.org/pdf/1109.6012

eras shown in Figure 12.10.

1. The first, atz ∼ 80, occurs long before star formation becomes sig-
nificant. This reflects the decreasing effectiveness of collisional cou-
pling and occurs roughly when the density falls belowδcoll falls below
unity (see equation 12.15), at which pointTS → Tγ and the IGM sig-
nal fades. This transition is well-specified by atomic physics and the
standard cosmology, at least in the absence of any exotic dark sector
processes that may input energy into the IGM atz > 50. This signal
therefore provides a clear probe of cosmology, at least in principle.

2. The remaining transition points are determined by the properties of
luminous sources, so their timing is much more uncertain. Inour
fiducial model, the next crucial event is the formation of thefirst stars
(at z ∼ 30), which flood the Universe with Lyman-α photons and so
re-ignite the 21-cm background. Interestingly, the timingof this tran-
sition is relatively independent of the luminosity of thesesources, be-
cause (at least in this model) the massive halos that host these sources
are so far out on the exponential tail of the mass function that their
luminosity is primarily determined by the rate of halo collapse. Thus,
this turning point primarily constrains the characteristic mass of the
first galaxies.

3. Next (usually) is the minimum inTb, which occurs just before IGM
heating begins to become significant and is determined byfX . How-
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ever, if this is very large compared tofα, this heating transition can
precede strong coupling. In simple models like we use here, in which
both the X-ray and UV luminosities tracefcoll, the net X-ray heat
input ∆Tc whenxα = 1 is

∆Tc

Tγ
∼ 0.08fX

(

fX,h

0.2

fcoll

∆fcoll

9690

Nα

1

Sα

)(

20

1 + z

)3

, (12.38)

where∆fcoll ∼ fcoll is the effective collapse fraction appearing in the
integrals of equation (12.30) andfX,h is the fraction of the X-ray en-
ergy that goes into heating (see§9.8.2). Note that∆Tc is independent
of f⋆ because we have assumed that both the coupling and heating
rates are proportional to the star formation rate. Clearly,for our fidu-
cial (Population II) parameters the onset of Wouthuysen-Field cou-
pling precedes the point at which heating begins, which is ultimately
the reason for the strong absorption in our fiducial model.

4. The fourth turning point is at the maximum ofTb. In the fiducial
model, this marks the point at whichTK ≫ Tγ , so that the temper-
ature part of equation (12.8) saturates. From that time forward, the
only factors affecting the monopole are the redshift and theionized
fraction, so the signal starts to decrease rapidly once reionization be-
gins in earnest. Most likely, this happensafter coupling is already
strong and heating is significant. Again, in the simple models used
here the ionized fraction whenxα = 1 is given by

x̄i,c ∼ 0.05

(

fesc

1 + n̄rec

Nion

Nα

fcoll

∆fcoll

1

Sα

)(

20

1 + z

)2

, (12.39)

wheren̄rec is the mean number of recombinations per baryon. For
Population II stars with a normal IMF,Nion/Nα ≈ 0.4; thus, even in
the worst case offesc = 1 andn̄rec = 0 coupling would become effi-
cient during the initial stages of reionization. However, very massive
Population III stars have much harder spectra, withNion/Nα ≈ 7.
In principle, it is therefore possible for Pop III stars to reionize the
universebeforexα = 1, although this is rather unlikely given their
fragility (see chapter 6).

It is less clear whether the IGM will appear absorption or emission
during reionization. We find

∆T

Tγ
∼
( x̄i

0.025

)

(

fX
fX,h

fesc

4800

Nion

10

1 + z

)

(1 + n̄rec) (12.40)

for the heat input∆T as a function of̄xi. Thus, providedfX >
1, the IGM will be much warmer than the CMB during the bulk of
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reionization. But the right panel of Figure 12.9 shows that this is by
no means assured.

5. The monopole signal (nearly) vanishes when reionizationcompletes;
the residual brightness is due to gas that is self-shielded from the
metagalactic ionizing background (and hence primarily lies inside of
galaxies, since the LLSs still have small ionized fractions).

Several efforts to observe this monopole signal are underway, including
the Cosmological Reionization Experiment (CoRE) and the Experiment to
Detect the Global Epoch of Reionization Signal (EDGES)234. The wide
range of histories shown in Figure 12.9 illustrate how powerful such ob-
servations would be.

Because global experiments aim to detect an all-sky signal,single-dish
measurements (even with a modest-sized telescope) can easily reach the re-
quired mK sensitivity. However, the much stronger synchrotron foregrounds
from our Galaxy nevertheless make such observations extremely difficult:
they haveTsky > 200–104 K over the relevant frequencies (see the map
in Figure 12.11). The fundamental strategy for extracting the cosmological
signal relies on the expected spectral smoothness of the foregrounds (which
primarily have power law synchrotron spectra), in contrastto the non-trivial
structure of the 21 cm background. Nevertheless, isolatingthe high-redshift
component will be a challenge that requires extremely accurate calibration
over a wide frequency range and, most likely, sharp localized features in
Tb(z) that can be distinguished from smoother foreground features.

Current estimates show that rapid reionization histories which span a red-
shift range∆z < 2 can be constrained, provided that local foregrounds can
be well modeled.235 Observations in the frequency range 50-100 MHz can
potentially constrain the Lyman-α and X-ray emissivity of the first stars and
black holes: even though the foregrounds are significantly worse at these
lower frequencies, the strong absorption signal present inmany models may
be easier to observe than the gently-varying reionization signal. However,
it may be necessary to perform such observations from space,in order to
avoid systematics from terrestrial interference and the ionosphere (in fact
the best observing environment is the far side of the moon, where the moon
itself blocks any radio signals from Earth).

12.5 STATISTICAL FLUCTUATIONS IN THE SPIN-FLIP BACKGROUND

While the 21 cm monopole contains a great deal of informationabout the
mean evolution of the sources, every component in equation (12.8) can also
fluctuate significantly. For the density field this is obvious: the evolving
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Figure 12.11 Brightness temperature of the radio sky at 150 MHz in Galactic coordinates.
Contours are drawn at 180 (dashed), 270, 360, 540, 1100, 2200, 3300, 4400,
and 5500 K. A potential survey field at the North celestial pole is cross-
hatched. Heavy lines indicate constant declinations:−26.5◦, +35◦, and+54◦

with dots to mark 2 hour intervals of time (these are ideal fortwo other exist-
ing experiments, the Murchison Wide-field Array or MWA and LOFAR). Star
symbols indicate the coordinates of four brightz > 6.2 quasars. Figure credit:
Landecker, T. L. & Weilebinski, R.,Proc. Astron. Soc. Aust.1, 210 (1969);
Furlanetto, S. R., Oh, S. P., & Briggs, F. H.,Physics Reports433, 181 (2006).
Copyright 2006 by Elsevier.

cosmic web imprints growing density fluctuations on the matter distribu-
tion. For some of the other aspects, the luminous sources cause 21-cm fluc-
tuations. Ionized gas is organized into discrete H II regions (at least in the
most plausible models), and the Lyman-α background and X-ray heating
will also be concentrated around galaxies. The single greatest advantage of
the 21-cm line is that it allows us to separate this fluctuating component both
on the sky and in frequency (and hence cosmic time). Thus, we can study
the sources and their effects on the IGM in detail. It is the promise of these
“tomographic” observations that makes the 21 cm line such a singularly at-
tractive probe.

Observing the 21-cm fluctuations has one practical advantage as well.
The difficulty of extracting the global evolution from the enormously bright
foregrounds shown in Figure 12.11 lies in its relatively slow variation with
frequency. On the small scales relevant to fluctuations in the signal, the gra-
dients increase dramatically: for example, at the edge of anH II region Tb

drops by∼ 20 mK essentially instantaneously. As a result, separating them
from the smoothly varying astronomical foregrounds may be much easier.
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Unfortunately, constructing detailed images will remain extremely difficult
because of their extraordinary faintness; telescope noiseis comparable to or
exceeds the signal except on rather large scales. Thus, a great deal of atten-
tion has recently focused on using statistical quantities readily extractable
from low signal-to-noise maps to constrain the IGM properties. This is mo-
tivated in part by the success of CMB measurements and galaxysurveys at
constraining cosmological parameters through the power spectrum. In our
case, although any number of statistical quantities may be useful (especially
during reionization, when the fluctuations are highly non-gaussian), we will
take the power spectrum as our primary analysis tool.

We first define the fractional perturbation to the brightnesstemperature,
δ21(x) ≡ [Tb(x)− T̄b]/T̄b, a zero-mean random field. We will be interested
in its Fourier transform̃δ21(k). Its power spectrum is defined to be

〈

δ̃21(k1) δ̃21(k2)
〉

≡ (2π)3δD(k1 − k2)P21(k1), (12.41)

whereδD(x) is the Dirac delta function and the angular brackets denote
an ensemble average. Power spectra for other random fields (such as the
fractional overdensityδ, the ionized fraction, etc.), or cross-power spectra
between two different fields, can be defined in an analogous fashion.

As is obvious from equations (12.8) and (12.10), the brightness tempera-
ture depends on a number of input parameters. Expanding those equations
to linear order in each of the perturbations, we can write

δ21 = βδb + βxδx + βαδα + βT δT − δ∂v , (12.42)

where eachδi describes the fractional variation in a particular quantity: δb
for the baryonic density (for which we will use the matter density, though
the baryonic density is smoother on very small scales thanksto pressure
smoothing),δα for the Lyman-α coupling coefficientxα, δx for the neutral
fraction (note that using the ionized fraction would cause asign change),
δT for TK , and δ∂v for the line-of-sight peculiar velocity gradient. The
expansion coefficientsβi are

β=1 +
xc

xtot(1 + xtot)
, (12.43)

βx =1 +
xHH

c − xeH
c

xtot(1 + xtot)
(12.44)

βα =
xα

xtot(1 + xtot)
, (12.45)

βT =
Tγ

TK − Tγ
+

1

xtot(1 + xtot)

(

xeH
c

d lnκeH
10

d lnTK
+ xHH

c

d lnκHH
10

d lnTK

)

,(12.46)
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wherextot ≡ xc + xα and we have split the collisional term into the dom-
inant H-e− and H-H components (xeH

c andxHH
c , respectively) where nec-

essary. Here we have assumedTc = TK throughout; this is reasonable in
most cases but, if not, the expressions become much more complicated. By
linearity, the Fourier transform̃δ21 can be written in a similar fashion. (For
now we ignore the velocity term; see§12.5.1 below.)

Each of these expressions has a simple physical interpretation. Forβ, the
first term describes the increased matter content and the second describes
the increased collisional coupling efficiency in dense gas.For βx, the two
terms describe direct fluctuations in the ionized fraction and the effects of
the increased electron density onxc. (The latter is only important in partially
ionized regions; 21 cm emission is negligible in H II regions, of course.)βα

simply measures the fractional contribution of the Wouthuysen-Field effect
to the coupling. The first term inβT parameterizes the speed at which the
spin temperature responds to fluctuations inTK , while the others include
the explicit temperature dependence of the collision rates. Note that all of
these terms, with the crucial exception ofδ∂v , are isotropic; we will discuss
the this latter effect in the next section.

For context, Figure 12.12 shows how these expansion coefficients evolve
in a typical structure formation model (similar to those described in the pre-
vious section). The density coefficientβ increases with time untilz ∼ 20
before abruptly falling to unity. Atz > 20, collisions are only marginally
important so the extra collisional coupling imparted by an increased density
has a relatively large effect; at lower redshifts, collisional coupling is negli-
gible compared to the Wouthuysen-Field effect so the secondterm in equa-
tion (12.43) vanishes.βx behaves nearly identically, because (outside of H
II regions) the ionized fraction remains small. Fluctuations in the Lyman-α
background are only important over a limited redshift range(wherexα ∼ 1,
or the coupling is marginal); at lower redshifts, all the gasis strongly cou-
pled so fluctuations in the background are unimportant. The temperature
coefficient has the most complicated dependence because it depends on the
mix of Compton heating and collisional coupling. Note that the apparent
singularity occurs whereTK = Tγ ; it is not physical becausēTb also van-
ishes at the same point. At lower redshifts,TK ≫ Tγ and the emission
saturates,βT → 0.

Based on equation (12.41), the power spectrum contains all possible terms
of the formPδiδj

; some or all could be relevant in any given situation. Of
course, in most instances the variousδi will be correlated in some way;
statistical 21 cm observations ideally hope to measure these separate quan-
tities. We have already included some of the obvious correlations in equa-
tions (12.43)–(12.46), such as the variation of the collision rate with the
ionized fraction. But we have left others implicit: for example, overdense



THE 21-CM LINE 511

Figure 12.12 Redshift dependence of perturbative expansion coefficients in a fiducial model
similar to that of Fig. 12.9. We showβ (solid curve),βx (dotted curve),βα

(dot-dashed curve), andβT (dashed curve). Note that the singularity inβT

at z = 17 is artificial in that it does not actually appear in the fluctuation
amplitude. Figure credit: Furlanetto, S. R., Oh, S. P., & Briggs, F. H.,Physics
Reports433, 181 (2006). Copyright 2006 by Elsevier.

regions are ionized first in most reionization models. A moresubtle ex-
ample is the relation ofδα to the other quantities: as we saw in§12.2.2, it
depends on the radiation spectrum and hence on density, neutral fraction,
and temperature in addition to the background flux.

In all of these expansions, one must bear in mind thatδx is alwaysof
order unity if the ionization field is built from H II regions,because in that
casexi = 0 or 1. In that case terms such asδδx are in factfirst order and
must be retained in detailed calculations.

12.5.1 Redshift-Space Distortions

In general, we expect the fluctuations in density, ionization fraction, Lyα
flux, and temperature to be statistically isotropic, because the physical pro-
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cesses responsible for them have no preferred direction [e.g.,δ(k) = δ(k)].ix

However, peculiar velocity gradients introduce anisotropic distortions. Bulk
flows on large scales, and in particular infall onto massive structures, com-
press the signal in redshift space (the so-calledKaiser effect),236 enhancing
the apparent clustering amplitude, as illustrated in Figure 12.13. On small-
scales, random motions in virialized regions create elongation in redshift
space (the “finger of God” effect), reducing the apparent clustering ampli-
tude.x

We start by labeling the coordinates in redshift space bys. Working for
simplicity under the assumption that the survey volume has asmall radial
depth (so that the Hubble parameterH can be considered constant through-
out the volume), these coordinates are related to real spacer by

s(r) = r +
U(r)

H
, (12.47)

whereU(r) = v · x̂ is the radial component of the peculiar velocity.
Next, we consider a set of particles with number densityn(r) that are

biased with respect to the dark matter by a factorb. Number conservation
demands that the fractional overdensity in redshift space is related to that
in real space via[1 + δs(s)]d

3s = [1 + δ(r)]d3r. The Jacobian of the
transformation is

d3s = d3r

[

1 +
U(r)

r

]2 [

1 +
dU(r)

dr

]

, (12.48)

because only the radial component of the volume element,r2dr, changes
from real to redshift space. The density observed in redshift space increases
if the peculiar velocity gradient is smaller than the Hubbleflow or decreases
otherwise. Thus, assuming|U(r)| ≪ Hr,

δs(r) = δ(r) −
(

d

dr
+

2

r

)

U(r)

H
. (12.49)

Conveniently, the peculiar velocity field itself is a function of the dark matter
density field, as described by equation (2.15).

ixActually, this assumption can break down on extremely largescales, because then the
growth of structure with redshift becomes important. Fortunately, the 21-cm brightness field
only contains rapidly evolving features on such large scales near the tail end of reionization.
The evolution is generally not important on the scales accessible to observations.

xIn most applications, these tend to wash out fluctuations in redshift space. Fortunately,
this effect is negligible for the spin-flip background because the vast majority of the gas lies
outside of massive virialized structures (and gas inside such halos is almost always inside
ionized regions anyway).
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Figure 12.13 Cartoon of redshift space distortions in the linear regime. If an observation
uses redshift as a proxy for distance, it is subject to confusion if velocities do
not precisely follow the mean Hubble expansion. In(a), we imagine observing
a region at the mean density, so that the Hubble flow is correct(top row).
In that case, the inferred radial width of the region will be precisely correct
(bottom row). However, if the region is overdense, so that the local expansion
rate is smaller than the Hubble flow, the inferred radial width will be smaller
than its true width, so the observed density will be even larger (columnb).
Finally, if the region is underdense (and so expanding faster than average, it
will appear even more underdense in redshift-space (columnc).

To see which of these corrections is more important, consider a plane
wave perturbation,U ∝ eik·r. Then the derivative term is∼ kU/H0 while
the last term is∼ U/H0r. Butr is the median distance to the survey volume,
andk corresponds to a mode entirely contained inside it. For all but the
largest surveys, we must therefore havekr ≫ 1, and we may neglect the
last term. If we further make the small-angle approximation, so that̂x is also
approximately a constant over the survey volume, we can takethe Fourier
transform of equation (12.49) and find

δs(k) = δ(k)[1 + βµ2
k] (12.50)

whereµk = k̂ · x̂ is the cosine of the angle between the wave vector and the
line of sight, and we have used (see equation 2.15)

U(r) =

∫

d3k

(2π)3
eik·x[−iβδ(k)]

k̂ · x̂
k

. (12.51)
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Hereβ = f(Ωm)/b corrects for a possible bias between the tracers we are
studying and the growth rate of dark matter perturbations, and f(Ωm) ≈
Ω0.6

m (z). For the case of 21-cm fluctuations in the IGM gas, the bias factor
is very close to unity except below the Jeans filtering scale.Moreover, at
high-redshifts when the universe is matter-dominated,f ≈ 1.

The redshift-space distortions therefore provide an anisotropic amplifica-
tion to the background signal. The anisotropy occurs because only modes
along the line of sight are effected, as illustrated in Figure 12.13. To un-
derstand the amplification, consider a spherical overdenseregion. Its excess
gravitational force causes it to recollapse. Along the radial direction, the col-
lapsedecreasesthe velocity width of the object relative to the Hubble flow
(at least in linear theory), compressing the overdensity inredshift space.
Similarly, a spherical underdensity expands faster than average, causing it
to appear elongated in the radial direction. Averaged over all modes, these
distortions amplify the signal by a factor≈

〈

(1 + µ2)2
〉

≈ 1.87.
However, the anisotropies are actually even more helpful inthat they pro-

vide angular structure to the signal, which may allow us to separate the
many contributions to the total power spectrum. Schematically, brightness
temperature fluctuations in Fourier space have the form

δ21 = µ2βδ + δiso (12.52)

where we have collected all the statistically isotropic terms in equation (12.42)
into δiso. Neglecting “second-order” terms (see below) and settingβ = 1,
the total power spectrum can therefore be written as237

P21(k) = µ4Pδδ + 2µ2Pδisoδ + Pδisoδiso. (12.53)

By separately measuring these three angular components (which requires, in
principle, estimates at just a few values ofµ), we can isolate the contribution
from density fluctuationsPδδ . This would not have been possible without
peculiar velocity flows: comparison to equation (12.42) shows that, in the
most general case,Pδisoδ andPδisoδiso contain several different power spec-
tra, including those of the density, neutral fraction, and spin temperature as
well as their cross power spectra.

Disentangling these other components is more difficult, since there are
several remaining power spectra to be determined from the two measured
quantitiesPδisoδ(k) andPδisoδiso(k). Fortunately, in many regimes one or
more of the terms can be neglected. For example, during the earliest stages
of reionization (whenδx is negligible), one might be able to measure the
power spectrum of spin temperature fluctuations as well as its correlations
with density. At late times (whenTS ≫ Tγ andTb becomes independent of
TS), one might likewise ignore spin temperature fluctuations and measure
the ionization fraction fluctuationsPδx andPxx.
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An additional difficulty originates from the correlations of “second-order”
terms in the perturbation expansion, such asδδx, that produce four-point
terms in the power spectrum. As mentioned previously,δx is not neces-
sarily a small parameter, so these terms can be substantial,and in practice
they can produce terms with non-trivialµ dependence, especially during
reionization. The presence of these terms make attempts to separate the
µn powers during reionization more difficult; the prospects are much better
beforeδx becomes important.

Another important caveat to recovering redshift space distortions is that
they require a high signal-to-noise measurement of the angular structure of
the signal. Unfortunately, the noise is anisotropic: radioforegrounds have
much more power across the sky than in the line of sight direction. (Indeed,
this very feature is crucial to foreground removal algorithms.) Moreover,
it is much easier to probe small physical scales in the frequency direction
than across the angular dimensions. As a result, taking advantage of this
“separation of angular powers” will be difficult.

12.5.2 Other Statistical Measures

So far we have focused our discussion on the three-dimensional power spec-
trum, which is familiar to most cosmologists and provides a reasonable de-
scription of the spin-flip background during most of its evolution. In fact the
power spectrum is a complete statistical description of anypurely Gaussian
random field (whose only parameters are, by definition, the mean and vari-
ance as a function of spatial scale). Inflation predicts thatthe initial matter
density field is nearly Gaussian, making the power spectrum apowerful tool
in cosmology.

However, nonlinear evolution – and the radiation fields fromsuch sources
– spoil this simple statistical description for the 21-cm fluctuations, espe-
cially when ionized bubbles become prevalent late in reionization. It is easy
to see that a Gaussian probability distribution will no longer adequately de-
scribe the 21-cm field during these periods: at infinite resolution, the signal
is either nearly zero (in an ionized bubble) or∼ 20 mK (in the neutral gas,
where there is still some variation due to the density field and possiblyTS).
This bivariate distribution is a strong signature of ionized bubbles and would
provide a powerful test of the morphology of reionization; unfortunately, in
experiments where the Gaussian noise per pixel is larger than∼ 20 mK this
kind of distribution may be difficult to detect, especially in the presence of
complex astrophysical foregrounds.

Other statistical measures, such as higher-order correlations, may also
offer additional information and are the subject of ongoingresearch in the
community.
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12.6 SPIN-FLIP FLUCTUATIONS DURING THE COSMIC DAWN

Figure 12.14 shows several snapshots of a “semi-numerical”computer sim-
ulation (see§9.6.2) of the spin-flip background during the important stages
outlined in our discussion of the monopole signal of§12.4, including both
snapshots of the fields (in the left column) and the corresponding (spherically-
averaged) power spectra (in the right column). The underlying model is very
similar to the fiducial model whose mean signal is shown in Figure 12.9,
though the redshifts of the critical points differ slightly. Importantly, the
fluctuations are substantial throughout all of the interesting regimes.

The top row of Figure 12.14 shows the point where Lyman-α pumping
begins to be significant. The hydrogen gas is cold (TK ≪ Tγ), and the spin
temperature is just beginning to decouple from the CMB. In this case the
fluctuations are driven by the discrete, clustered first galaxies: their radiation
field drivesTS → TK around those first sources, while leaving most of the
IGM transparent.

In this model, the Lyman-α radiation field very quickly builds up the
brightness temperature fluctuations. We illustrate this inFigure 12.15, which
shows the evolution of the amplitude of the power spectrum atone par-
ticular wavenumber (k = 0.1 Mpc−1, near the peak sensitivities of most
arrays).xi The dashed curve shows the effects of the Lyman-α fluctua-
tions: they build up to a peak, with amplitude∼ 10 mK, before decreas-
ing again once Lyman-α fluctuations become strong everywhere (so that
βα ∝ 1/xα → 0).

The second row in Figure 12.14 shows the signal near the onsetof X-
ray heating. At this point in the model, the Lyman-α coupling is strong
nearly everywhere, so most of the IGM is cold and hence appears in absorp-
tion. But near the first X-ray sources (assumed to be star-forming galaxies
here), the X-ray background has already heated the gas toTS ≫ Tγ , so
these regions appear in emission. The net effect is a very large fluctuation
amplitude, with a strong contrast between emitting and absorbing regions.

Figure 12.15 also helps to illustrate this behavior. Here the dotted curve
includesonly the effects of heating fluctuations (implicitly assuming strong
Lyman-α coupling throughout). The signal rises to∼ 20 mK when this
strong contrast is in place; then the fluctuations decrease once more of the
IGM becomes hot (and hence saturates in emission).

The solid curve in Figure 12.15 includes both heating and Lyman-α fluc-
tuations. In this model the X-ray background lags the Wouthuysen-Field

xiThis example is taken from a different analytic model, so thetimes at which the critical
points differ relative to the semi-numerical calculation.However, the qualitative evolution is
identical.
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Figure 12.14 Slices through a “semi-numerical” simulation(left), and the corresponding
spherically-averaged power spectra (right), for a model of the spin-flip back-
ground atz = 30.1, 21.2, 17.9, 10.0 (top to bottom); seeColor Plate 29for
a color version of this figure. The slices were chosen to highlight various
epochs in the cosmic 21-cm signal (from top to bottom): the onset of Lyman-
α pumping (here the blue regions show the cold gas around the first galaxies),
the onset of X-ray heating (here the blue regions are cold gas, while the com-
pact red regions represent hot gas around the first black holes), the completion
of X-ray heating (where all the gas is hot), and the mid-pointof reionization
(where black regions are ionized bubbles). All comoving slices are 1 Gpc on a
side and 3.3 Mpc deep. Figure credit: Mesinger, A., Furlanetto, S. R., & Cen,
R., Mon. Not. R. Astron. Soc.411, 955 (2011). Copyright 2011 by the Royal
Astronomical Society.

coupling, but not by a large margin. As a result, the net signal actuallyde-
creasesin the early phases of the heating era. This occurs because only the
regions near the first sources have strong coupling, but these are also the re-
gions that are heated; the resulting emission signal is weaker than absorption
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Figure 12.15 Evolution of brightness temperature fluctuations atk = 0.1 Mpc−1 in two
models of the early history of the 21-cm background; this is near the peak
sensitivity of most of the planned experiments. The thick curves use parame-
ters similar to our fiducial model in Figure 12.9 (and also thethick curves in
Figure 12.8); the thin curves use the Population III model from Figure 12.8.
The dashed curve includes the effects of Lyman-α fluctuationsonly, the dotted
curve includes the effects of heating fluctuationsonly; the solid curve includes
both (butnot ionization). Panels(a) and(b) show the spherically averaged rms
fluctuation and one of the anisotropic components, respectively. Figure credit:
Pritchard, J. R. & Furlanetto, S. R.,Mon. Not. R. Astron. Soc.376, 1680
(2007). Copyright 2007 by the Royal Astronomical Society.

because of the saturation in equation (12.8). Once the Lyman-α background
reaches more of the IGM, the signal increases quickly.

The third row in Figure 12.14 shows the 21-cm signal after heating has
saturated (TS ≫ Tγ) throughout the IGM. At this point, spin temperature
fluctuations no longer contribute toTb, and only the density field affects
the overall signal. The fluctuations are thus relatively modest (as in the
late stages of the model of Figure 12.15). However, this period could be
very important for cosmological measurements, because theastrophysical
uncertainties in the ionized fraction andTS are less significant (see below).

Finally, the fluctuations increase again once reionizationbegins in earnest,
as shown in the bottom row of Figure 12.14: here the fluctuations in the map
are dominated by the contrast between the ionized bubbles and fully neutral
gas in between them. As we saw in§9.4, the pattern of these bubbles con-
tains information about the ionizing sources creating them.



THE 21-CM LINE 519

Figure 12.16 Dimensionless power spectra∆2
21(k) of spin-flip background during the

reionization era in a numerical simulation with radiative transfer; to obtain the
21-cm signal one needs to multiply∆2

21(k) by the mean brightness tempera-
ture in a fully neutral medium,∼ [282(1 + z)/10] mK2. The curves show the
power spectrum through a sequence of mean ionized fractions; the redshifts
at which these points are achieved (not listed) do not significantly affect the
signal, except through the mean brightness temperature. Figure credit: Lidz,
A. et al.,Astrophys. J., 680, 982 (2008). Reproduced with permission of the
American Astronomical Society.

Figure 12.16 shows how the dimensionless power spectrum∆2
21(k) =

k3P21(k)/(2π
2) (or the power per logarithmic interval in wavenumber of

the 21-cm signal) evolves in a radiative transfer simulation of the reion-
ization process. (To recover the 21-cm signal one needs to multiply these
values by the mean brightness temperature in a fully neutralmedium,T 2

0 ≈
[282(1 + z)/10] mK2.) The different curves show a sequence of ionized
fractions, from nearly neutral (〈xi〉 = 0.02) to almost fully ionized (〈xi〉 =
0.96). In this model, these span a range of redshifts fromz ∼ 11.5–6.8,
but the curves change little if one holds〈xi〉 constant but chooses a different
redshift.

Clearly the shape and amplitude of the power spectrum both evolve sub-
stantially throughout reionization. At first, the 21-cm power spectrum sim-
ply traces the matter power spectrum, as ionized regions have not yet signif-
icantly affected the IGM (and in this modelTS ≫ Tγ throughout the IGM,
so spin temperature fluctuations are likewise unimportant). The power then
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decreaseson large scales because the ionized bubbles appear first in the
densest regions, suppressing the signal there and hence decreasing the over-
all contrast in the 21-cm maps.

This is simplest to understand if we decompose the power spectrum into
parts that describe perturbations in each relevant physical parameter and
retain only the dominant components (see equation 12.42)

∆2
21(k) = T 2

0 〈xH〉2
[

∆2
δδ(k) + 2∆2

xδ(k) + ∆2
xx(k)

]

. (12.54)

In this equation,∆2
δδ and∆2

xx represent the power spectra of the density
field and ionized fraction, and∆2

xδ is the cross-power spectrum of the den-
sity with the ionized fraction.xii Because∆2

xδ is a cross-power, it can be
negative – i.e., the neutral fractionxH is small whenδ is large in most reion-
ization models. In the early phases of reionization, this term dominates the
ionized power itself,∆2

xx, and so the net power falls.
However, by〈xi〉 ∼ 0.5, the∼ 20 mK contrast between ionized and

neutral gas dominates the maps, and the power increases rapidly: now the
ionized bubbles fill a wide range of density, so∆2

xδ is small but∆2
xx is large

– at least on large scales. In fact the power from this term peaks on the
characteristic scale of the ionized bubbles (which is well-defined in most
reionization models; see Figure 9.5). In combination with the contribution
from the matter power spectrum itself, this leads to a strongenhancement
of power on moderate scales (k ∼ 0.1 Mpc−1), followed by a decline at
smaller wavenumbers (not shown clearly in this figure because of the finite
size of the simulation box).

At the same time, on scales much smaller than the bubble size,the 21-cm
power is significantly smaller than expected from the matterpower spectrum
alone. This is largely because of the higher-order terms that we have ig-
nored: within an ionized region, the ionized fraction is largely uncorrelated
with the small-scale density perturbations. Effectively then the contrast on
these scales is decreased because many of the small-scale overdensities no
longer appear in the 21-cm map. The net effect is an overallflattening in
∆2

21 throughout reionization. The flattening shifts to larger scales through-
out reionization, and the amplitude decreases as less of thegas can emit
21-cm photons.

Because the power spectrum of the ionized fraction dominates the signal
on large scales, the spin-flip background could be an effective tool to study
the morphology of reionization (and the sources that drive it); the shape and

xii Here we have included only “low-order” terms in which two quantities are correlated,
for simplicity. In fact, because the ionized fraction is usually either∼ 0 or ∼ 1, “higher-
order” terms such as∆2

xδ,xδ, expressing the joint correlations between ionized fraction and
density evaluated at two different locations, is not necessarily smaller than the terms we have
retained.
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amplitude of the power spectrum can inform us of the time history of reion-
ization throughout the IGM and (through the bubble size distribution) the
clustering properties of the sources that drive it. This interpretation is rela-
tively model-independent (in contrast to galaxy surveys, whose implications
for reionization are difficult to interpret due to the many unknown properties
of the observed galaxies).

The final phase in the evolution of the 21-cm background is theend of
reionization, when the vast majority of the gas is ionized and so the spin-
flip signal declines dramatically. But it does not disappear: substantial reser-
voirs of neutral gas still exist inside of self-shielded galaxy-sized objects –
the “damped Lyman-α absorbers” we have discussed before. Observations
show that these systems typically haveTS ≫ Tγ ; in this limit the power
spectrum is simply

∆2
21(k) ≈ T 2

0 〈xH〉2 ∆2
gg(k), (12.55)

where∆2
gg is the galaxy power spectrum (which can be computed easily

with the halo model) and〈xH〉 is measured from a census of DLAs to
be a few percent after reionization.238 Figure 12.17 compares the post-
reionization signal to the higher redshift one at several different wavenum-
bers in a model where reionization is tuned to end atz = 6.5. Provided that
galactic systems do dominate the neutral gas, fluctuations in the spin-flip
background at redshifts after reionization therefore present an interesting
cosmological probe – with the same information as galaxy surveys – but
offer little information about the IGM itself.

12.6.1 Extracting Cosmological Measurements from the Spin-Flip Background

To this point, we have focused on the spin-flip background as arich astro-
physicaldata set. However, it also holds great promise for measurements
of “fundamental” cosmological information, much like the CMB. There are
several reasons for this promise. First, the 21-cm signal probes a time pe-
riod when structure formation is still in its infancy – and, in particular, still
within the well-understood linear regime through most of space. Second –
unlike with galaxy surveys – the 21-cm signal probes the majority of bary-
onic matter that lies outside of virialized structures, allowing us to access
directly the linear fluctuations in the matter field.

Third – unlike the CMB – a 21-cm survey yields a three-dimensional
data set and hence probes a much larger fraction on the cosmicvolume.
We will see in the next section that the ultimate fractional uncertainty in the
amplitude of any Fourier mode of wavelengthλ is given by∼ 1/

√
N , where

N is the number of independent elements of sizeλ that fit within the survey
volume. For the two-dimensional map of the CMB,N is the surveyed area
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Figure 12.17 Redshift evolution of the angle-averaged 21 cmpower spectrum in a model
with reionization ending atz = 6.5. We show the amplitude fork =
0.01 Mpc−1 (solid curve),k = 0.1 Mpc−1 (dotted curve),k = 1 Mpc−1

(short-dashed curve), andk = 10 Mpc−1 (long-dashed curve). After reion-
ization, the fluctuations trace neutral gas inside galaxiesand DLAs and so
mirror the galaxy power spectrum. The diagonal curves show contours of a
fixed fraction of the sky brightness as a function of frequency. Figure credit:
Pritchard, J. R. & Loeb, A.Phys. Rev.D 78, 103511 (2008). Copyright 2008
by the American Physical Society.

of the sky divided by the solid angle occupied by a patch of area λ2 at
z ∼ 103. For a three-dimensional field, we obtain one of these maps at
every frequency, vastly increasing the size of the available data set. Figure
12.18 shows the fraction of the total comoving volume of the observable
Universe that is available up to different redshifts. Clearly 21-cm surveys
at z ∼ 10 probe a much bigger comoving volume than conventional galaxy
surveys atz < 1.

Finally, the 21-cm power extends down to the pressure-dominated (Jeans)
scale of the cosmic gas. This is orders of magnitude smaller than the comov-
ing scale at which the CMB anisotropies are damped by photon diffusion.
Consequently, the spin-flip background can trace the primordial inhomo-
geneities with a much finer resolution (i.e., many more independent pixels)
than the CMB. Altogether, the above factors imply that 21-cmtomography
of cosmic hydrogen may potentially carry more information about the initial
conditions of our Universe than any other method.
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Figure 12.18 The fraction of the total comoving volume of theobservable Universe that is
available up to a redshiftz, as a function ofz. Image credit: Loeb, A. &
Wyithe, J. S. B.,Phys. Rev. Lett.100, 161301 (2008). Copyright 2008 by the
American Physical Society.
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Of course, extracting cosmological information in the presence of the
rich astrophysics that sets the 21-cm brightness may be challenging. For-
tunately, there are two regimes in which it may be possible. The first is
beforethe first stars light up the Universe. During these “dark ages,” there
is no astrophysics that can possibly interfere; however, atsuch high red-
shifts, corresponding to low frequencies, the noise is extraordinarily large
(see Figure 12.17), so this era will remain inaccessible forthe foreseeable
future.

A second possibility is if the ionization and temperature factors in equa-
tion (12.8) can both be neglected; then the spin-flip brightness traces density
and velocity fluctuations, both of which can be easily translated into funda-
mental cosmological parameters like the matter content or Hubble constant.
We saw in§12.4 that such a scenario is plausible: the Wouthuysen-Field
effect can become strong long before reionization begins inearnest, and
X-ray heating could also be very fast – but this outcome is by no means
guaranteed. If not, cosmological information can be extracted only if the
astrophysics is well understood.

We will see later that high-precision measurements of the 21-cm back-
ground are challenging, and for the foreseeable future the direct constraints
on, e.g., the matter power spectrum will not be competitive with those from
galaxy surveys or the CMB. However, because the spin-flip background
extends to such small scales, it still adds new cosmologicalinformation
compared to other measurements. This is particularly useful for cosmo-
logical parameters that depend crucially on small scales, such as the shape
of the primordial power spectrum and the neutrino mass (because the free-
streaming of neutrinos erases small-scale power).239

12.7 MAPPING THE SPIN-FLIP BACKGROUND

The prospect of studying reionization, and even earlier epochs, by mapping
the distribution of atomic hydrogen across the Universe through its 21-cm
spectral line has motivated several teams to design and construct arrays of
low-frequency radio antennae. For redshiftsz ∼ 6–50, the corresponding
observed frequencies areνobs ∼ 30–200 MHz. Although the radio tech-
nology for the frequency range of interest has existed for decades – and is
essentially the same that we use every day for TV or radio communication
– these experiments face three extreme challenges before they can observe
the spin-flip background:

• The low-frequency band is heavily used by humans (as it includes
the FM radio band, analog TV stations, and a host of satelliteand
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aircraft communications channels), and the resultingterrestrial ra-
dio interferenceis as many as ten orders of magnitude brighter than
the 21-cm background. Most of the efforts therefore place the ob-
servatories in isolated locations far from the contaminating sources
(although some residual contamination does remain). However, this
interference is usually (though not always) narrowband, soone can
also attempt to measure the cosmological signal only in the gaps be-
tween contaminated channels. Even then, the presence of such bright
foregrounds places serious requirements on the dynamic range of the
low-frequency observatories.

• The ionosphereis refractive at low frequencies (and at the lowest fre-
quencies, corresponding to redshiftsz > 50, becomes opaque). This
causes sources to jitter across the sky as patches of the ionosphere
move across the telescope beam. The refraction phenomenon is simi-
lar to atmospheric seeing in optical astronomy, although the timescale
for the jitter is much slower (several seconds in this case).It can be
corrected in software by calibrating to the locations of a set of point
sources distributed across the field of view, although this is by no
means a trivial computing effort. The ionosphere is more active dur-
ing the day and during times of high solar activity. This – together
with the large brightness of the sun itself at these frequencies – re-
stricts these observatories to operate only at night.

• Most significantly, the spin-flip background is far from the only astro-
nomical source in the sky. Nearly all non-thermal radio sources are
bright in the low-frequency band, especially the synchrotron radiation
from the Milky Way galaxy, as we have already seen in Figure 12.11.
But other extragalactic sources – including AGN, galaxy clusters, and
even normal star-forming galaxies – also contribute. A ruleof thumb,
typical high-latitude, “quiet” portions of the sky have a brightness
temperature240

Tsky ≈ 180
( ν

180 MHz

)−2.6
K. (12.56)

This brightness is so large that it swamps the noise from evena simple
receiver. We immediately see that 21-cm mapping will require large
integration times and large collecting area to overcome this “noise,”,
which is at least104 times stronger than the cosmic signal.

Despite numerous efforts over the past four decades to observe fluctua-
tions in the spin-flip background, these factors – as well as not-yet mature
theories of the first galaxies – conspired to prevent any detection. Now, with
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modern computing, it has become possible to analyze the enormous vol-
ume of data generated by experiments to see this background.As such, a
number of experiments are either beginning observations orcompleting con-
struction. All of these mapping experiments areinterferometers, in which
the signals from multiple antennae are correlated with eachother to produce
one larger, higher-resolution telescope.

Currently, several experiments are either in the early phases of operations
or final phases of construction. The wide ranges of approaches taken by the
teams highlight the vitality of this field; the theoretical promise described in
this chapter is now being transformed into actual instruments. The current
tomographic projects include:

• The Giant Metrewave Radio Telescope (GMRT; in India) is an inter-
ferometer with thirty 45-m antennas operating at low radio frequen-
cies. Completed over ten years ago, the 21-cm background wasan
early motivator for the project, but the theoretical landscape changed
radically and only now has GMRT returned to this project. Thelarge
collecting area provides a powerful tool, but the instrument’s narrow
field of view and difficult radio environment present challenges. Nev-
ertheless, the GMRT team was the first to put limits on the spin-flip
background, ruling out a cold, neutral IGM atz ∼ 8 in the summer of
2010.241

• The Low Frequency Array (LOFAR; with the core in the Netherlands
and outlying stations throughout Europe) is a large, general-purpose
low-frequency radio telescope that began science operations in 2010.
While its many other science goals mean that LOFAR is not com-
pletely optimized to observe the spin-flip background, its large col-
lecting area (especially inside a compact “core” most useful for these
observations) and powerful computers nevertheless make ita power-
ful machine for this purpose. Its location in Western Europemeans
that LOFAR will face by far the most difficult terrestrial radio envi-
ronment. Moreover, it uses an enormous number of dipole antennae,
combining their individual signals into “stations” that are then used
as interferometers. While this allows for a large collecting area, it
presents analysis challenges in understanding the instruments suffi-
ciently well to extract the tiny cosmological signal.

• The Murchison Widefield Array (MWA) in Western Australia is an
interferometer built almost entirely to observe the 21-cm background.
As such, the project hopes to leverage the relatively small experiment
into limits competitive with larger first-generation experiments. Like
LOFAR, MWA uses thousands of dipoles grouped into “tiles,” which
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Figure 12.19 One of the antenna “tiles” used in the MurchisonWidefield Array (MWA)
experiment in Western Australia (seeColor Plate 30for a color version of
this figure). Each such tile is composed of 16 crossed-dipoleantennae, with
their signals combined through hardware at the station. Thefull telescope
combines the signals from∼ 128 tiles interferometrically. This allows for a
large (several hundred square degree) field of view with a moderately large
collecting area. The antennae operate between 80–300 MHz, corresponding
to z ≈ 6–15 (although the telescope will only be sensitive to the spin-flip
background atz < 10). Image credit: C. Lonsdale.

increase the collecting area at the cost of complexity. Because MWA’s
tiles are smaller, though, it achieves a larger field of view than LO-
FAR, which partially compensates for the much smaller collecting
area. Figure 12.19 illustrates the antenna tile design of MWA.

• The Precision Array to Probe the Epoch of Reionization (PAPER,
with instruments in Green Bank, West Virginia and South Africa)
combines signals from single dipoles into an interferometer. Without
tiles, PAPER has a much smaller total collecting area than the other
efforts but the advantages of a well-calibrated and well-understood
instrument and an enormous field of view. The PAPER instrument is
gradually building toward 128 antennas.

In addition to this impressive suite of ongoing efforts, larger experiments
are planned for the future, with their designs and strategies informed by this
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present generation.
In this section we will briefly describe how these experiments work and

hope to measure the spin-flip background. Of course we cannothope to
do full justice to a topic as rich as radio observations and interferometry
in this chapter; we will focus on the ideas most relevant to the spin-flip
background, and we refer the interested reader to one of the many good
textbooks on radio astronomy for more detailed information(see Appendix
B).

12.7.1 A Brief Introduction to Radio Telescopes

The sensitivity of a telescope system depends on the competition between
the strength of the cosmic signal collected by the antenna and the noise. The
signal output of the antenna can be specified as anantenna temperature, Ta,
which is the temperature of a matched resistive load that would produce
the same power level (Pa = kB Ta ∆ν for the resistor) as the signal power
P = Ae Sν ∆ν/2 received in one of two orthogonal antenna polarizations,
whereSν is the source flux density (assuming an unpolarized source),∆ν
is the observed frequency bandwidth, andAe is the effective collecting area
of the telescope. From these we define the antenna sensitivity factorKa ≡
Ta/Sν = Ae/2kB .

The signal-to-noise ratio is assessed by comparingTa andTsys, thesys-
tem temperature, similarly defined as the temperature of a matched resistor
input to an ideal noise-free receiver that produces the samenoise power
level as measured at the output of the actual receiver. The system tempera-
ture includes contributions from the telescope, the receiver system, and the
sky; the latter dominates in our case. Noise fluctuations∆TN decline with
increased bandwidth and integration timetint according to the radiometer
equation,

∆TN = κc
Tsys√
∆ν tint

≈ Tsys√
∆ν tint

, (12.57)

whereκc ≥ 1 is an efficiency factor accounting for the details of the signal
detection scheme; for simplicity we will setκc = 1, which is a reasonable
approximation for the telescopes discussed here. The aboveequation has a
simple interpretation. Since the occupation number of the photons is large,
they behave as a classical electromagnetic wave. The numberof indepen-
dent samples of the noise temperature is then the number of cycles observed
during the integration timeNcyc ∼ ∆νtint, and the uncertainty in the system
temperatureTsys is reduced by the factor of

√

Ncyc for Gaussian statistics
(applicable in the limit ofNcyc ≫ 1).
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The noise level (in flux density units) for an unresolved source is then

σS =
Tsys/Ka√

∆ν tint
. (12.58)

Note that this decreases with the telescope collecting areaAe. However, in
many applications, we must take into account that the total collecting area
may be distributed over a much larger physical area, in orderto achieve
better angular resolutionθD ≈ λ/Dmax, whereλ is the (observed) wave-
length andDmax is the maximum distance between antennae. In this case,
the equivalent brightness temperature uncertainty is

∆TN =
σSc

2

2kBν2ΩB
≡ Tsys

ηf

√
∆ν tint

, (12.59)

whereηf ≡ Atot/D
2
max is the array filling factor and ΩB ≈ θ2

D is the
solid angle subtended by the telescope beam. An appreciation of this de-
pendence onηf is crucial: the integration time required to detect a given
surface brightness grows astint ∝ D4

max if the (fixed) total collecting area
is spread over larger areas in order to achieve better angular resolution.

We can develop better insight into the radio telescope response through a
thought experiment in which a radio telescope is encased in ablackbody of
temperatureT . Regardless of its size, and with proper impedance matching,
the telescope would produce an antenna temperatureTa = T at its output.
For this reason, attempts to observe the global 21 cm background are more
concerned with issues of matching and gain calibration thanwith antenna
size.

On the other hand, a telescope constructed with a beam of solid angleΩB

will still deliver Ta = T at its output if (i) it is embedded in a black body
radiation fieldor (ii) an emitter of brightness temperatureTB = T entirely
fills its beam. Unfortunately, real radio telescopes do not form perfectly
defined beams, and all suffer from sidelobes whose shapes andresponses
are dictated by diffraction and scattering of the incident radiation through
the telescope. This is especially true of arrays, where a fraction (1 − ηf) of
the total response lies outside the beam defined byθD ∼ λ/Dmax.

Using equation (12.56) withTsys ≈ Tsky to estimate the telescope noise
∆TN for a single-dish measurement of an unresolved source, we find

∆TN |sd ≈ 0.6 mK

(

1 + z

10

)2.6 (MHz

∆ν

100 hr
tint

)1/2

. (12.60)

The mean 21-cm signal hasT0 ∼ 20 mK; thus, single dish telescopes can
easily reach the sensitivity necessary to detect the global21-cm background.
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In this regime, the challenge is instead to separate the slowly varying cosmo-
logical signal from the foregrounds. On the other hand, detecting individual
features is still limited by the resolution of the telescope: a small single dish
can detect the mean signal across the entire sky but cannot identify individ-
ual ionized bubbles.

12.7.2 Noise Estimates for 21-cm Interferometers

At radio frequencies, interferometry is required to make maps with even
a relatively coarse resolution; for realistic collecting areas, the array dilu-
tion factorηf dramatically decreases the sensitivity. Again using equation
(12.56) for the system temperature, we find

∆TN |int ∼ 2 mK

(

Atot

105 m2

) (

10′

θD

)2 (1 + z

10

)4.6 (MHz

∆ν

100 hr
tint

)1/2

.

(12.61)
The angular resolution scale ofθD ∼ 10′ and the frequency resolution scale
of ∆ν ∼ 1 MHz correspond to∼ 20 comoving Mpc.xiii The current gen-
eration of telescopes haveAtot < 105 m2, so imaging (i.e., mapping pixels
with a signal-to-noise much greater than unity) will only bepossible on large
scales that exceed the typical sizes of bubbles during most of reionization. It
is for this reason that near-term imaging experiments focusprimarily on gi-
ant H II regions generated by extremely luminous quasars during the middle
phases of reionization, when the contrast between the largeionized bubble
and the background IGM is largest.

Although equation (12.61) provides a simple estimate of an interferom-
eter’s sensitivity, we will see below that the rate at which interferometers
sample different scales depends on its design; this effectively makesηf a
function of angular scale. Thus, equation (12.61) only provides a rough
guide.

When two antennae are coupled together electronically to form an inter-
ferometer, the combined response projected on the sky resembles the char-
acteristic diffraction pattern of a double slit. The spacing depends on the
distance between the two elements, or thebaseline. In general, the inter-
ferometer response to the sky brightness distributionIν(n̂) for a particular
“visibility” V, corresponding to a particular baseline and frequency pair, in
units of temperature, is

V(n̂0, u, v, ν) ≈
∫

dx dy Tb(x, y, ν)Wν(n̂0, n̂) e2πi (ux+vy), (12.62)

xiii More precisely, a bandwidth∆ν corresponds to a comoving distance∼
1.8 Mpc(∆ν/0.1 MHz)[(1 + z)/10]1/2, while an angular scaleθD corresponds to
2.7(θD/1′)[(1 + z)/10]0.2 Mpc.
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whereWν is the normalized response pattern of the antennae andA =
λ(ûi, v̂j, wẑ) is the vector (on the ground) between the two elements. In the
orthogonal(u, v,w) coordinate system, thew axis aligns with the direction
toward the sky at the center of the beam, and theu-v axes are oriented so
that thev axis projects onto the local meridian. The coordinatesx andy are
angles measured in the “sky plane” relative to the intersection of ẑ with the
celestial sphere. In this Fourier transform of the sky,u andv represent spa-
tial frequencies and thew axis produces a phase offset in the interferometer
fringe that can be calibrated. (This representation assumes that the interfer-
ometer sees only a small piece of the sky so that the “flat sky” approximation
is valid; that is not actually true for some of the 21-cm telescopes, but the
basic formalism presented here provides a reasonable approximation with
much less technical difficulty.)

We must keep in mind that this Fourier integral does not properly account
for sources far outside the primary beam; in effect, these add a noise-like
contribution entering through the sidelobes that inevitably appear outside
the primary beam.

Given the difficulty of high signal-to-noise imaging, attention has focused
on statistical measurements. We will now turn to estimatingthe sensitivity
of 21 cm experiments to the power spectrum. Error estimates for other sta-
tistical measures must still be developed, but the basic principles are the
same. For simplicity, we will only consider the effects of thermal noise and
cosmic variance, which provide a fundamental limit. Systematics (espe-
cially foregrounds) present equally large difficulties, and the community is
hard at work developing strategies to mitigate them, some ofwhich we will
discuss below.

We begin with the complex visibility of equation (12.62). The detec-
tor noise for a single visibility measurement is closely related to equa-
tion (12.57). Equation (12.58) implies

∆TN(ν) =
λ2 Tsys

Ae

√
∆νtu

, (12.63)

where heretu is the integration time of this particular baseline; due to the
Earth’s rotation these large interferometers continuallyshift their sky cov-
erage (in an analogous manner to “drift-scanning” in optical astronomy) so
this isnot the same as the total integration time. Also,Ae is the collecting
area of each antenna element (which we assume to be perfectlyefficient, for
simplicity).

The observed “visibility data cube” conventionally used inradio astron-
omy is actually a hybrid of Fourier space (u, v) and redshift-space (ν) coor-
dinates and is thus inconvenient for comparing to theoretical models. One
can either transform the visibility data to the sky plane to obtain the “image
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cube” or transform the frequency (redshift) coordinate to its Fourier-space
equivalentxiv in order to obtain a representation with spatial frequency for
all three dimensions,

Tb(u) =

∫

B
dνV(u, v, ν) e2πiην , (12.64)

where the integration extends over the full bandwidthB of the observation,
u ≡ ûi + v̂j + ηẑ, andη has dimensions of time. In this representation, the
effective noise can be obtained by Fourier transforming thesignal across the
frequency axis, yielding

∆TN (u) =
λ2 Tsys

√
B

Ae
√
tu

≈ Tsys√
B tu

× λ2

Ae δη
. (12.65)

In the second equality, we have setδη = B−1. The factorAe/λ
2 × δη then

represents the Fourier space resolution of the observation(or the inverse
volume sampled by the primary beam, in the appropriate units); note the
similarity to equation (12.57) when written in this form. Here∆TN (u) has
units of temperature divided by time, because of the Fouriertransform in
the frequency direction.

To estimate the statistical errors, we need the covariance matrix of the
noise for antenna pairs at baselinesui anduj . Because the thermal noise
errors are uncorrelated between measurements, this is simply a diagonal ma-
trix with each element being the square of equation (12.65).In transform-
ing to the physical wavevectork, we distinguish between the component
u⊥ oriented along the sky (corresponding tok⊥ = 2πu⊥/D, whereD is
the comoving distance to the observed survey volume) and thecomponent
k‖ along the line of sight. This is useful because interferometers can have
arbitrarily good frequency resolution while theu⊥ coverage is always fixed
by the baseline distribution.

We define the number density of baselines that observe a givenu⊥ as
n(u⊥); this is normalized so that its integral over theu⊥ half-plane is
NB = Na (Na−1)/2, the total number of baselines in the array ofNa anten-
nae. Two properties ofn(u⊥) are noteworthy. First, because of the earth’s
rotation, it is azimuthally symmetric and only a function ofu⊥ = |u⊥|.
Second, for a smooth antenna distribution,n(u⊥) is virtually always a de-
creasing function ofu⊥. This follows from a simple geometric consider-
ation: it is difficult to arrange the antenna distribution tohave many more

xivObviously, this transformation is not useful for non-cosmological radio astronomy ap-
plications, where there is no frequency-distance relation.
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long baselines than short ones. We can write:

tk ≈ n(u⊥)

(

Ae

λ2

)

tint. (12.66)

As beforeAe/λ
2 ≈ δu δv is the angular component of the Fourier-space

resolution. Thus, the noise covariance matrix is

CN (ki, kj)≡
〈

∆TN (ui)
∗ ∆TN (uj)

〉

=

(

λ2B Tsys

Ae

)2
δij
B tk

. (12.67)

Equation (12.67) represents the thermal noise contribution to the covari-
ance matrix; even in an ideal experiment with no systematicsfrom fore-
grounds, we must also include errors from sample variance. This component
is

CSV (ki, kj)= 〈T ∗
b (ki)Tb(kj)〉

≈ δijT
2
0 〈xHI〉2

∫

d3u |W̃ (ui − u)|2 P21(u)

≈T 2
0 〈xHI〉2 P21(ki)

λ2B2

AeD2 ∆D
δij , (12.68)

where∆D ∝ B is the line-of-sight depth of the observed volume in co-
moving units andT0 is the average brightness temperature of a fully neutral
IGM. In the first line, the average is over baseline and frequency pairs in-
dexed byki andkj (or equivalentlyui anduj). In the second line,̃W is
the Fourier-transform of the primary beam response function, including the
finite bandwidth, and is most naturally expressed in the “observed” unitsu.
It typically differs from zero in an areaδu δv δη ≈ Ae/(λ

2B) and (ignoring
efficiencies) integrates to unity over the beam. For the lastline, we have as-
sumed thatu is much larger than the width of this response function. Then
P21(u) is constant across the beam and can be pulled out of the integral,
which becomes simply(δu δv δη)−1. We have also transformed to the more
physically relevant wavenumberk, which introduces a factorB/(D2∆D).

Equation (12.68) has a simple physical interpretation: it is essentially a
normalization factor (T 2

0 〈xHI〉2B2) multiplied byP21/Vsurv, whereVsurv ≈
∆D(D2λ2/Ae) is the total volume observed by the telescope. This factor
counts the number of independent estimatesN available to the measurement
of a given Fourier mode; the squared error then scales as1/N .

To translate these into error estimates, we use the common Fisher in-
formation matrix approach (see also§10.4.3). This provides an idealized
estimate of the measurement errors given the total covariance matrixC =
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CN +CSV , ignoring any possible systematics and inefficiencies in the data
reduction. Given a vector of parametersΨ, the(i, j) element of the Fisher
matrix is defined as242

Fij ≡
〈

− ∂2 lnL
∂Ψi ∂Ψj

〉

(12.69)

= Tr

[

C−1 ∂C

∂Ψi
C−1 ∂C

∂Ψj

]

, (12.70)

whereL is the log-likelihood function. For the simple case of measuring the
binned power spectrum from the data points, the “parameters” are the power
spectrum amplitudes in each of the bins,Ψi = P∆T ≡ T 2

0 〈xH〉2 P21(ki);
in more general cases they are the parameters of a theoretical model meant
to describe the data. The Cramer-Rao inequality states thatthe errors on any
unbiased estimator of the power spectrum must satisfy

δP∆T (ki) ≥
1

√

Nc(ki)

√

(F−1)ii, (12.71)

whereNc is the number of measurements in the appropriate bin andF−1 is
the inverse of the Fisher matrix.

In the case we are studying, the Fisher matrix is particularly simple to use
because the covariance matrix is diagonal. (This will not betrue for real
data, because foreground cleaning and other systematic effects induce cor-
related residual errors, but it provides a rough estimate ofthe noise limits.)
The resulting error (from a single baseline) on a power spectrum estimate is

δP21(ki) = P21(ki) +
T 2

sys

Btint

D2∆D

n(k⊥)

(

λ2

Ae

)2

. (12.72)

The last step is to count the number of Fourier cells in each power spec-
trum bin, which depends on the Fourier-space resolution of the instrument.
Recall that when redshift space distortions are includedP21 is not truly
isotropic, but it is azimuthally symmetric. Thus, we use Fourier cells grouped
into annuli of constant(k, µ). Then, in the limit thatkµ is much larger than
the effectivek‖ resolution,

Nc(k) ≈ 2π k2 ∆k∆µ×
[

Vsurv

(2π)3

]

, (12.73)

where the last term represents the Fourier space resolution. The total errors
from all estimates within a bin simply add in quadrature. In its essence,
this calculation is identical to our estimate for the errorson galaxy power
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spectrum measurements in§10.4.3, except that the shot noise relevant to
galaxy number counts is replaced by the thermal noise of eachmode.

Equations (12.67), (12.68), and (12.72) fully specify the effects of noise
in the absence of systematic effects. But to make estimates we must deter-
mine the effective observing timetk for each mode – and hence the baseline
distributionn(u⊥) by equation (12.66) – as well as the sampling density
(equation 12.73 for a measurement in annuli). These two quantities are
obviously highly dependent on the design of the experiment.It is there-
fore useful to consider the simple thermal noise-dominatedcase in order
to develop some intuition for array design. Substituting for Nc in equation
(12.72) and ignoring the first term (which is equivalent to working on small
scales), we find

δP∆T ∝ A−3/2
e B−1/2

[

1

k3/2 n(k, µ)

]

(

T 2
sys

tint

)

. (12.74)

Here we have assumed that the power spectrum is measured in bins with
constant logarithmic width ink but constant linear width inµ. From equa-
tion (12.74), we can deduce a number of fundamental considerations driving
array design.

• First,δP21 ∝ t−1
int , because the power spectrum depends on the square

of the intensity.

• Second, we can increase the collecting area in two ways. One is to
add antennae while holding the dish areaAe constant. Recall that
n(k, µ) is normalized to the total number of baselinesNB ∝ N2

a :
thus, adding antennae of a fixed size decreases the errors by the to-
tal collecting area squared. (Of course, the number of correlations
needed also increases by the same factor, so this strategy iscostly in
terms of computing.) The other method is to make each antennalarger
but hold their total number fixed. In this case, the total number of
baselines, and hencen(k, µ), remains constant, butδP∆T ∝ A

−3/2
e .

Increasing the collecting area in this way is not as efficientbecause it
decreases the total field of view of the instrument, which is set by the
field of view of each antenna.

• Third, adding bandwidth increases the sensitivity relatively slowly:
δP∆T ∝ B1/2, because it adds new volume along the line of sight
without affecting the noise on any given measurement. Of course, one
must be wary of adding too much bandwidth because of systematics
(especially foregrounds).
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• Finally, as a function of scalek, δP∆T ∝ k−3/2 n(k, µ)−1. The
first factor comes from the increasing (logarithmic) volumeof each
annulus ask increases. But in realistic circumstances the sensitivity
actually decreases toward smaller scales because ofn. This is most
obvious if we consider a map at a single frequency. In that case, high-
k modes correspond to small angular separations or large baselines;
for a fixed collecting area the array must therefore be more dilute
and the sensitivity per pixel decreases as in equation (12.61). In the
(simple but unrealistic) case of uniformuv coverage, the error on a
measurement of the angular power spectrum increases likeθ−2

D for a
fixed collecting area.

Fortunately, the three-dimensional nature of the true 21-cm signal
moderates this rapid decline toward smaller scales: even a single dish
can measure structure along the line of sight on small physical scales.
Mathematically, becausen(k, µ) = n(k⊥), each baseline can image
arbitrarily largek‖, at least in principle. For an interferometer, this im-
plies that short baselines still contribute to measuring large-k modes.
Thus, provided that they have good frequency resolution, compact ar-
rays are surprisingly effective at measuring small-scale power . There
is one important caveat: if short wavelength modes are only sampled
along the frequency axis, we can only measure modes withµ2 ≈ 1.
Thus we recover little, if any, information on theµ dependence of
the redshift-space distortions. Studying this aspect of the signaldoes
require baselines able to measure the short transverse modes with
µ2 ≈ 0.

Figure 12.20 summarizes the expected errors (including only thermal
noise and cosmic variance, not systematics) on the spherically-averaged
power spectrum. The thin curves show a forecast for an experiment four
times larger than the MWA (but otherwise with identical parameters, com-
parable to the best constraints expected from the first generation of exper-
iments). We assume 1000 hours of integration on a single field(roughly
one-year of realistic observing conditions), bin the observed modes into
segments of width∆k = k/2 (as shown by the horizontal bars), and take a
radial survey width corresponding to6 MHz (or ∆z ∼ 0.5).

Provided that it reaches this limit, such an experiment can place fairly
stringent constraints at scalesk < 1 Mpc−1. Smaller scales are swamped
by thermal noise. The errors on large scales come from cosmicvariance,
although here they are quite modest because of the large fieldof view of
the telescope. Reaching smaller scales will require more collecting area in
order to reduce the noise. The thick curves show the estimated errors for
a futuristic experiment, with 5000 antenna tiles (forty times more than the
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Figure 12.20 Estimated errors on the spherically-averaged21-cm power spectrum atz = 8
for an experiment four times larger than the MWA (thin curves) and one with
100 times larger collecting area (thin curves). The centralvalues of the latter
are shifted downward for clarity of presentation. We assume1000 hours of
integration on a single field, bin the observed modes into segments of width
∆k = k/2 (the horizontal bars show these bins), and take a radial survey
width corresponding to6 MHz (or ∆z ∼ 0.5). The vertical dotted line shows
the scale corresponding to this bandwidth; foreground removal will likely pre-
vent measurements at wavenumbers smaller than this scale.

MWA) and four hundred times larger total collecting area. This experiment
would provide good constraints out tok ∼ 10 Mpc−1.

Unfortunately, measuring very large physical scales with these experi-
ments is likely to be very difficult, because of the other astronomical fore-
grounds. To separate the Galactic synchrotron radiation from the cosmolog-
ical signal, the experiments will rely on the former’s spectral smoothness
and the latter’s rapid variations with frequency (due to H IIregions, den-
sity fluctuations, or temperature variations). The essential idea is to fit a
low-order function to each pixel in the map (or Fourier mode)and subtract
out this mean variation over a wide (several MHz) frequency range. Pro-
vided that the foregrounds are smoother than the signal, this scheme will
isolate the spin-flip background, but with an inevitable loss of information
(i.e., any variations in the 21 cm background over large frequency ranges
are also subtracted out). Current estimates suggest that this method will
work very well at small scales but prevent measurements of any fluctuations
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on scales larger than those corresponding to the several MHzbandwidth of
each measurement. The vertical dotted line in Figure 12.20 shows the scale
corresponding to our assumed 6 MHz bandwidth; modes to the left of this
line are likely lost in the foreground removal process. Unfortunately, this
drastically reduces the dynamic range of the first generation experiments.

Because the sky noise increases rapidly with redshift (see eq. 12.56), the
first generation of experiments lose sensitivity atz ∼ 11–12. Reaching
these high redshifts will likely require collecting areas approaching a square
kilometer. Such large instruments will also be necessary tomeasure the
redshift-space distortions in the spin-flip background, because they require
separate measurements of power along the line of sight and across the plane
of the sky. The first generation experiments are relatively small and do
not have adequate sensitivity to make high-resolution measurements on the
plane of the sky, although they can do so in the redshift direction with rea-
sonably narrow frequency channels. Much larger instruments are necessary
to build sensitivity to fluctuations on the plane of the sky.

In addition to the unavoidable problems posed by foregroundcleaning,
there are several other serious systematic challenges before one can reach
the limits suggested by Figure 12.20. These include the ionospheric re-
fraction described earlier, the many bright astronomical point sources (and
especially their sidelobe contamination to the antenna beam), the variation
of the instrument properties with frequency, and the polarized component
of the foregrounds (which can vary rapidly with frequency and hence es-
cape the typical foreground removal algorithms). Fortunately, the several
experiment teams are each tackling these problems in uniqueways, and the
community hopes that they can be overcome in the near future.



Chapter Thirteen

Other Probes of the First Galaxies

So far we have discussed four classes of observational probes of the first
galaxies: direct observations of individual galaxies (over a variety of wave-
lengths), the Lyman-α line (both as a test of the galaxy populations and the
IGM), the spin-flip line from intergalactic gas, and gravitational waves from
black hole mergers (see§7.7). However, there are many other, less direct,
ways to probe structures during the cosmic dawn. In this chapter, we will
discuss several of these:

• Secondary anisotropiesof the CMB are generated as those photons
pass through gas during the cosmic dawn. CMB photons do not inter-
act with the IGM gas until it is ionized (with the exception ofresonant
lines); however, once that occurs, the photons begin to scatter off the
free electrons. The scattering process induces both large-scale polar-
ization and small-scale temperature anisotropies.

• Diffuse backgroundsfrom the cosmic dawn (other than the spin-flip
background) can result from the integrated emission of the entire
galaxy population. Typically, these backgrounds include galactic emis-
sion lines, ranging from CO lines in the radio to the Lyman-α line
itself, so (like the spin-flip background) they contain not only angu-
lar structure but also spectral structure. Measuring theseintegrated
backgrounds via low-resolution observations can be much easier than
detecting individual galaxies (though of course also provides less in-
formation) and can quantify useful properties of the globalgalaxy
populations.

In the absence of detections from individual galaxies, thecross-correlation
of different probes can help to isolate cosmological information in the
presence of contaminants and can often isolate interestingaspects of
these diffuse signals.

• Fossil structurefrom early galaxies will remain in (or can be de-
duced from) the Milky Way or other nearby structures in the Lo-
cal Group. This includes the residual effects of feedback (from the
Lyman-Werner background, photoheating, or other processes) on the
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small satellite galaxies or globular clusters of the Milky Way, old low-
mass stars that may have formed during the cosmic dawn and survive
inside the Milky Way (or its halo), and remnant signatures ofthe early
merger history of the Milky Way.

13.1 SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES

FROM THE COSMIC DAWN

The CMB indicates that hydrogen atoms formed 400,000 years after the
Big Bang, as soon as cosmological expansion cooled the gas below 3,000 K.
Once neutral, the CMB photons could only interact with the IGM gas through
its resonant transitions – and afterz ∼ 1000, when the photons redshift out
of the Lyman-α resonance, the only available transition is the 21-cm line,
whose effects we have already examined.

However, once the first stars or black holes begin to ionize the IGM, the
CMB photons scatter off the free electrons. This has severaleffects on the
CMB, which we will describe in detail here.

13.1.1 Large-Scale Polarization of the CMB

The crucial parameter in determining the effects is the total CMB optical
depth to electron scattering,

τes =

∫

ne(z)σT (cdt/dz)dz, (13.1)

whereσT = 6.65 × 10−25 cm2 is the Thomson scattering cross section and
the integral is over the path taken by a photon; note that onlyredshifts where
the ionized fraction is non-zero will contribute (the residual ionized fraction
following recombination produces only a very small contribution toτes, so
the integrand is only significant once reionization begins). In the simplest
approximation, where we assume that he IGM is instantaneously ionized at
zreion, equation (13.1) can be integrated analytically for a flat universe with
ΩΛ + Ωm = 1, yielding

τes = 4.44 × 10−3 × {[ΩΛ + Ωm(1 + zreion)
3]1/2 − 1}. (13.2)

The coefficient here assumes for simplicity that helium is singly ionized at
the same time as hydrogen; in reality, the second ionizationof helium at
z ∼ 3 (see§??) adds an additionalτes,He ≈ 1.02 × 10−3.

The most obvious effect of this scattering on the CMB temperature anisotropies
is to partially wash them out, as a fractione−τes of the photons that appear
(to the observer) to be incident from a particular directionactually come
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Figure 13.1 Cartoon of the damping of primordial CMB anisotropies after reionization (in
comoving coordinates, not to scale). The observer is represented by the star
at the center; the thick outer circle represents the surfaceof last scattering of
the observer. CMB photons (arrows) propagate through a screen of parcels of
free electrons atz ∼ 6 (located at the dashed circle for the observer). Each
parcel sees the CMB out to its causal horizon, represented bythe smaller circle
surrounding it. The low optical depth of free electrons implies that most CMB
photons propagate through without interaction (long arrows), but some photons
are scatteredinto the line of sight from other directions. This partially washes
out the primordial anisotropies on scales smaller than the horizon at the time of
scattering.

from elsewhere. More precisely, each line of sight samples only photons
from a finite surrounding region, roughly a cylinder whose radius equals the
causal horizon at the time of scattering. Thus, the angular power spectrum
of the CMB fluctuations,Cℓ – which contains two factors of temperature – is
damped by a factore−2τes on angular scales smaller than the causal horizon
at that time most scattering occurs, as shown in Figure 13.1..243 (More pre-
cisely, electrons at each radius from the observer damp fluctuations across
their local horizon, with the damping proportional to the scattering optical
depth contributed by these electrons.) On larger scales, the power spectrum
is unaffected. Unfortunately, this slight change to the slope of the tempera-
ture anisotropy power spectrum is strongly degenerate withthe intrinsic tilt
of the matter power spectrum.
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Figure 13.2 Cartoon of the generation of CMB polarization through Thomson scattering.
The central electron scatters photons from the CMB. The scattering process
only allows photons polarized perpendicular to the plane defined by the lines
joining the observer and electron and the photon’s source and the electron. For
photons from the left of the page, this is the vertical polarization, which corre-
sponds to the thick vertical line at the lower right. For photons from the top of
the page, this is the horizontal component (thin vertical line at lower right). If
the incident photon field has a quadrupole anisotropy (here,a larger intensity
from the left), the resulting scattered field will be polarized. Figure credit: Hu,
W. & White, M., New Astron.2, 323 (1997). Copyright 1997 by Elsevier.

However, the scattering process also induces polarization, which is ob-
servable.244 Consider photons that scatter off an electron toward the ob-
server, as shown in Figure 13.2 (where the observer coincides with the
reader, out of the page). Photons incident from the horizontal direction
can scatter toward the observer only if they are polarized along the plane
of the page in the vertical direction, because the other possible polarization
state of the incident wave – out of the page – would not producea scattered
transverse wave. In contrast, to produce a transverse wave photons incident
from the vertical directions can scatter toward the observer only if they are
polarized horizontally in the figure (along the plane of the page).

If we suppose that the electron scatters photons from all directions, it will
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produce a mixture of these horizontal and vertical polarization states. How-
ever, if there is an asymmetry in the incident radiation field– in particular,
a quadrupole anisotropy between the intensity of the incident background
along the horizontal and vertical axes – the resulting mixture will have a net
polarization.

For the CMB, electrons during the cosmic dawn can scatter anypho-
tons incident upon them that originated within the causal horizon at that
time. The net polarization isP ∼ 0.1τesQ,245 whereQ is the primordial
quadrupole anisotropy on that horizon scale (the prefactor0.1 comes from
the detailed physics of the Thomson scattering process). The overall ampli-
tude of the polarization (or its power spectrum) therefore provides a measure
of τes and hence the integrated column of ionized gas between us andthe
recombination surface.

The first such measurements have been made with theWilkinson Mi-
crowave Anisotropy Probe (WMAP)over the past several years. The current
estimate isτes = 0.087 ± 0.017, which would correspond to instantaneous
reionization atz ∼ 10.246 Unfortunately,τes on its own does little to distin-
guish different reionization histories, as it simply measures the total proba-
bility of scattering between the present day and the surfaceof last scattering,
without revealing how long ago this scattering occurred. This number will
be refined by forthcoming CMB data from the Planck satellite.247

To learn about this history, we must turn to the scale dependence of the
polarization, or equivalently the shape of its power spectrum. The polariza-
tion anisotropies appear to us on the angular scale subtended by the horizon
distance at the time of scattering, which occurs atℓ < 40. On much finer
angular scales, the post-reionization scattering actually washes out any pri-
mordial polarization, just as it does to the temperature anisotropies. How-
ever, because there is no primordial polarization on large scales anyway,
the “reionization bump” from the late-time scattering is very clearly distin-
guishable from primordial anisotropies.

Interestingly, because this horizon scale evolves with redshift, there is
some information about the time history ofx̄i(z) contained in the CMB
polarization power spectrum. Figure 13.3 shows some example reioniza-
tion models (left) and their observable signatures (right). The models were
generated with simple prescriptions for the physics of the first galaxies, but
their particular physical assumptions are not important for our purposes;
they simply provide a set of contrasting reionization histories to gauge its
effects on the shape and amplitude of the polarization power.i Models 1–3
hold τes = 0.17 but vary x̄i(z). Models 4 and 5 show larger and smaller

iModel 3 in particular is physically implausible, because a non-monotonicx̄i(z) re-
quires very strong, instantaneous feedback suppressing galaxy formation.
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Figure 13.3Left: Five example models of the reionization history. Models 1–3are normal-
ized to haveτes = 0.17, while models 4 and 5 haveτes = 0.14 and0.23,
respectively. Note that all these values are well above the current best esti-
mate. See text for a discussion of the input physics in these models. Right:
CMB polarization power spectra for these five models (shown is the EE com-
ponent, which includes scalar perturbations). All are normalized to have the
same power atℓ > 50, where reionization has no significant effect. The bold-
dashed, dashed, and solid lines correspond to models 1–3; the latter has cosmic
variance error bars attached.The light solid lines show models 4–5, while the
light dashed lines show best fit polarization spectra for instantaneous reioniza-
tion models. Figure credit: Holder, G. & Haiman, Z.,Astrophys. J.595, 13
(2003). Reproduced with permission of the American Astronomical Society.

overall optical depths (of 0.23 and 0.14, respectively). Note that all of these
values are considerably larger than the current best estimate fromWMAPbut
are only shown here to illustrate the dependence of the polarization signal
on the reionization history.

The right panel shows the corresponding power spectra of thepolariza-
tion anisotropies (in detail it shows the EE, or scalar, component, which
contains most of the contributions from reionization). Models 1–3 (shown
by the dark lines) have similar amplitudes but different detailed shapes, par-
ticularly around the trough atℓ ∼ 20–30; the error bars, which show the
ideal cosmic variance errors, show that these models can at least in princi-
ple be separated at high confidence. It is much easier to separate models
with different optical depths: models 4 and 5 are shown by thelight solid
lines. Here we can also see the effect ofx̄i(z) on the power spectrum: the
light dashed lines show the best fit instantaneous reionization models, which
provide relatively poor fits to the more complex reionization histories used
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in these models.
The reionization era also generates anisotropies in theB-mode polariza-

tion (so-called because they have non-zero curl, as opposedto theE-modes,
which are curl-free). This type of anisotropies is of particular astrophysical
interest because it is also generated by the gravitational wave background
from the inflationary era, and there are numerous efforts underway to mea-
sure the background’s properties. Secondary fluctuations,like those gen-
erated by reionization, are therefore important contaminants to understand.
Fortunately, it appears that theB-modes generated by reionization are small
and have large angular coherence in the polarization direction, which make
them relatively easy to isolate.248 Moreover, the 21-cm background can be
used to reconstruct the electron-scattering optical depthalong different lines
of sight and from that to reconstruct the expected polarization pattern (see
§13.3).249 Thus,B-mode anisotropies from reionization should not pose a
substantial challenge to the detection of primordial gravitational waves.

The Planck satellite should be able to distinguish different reionization
scenarios using the polarization anisotropies over the next several years.
However, this technique is only sensitive to the global reionization history,
not the details of the reionization process. To understand the growth and
morphology of the ionized regions, we must probe much smaller angular
scales.

13.1.2 Secondary Temperature Anisotropies

On small scales, inhomogeneities in the density, ionized fraction, and veloc-
ity field combine to produce temperature anisotropies during reionization.
These anisotropies are referred to as thekinetic Sunyaev-Zel’dovich (kSZ)
effect, which broadly encompasses two distinct physical components, the
Ostriker-Vishniac effectand thepatchy reionization signal.

Let us first consider the general expression for the CMB temperature
along a line of sight̂n,250

∆Tγ(n̂)

Tγ
=

∫

dη e−τes(η)ane(η)σT
n̂ · u(η)

c
, (13.3)

whereη =
∫ t
0 dt

′/a(t′) is the conformal time,u is the peculiar velocity of
the ionized gas andτes(η) is the optical depth between the observer and a
conformal timeη. (The extra factora occurs becausecdt = adη.) Pertur-
bations in the temperature will then be sourced by the product of the pecu-
liar velocity along the line of sight and the ionized gas density; we define
q = u(1 + δb + δx) for convenience. Here we must be careful to include
the baryonic density fluctuation (rather than cold dark matter) because it is
this material that scatters the photons.
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Suppose then that we work to linear order, so thatq ≈ u (since the pecu-
liar velocity is itself a first order quantity). Because the Fourier transform of
this velocity is parallel to the wavevectork (see equation 2.15), this implies
that only those modes along the line of sight contribute. Butfor such waves
oriented along the line of sight, their troughs and crests will (nearly) cancel
once we perform the integration, especially on small angular scales where
there are many such troughs and crests. This is illustrated in Figure 13.4a.
(Modes transverse to the line of sight do not suffer such a cancellation – but
of course they do not cause any Doppler shift either.)

Thus, angular correlations can only be generated by modes perpendicular
to the line of sight (which themselves would not contribute if only u ap-
peared – it is thenonlinear termsδbu andδxu that generate anisotropies).
In that case, the components ofq parallel tok also do not contribute to the
anisotropy because they are small after projection. The anisotropy is there-
fore only generated by the component ofq perpendicular to the wavevector,
which we will call q⊥. After projection on the sky, the resulting angular
fluctuation power spectrum is251

Cℓ = (σT n̄
c
e)

2

∫

dη

r2
W (η)2Pq⊥(ℓ/r, η), (13.4)

wheren̄c
e is the total comoving electron density,r is the comoving distance

from the observer to a conformal timeη, W = x̄ie
−τes/a2, andPq⊥ is

the three-dimensional power spectrum of the projectionq⊥. This integral
picks out the physical scales corresponding to a given observed multipole
moment, weighting the contribution from each redshift by the factorW 2/r2,
which includes both the IGM ionized fraction (or the fraction of matter that
can actually scatter CMB photons at the relevant redshift) and the effect
of subsequent scattering washing out the secondary anisotropies (via the
exponential). We illustrate the physics of this process in Figure 13.4.

The power spectrumPq⊥ involves four-point functions (or correlations
between four quantities) in many possible combinations, some of which
are negligible. For example, in practice these four-point functions factor
into pairs of normal power spectra, because the “connected”higher-order
correlations vanish for Gaussian random fields. Moreover, terms likePδbv

(i.e., the cross-power spectrum between baryon density andvelocity) can be
ignored because of the scale mismatch between these two quantities (recall
that, in linear theory,v ∝ δ/k so is driven by large scale modes – while the
δ fluctuations of interest occur only on small scales).

In most models, the dominant contribution toPq⊥ is252

POV =
1

3
v2
rmsPδbδb

, (13.5)
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Figure 13.4 Cartoon of the kinetic Sunyaev-Zel’dovich effect. (a) We imagine a plane wave
perturbation oriented along the line of sight. The density perturbations gener-
ate peculiar velocities as matter falls into the overdense regions. CMB photons
that scatter on the far side of these perturbations get blueshifted (on average),
but photons that scatter on the near side get redshifted. To linear order, there
is a net cancellation of the two frequency shifts.(b) However, at higher order
the Doppler shifts do not cancel out, so long as another density mode affects
the scattering. Here, we imagine a region with a net velocitytoward the ob-
server and a density modetransverseto the line of sight. Overdensities across
the sky will generate a stronger blueshift than the underdensities thanks to their
larger optical depth. On small scales, these will not cancelwith other structures
along the line of sight. This density modulation is called the Ostriker-Vishniac
effect. (c) Alternatively, we imagine another region with a bulk velocity di-
rected toward the observer, in which the ionized fraction varies spatially due
to discrete H II regions during reionization. This modulation is associated with
patchy reionization. Both nonlinear effects(b) and(c) source CMB temperature
fluctuations on small angular scales.

which describes theOstriker-Vishniac effect, which arises from scattering
off ionized clouds with bulk motions. The rms velocity is given by

v2
rms =

∫

dk
k2

2π2
Pvv(k), (13.6)
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wherePvv is the power spectrum of the velocity (c.f. equation 2.24). Be-
cause this effect is most important on small scales, one mustusually use
the nonlinear density power spectrum (filtered appropriately for small-scale
baryonic structure) to evaluate thePδbδb

contribution – either through nu-
merical simulations or an approximation like the halo model.

The Ostriker-Vishniac effect has contributions from all redshifts at which
the IGM (or even gas near or within galaxies) is ionized, and it is strongest
at lower redshifts, where both the rms velocity field and the density fluc-
tuations are most significant. Its total amplitude does, however, depend on
when reionization began, and its shape depends very slightly on this as well
(both because of the changing angular diameter distance andthe evolving
characteristic scale of structure formation).

The left panel of Figure 13.5 shows some example angular power spec-
tra of the Ostriker-Vishniac effect in three different models of reionization;
in each case we takēxi ∝ fcoll and calibrate the models so that reioniza-
tion ends atzreion = 8, 12, and 18 (thick dashed, solid, and dot-dashed
curves, respectively). Note that, even with these rather different histories,
the Ostriker-Vishniac signal only changes by∼ 10%. Thus, deducing in-
formation about reionization from this component of the CMBanisotropies
will be challenging, requiring very careful modeling of thedominant lower-
redshift contributions.

The other two terms that contribute toPq⊥ involve integrals overPvvPδxδx

andPvvPδbδx , which are known as the “patchy reionization” contributions.253

Because these involve fluctuations in the ionized fraction,they are only rel-
evant during the reionization era itself and so better isolate that period’s
properties. Physically, they originate from the peculiar velocities of the ion-
ized bubbles that appear during reionization, which have biased velocities
relative to the background. They can actually be estimated analytically us-
ing the simple tools describing the statistical propertiesof the ionization
field developed from our excursion set model of reionizationin §9.7.

The patchy reionization contribution therefore depends both on the struc-
ture of the ionized bubbles and their relation to the densityfield; the right
panel of Figure 13.5 shows some example models. The thick dashed, solid,
and dot-dashed curves at bottom left show this component of the signal
for the same models as in the left panel. In all cases, the signal peaks at
ℓ ∼ 2000, which is simply the angular scale corresponding to the projected
physical sizes of the bubbles midway through reionization (where the patch-
iness peaks). The different amplitudes of the contributioncome not from
differences in the reionization models –nb(m) is very similar in all three of
these – but because of the different ionized gas densities during reionization.

Actually, theduration of reionization is the most important factor deter-
mining the amplitude of the patchy signal: the longer the contrast between
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Figure 13.5Left: Angular power of the Ostriker-Vishniac effect on the CMB. The thick
dashed, solid, and dot-dashed curves take models in which reionization ends
at zreion = 8, 12, and 18, respectively. The thin solid curve shows the signal
without any baryonic filtering, while the thin dashed curve shows the signal as-
suming only a linear theory density field.Right: The patchy reionization signal
from the same models (lower left, thick curves) and the totalCMB anisotropy
power spectrum (at upper right, including the primordial, lensing, and Ostriker-
Vishniac components as well); note the change in the scale ofthe vertical axis
on this panel. In addition, the dotted curve shows the patchysignal from a
model with extended reionization. The open circles show theestimate from
a semi-numeric simulation of reionization, with the thin line a corresponding
analytic estimate with the same reionization history; the two match very well.
The error bars at upper right are representative of current instruments, assuming
perfect foreground removal. Figure credit: McQuinn, M. et al., Astrophys. J.
630, 643 (2005). Reproduced with permission of the American Astronomical
Society.

ionized and neutral gas persists, the longer the patchinesscontinues to gen-
erate CMB fluctuations. The thick dotted curve illustrates this: it takes a
model in which reionization lasts roughly twice as long as inthe solid curve
(but ends at the same time). Note how the patchy signal increases by nearly
a factor of two. Thus, CMB secondary anisotropies provide a tool to study
not only the timing of reionization but also its duration.

The upper right set of curves in the right panel of Figure 13.5show the
sum of the Ostriker-Vishniac, patchy reionization, and primordial anisotropies
(including lensing); the inset zooms in on the most useful part of the spec-
trum for studying the cosmic dawn. In this regime, the primordial anisotropies
die off very quickly due to diffusion (Silk) damping inside the recombi-
nation surface; nevertheless, they are still very large near the peak of the
patchy reionization contribution. Instead it will be the tail of this distribu-
tion, together with the cumulative Ostriker-Vishniac effect from all structure
past reionization, that can be separated. The error bars here show estimates
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for ongoing ground-based CMB surveys, whose early results are encourag-
ing.254 Despite the apparently modest differences between the models, such
an experiment can still easily distinguish them.

However, the primary challenge to making these measurements will be
contaminants: both lower-redshift point sources and otherCMB secondary
anisotropies pose substantial problems. By far the strongest secondary at
these angular scales is thethermal Sunyaev-Zel’dovich effect, which de-
scribes the frequency shift undergone by CMB photons scattering inside hot
gas (in particular nearby galaxy clusters). In principle, because this scatter-
ing process is frequency-dependent (and disappears entirely at 218 GHz),
it can be separated from other anisotropies (including the kinetic Sunyaev-
Zel’dovich effect). Constraints on the cosmic dawn from these secondaries
will rely on accurate removal of these “foregrounds” as wellas accurate
modeling of the Ostriker-Vishniac effect at lower redshifts. A particularly
insidious problem is the correlation between the point sources and the ther-
mal Sunyaev-Zel’dovich effect.

In principle, sources from the cosmic dawn may also contribute to this
thermal Sunyaev-Zel’dovich signal, which arises when hot electrons inverse-
Compton scatter off the CMB photons, transferring energy tothe photon
field. The magnitude of this effect is parameterized by the Compton-y pa-
rameter, which is the typical energy transfer per scattering times the number
of scatterings. It also measures the resulting spectral distortion in a black-
body spectrum: in the Rayleigh-Jeans limit, the temperature distortion is
∆Tγ/Tγ = −2y. The contribution from a volume element with electron
scattering optical depthdτes is

dy =
kB(Te − Tγ)

mec2
dτes. (13.7)

Thus, the totaly distortion will depend upon both the ionization and thermal
histories of the gas; importantly, however, it includes both gasinsideand
outsideof galaxies.

The sources that reionized the Universe may very well make a non-negligible
contribution to the overally-distortion, due to the supernovae that inevitably
accompany the massive stars able to ionize the IGM. Even though these su-
pernovae may remain confined to the ISM of their host galaxies, they will
still likely lose a substantial fraction of their energy to the CMB, inducing
a y-distortion. Let us begin by computing the energy injectionper baryon
from such explosions. We writeωSN for the supernova energy produced per
solar mass in stars formed; this is∼ 1049 erg/M⊙ for typical stellar IMFs
(see§6.4.1). We then write the fraction of baryonic mass in stars,f⋆fcoll ac-
cording to our usual definitions, in terms of the number of ionizing photons
produced per baryon in the Universe,QHII, and the number produced per
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baryon inside of stars,Nion. Then the available thermal energy per baryon
is

ǫSN

n̄b
∼ 10QHII

(

400

Nionfesc

ωSN

1049 erg/M⊙

)

eV. (13.8)

Interestingly, this energy produced in supernovae is quiteclose to the amount
actually needed to ionize the IGM (∼ 13.6 eV per baryon), though the
amount injected into the CMB may be much smaller.

Now let us assume that this energy injection occurs at some redshift zSN.
The CMB spectral distortion will satisfy

y = −1

2

∆Tγ

Tγ
∼ −1

8

∆Uγ

Uγ
∼ 10−6fcomp

(

10

1 + zSN

)(

ǫSN/n̄b

20 eV

)

(13.9)

where fcomp is the fraction of the supernova energy that is actually in-
jected into the CMB. This is a reasonably large number: the current ob-
servational limit, from the FIRAS instrument on theCosmic Background
Explorer (COBE) isy ≤ 1.5 × 10−5,255 and models predict signals from
lower redshifts are just a factor of a few larger than equation (13.9). (On
the other hand, the photoheating accompanying reionization doesnot make
a substantial contribution: typically just a fraction of aneV is injected to the
CMB per baryon, causing a very small signal compared to the much hotter
gas at lower redshifts.)

However, such an observable signal hinges on the supernova energy being
injected into the CMB, so thatfcomp ∼ 1. As we have seen in§6.4.2, many
other processes help to cool the remnants, especially if they remain confined
to their galaxies. The most important is radiative cooling in the dense shell
plowing through the IGM (or ISM). Simple estimates suggest that the energy
contained in the explosion blastwave must be very large and that the remnant
must spend the bulk of its time plowing through gas near the IGM density in
order for more than just a few percent of the energy to be lost to the CMB.256

This requires a strong superwind that escapes into the IGM and would have
many other important consequences, such as metal enrichment and mixing
of the IGM gas (see sections 6.4 and 6.5.2).

If any of these mechanisms do cause a substantialy-distortion, the strong
clustering of early stellar sources would also induce substantial angular
fluctuations in the CMB temperature field through the thermalSunyaev-
Zel’dovich effect, which would then also be observable oncethe contribu-
tion from nearby hot galaxy clusters is subtracted. Again, the modeling of
lower-redshift contaminants, which depends on uncertain factors like cluster
cooling and turbulence, AGN feedback, and the poorly-understood proper-
ties of gas inside small galaxy groups, will be crucial to disentangling any
possible high-redshift contribution.
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13.2 DIFFUSE BACKGROUNDS FROM THE COSMIC DAWN

Although many of the large telescopes planned for the next decades can
study individual high-redshift galaxies and quasars in exquisite detail, one
can also learn a great deal about these objects – even withoutresolving
them – by studying theintegratedradiation backgrounds generated by such
sources. If one does not attempt to identify individual galaxies, the telescope
requirements are more modest, and the characteristics of the entire galaxy
population can be measured. Crucially, unlike a traditional galaxy survey,
measures of the the integrated emission are sensitive even to extremely faint
galaxies – which may dominate thecumulativeluminosity density of the
Universe if the luminosity function is steep.

Of course, these benefits come with a price – diffuse backgrounds are
much more difficult to interpret in the presence of other astronomical (or
terrestrial) backgrounds with which they overlap. Much like the spin-flip
background, the observational challenge is typically to extract subtle cos-
mological information from a much larger net signal. This task is easiest for
a background generated by an emission line, because it will then have both
angular and frequency structure that clearly reflects the source population.
Broadband backgrounds can only be distinguished by resolving other possi-
ble contaminants (as in the X-ray background discussed in§9.8.1); we will
therefore focus primarily on line backgrounds here.

The first interesting aspect of such backgrounds is their amplitude as a
function of redshift, which provides a measure of the total emissivity in
this radiation mechanism through the cosmic dawn. For an emission line,
where each observed frequency corresponds to a different distance, such a
background is even more useful because it allows us to measure redshift
evolution.

Let us assume that a source population has a comoving specificemis-
sivity ǫ(ν, r, z) (with units of energy per time per frequency per comoving
volume). Neglecting intervening absorption, the observedspecific intensity
Iν at a frequencyνobs along a line of sight̂n is the integral of the emissivity
(c.f. equation 4.43),

νobsIνobs
=

c

4π

∫

dz ν(z)
ǫ[ν(z), n̂r(z), z]

H(z)(1 + z)2
, (13.10)

whereν(z) = νobs(1 + z) is the emission frequency at a redshiftz andr(z)
is the comoving distance along the line of sight to the source. If ǫν extends
over a wide frequency range,Iνobs

will therefore sample a wide redshift
range. But ifǫi describes a line with rest wavelengthνi, then the observed
intensity will sample only a specific redshiftzobs = νi/νobs−1. As with the
spin-flip background, one can use this relation between observed frequency
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and distance to map the structure of the emission in three dimensions.
Without resolving individual sources, background measurements will be

sensitive to large scale fluctuations in the emissivity, which we can easily
parameterize with the galaxy power spectrum, either taken from simulations
or computed with the halo model (see§3.6.1). For example, let us assume
that the luminosity in linei of a halo with massm isLi(m) and that a duty-
cycle fractionfduty (which may also be a function of mass) of dark matter
halos withm > mmin emit in this line. Then the mean comoving emissivity
in the line is

〈ǫi〉 (z) =

∫ ∞

mmin

dmLi(m)fduty(m)n(m). (13.11)

Note that this has units of energy per (comoving) volume per second and is
not a specific emissivity; rather, it includes all the emission in the line.

The fluctuations will also trace the population of massive halos, so it is
natural to use the halo model to estimate them. However – for adiffuse
background originating from unresolved sources – we are typically not con-
cerned with the signal structure on scales below the typicalhalo’s virial
radius, which is anyway likely to be simply a set of point sources generated
by each galaxy residing in the halo. We can therefore treat each halo as a
single point source, ignoring the one-halo term.

In this case, the power spectrum of fractional emissivity fluctuations is
Pi(k) ≈ P 2h

i (k), with

P 2h
i (k) = Plin(k)

[
∫

dm
Li(m)fduty(m)n(m)

〈ǫi〉
beff(k|m),

]2

(13.12)

where we have used the effective scale-dependent bias that incorporates
non-linear effects in the two-halo term (see§3.6.3) and assumed that we are
on sufficiently large scales thatugal(k|m) ≈ 1 for all the halos of interest.
Mapping the spatial fluctuations in this background will therefore inform
us about the number densities of these sources together withtheir scale-
dependent bias; in principle, the latter is separable because of its special
shape, so these different physical effects can be measured.(If the observa-
tions extend to fine enough scales to allow the one-halo term to be measured
as well, they would allow a similar separation.)

Even though the one-halo term itself is only significant on small scales,
the “shot noise” arising from the finite number of sources (see sections 3.6.4
and 10.4.1) can be significant, because halos massive enoughto host galax-
ies are still relatively rare at these early times. This can be especially impor-
tant if a small duty cycle limits the fraction of time for which any individual
halo is luminous or if only very massive halos emit strongly in the relevant
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line. This shot noise term produces a white-noise spectrum (i.e., indepen-
dent ofk) with the amplitude of the emissivity power spectrum equal to

Pshot,i(k) =

∫ ∞

mmin

dm
L2

i (m)

〈ǫi〉2
fduty(m)n(m). (13.13)

With equation (13.11) for the mean emissivity, the shot noise term decreases
with increasing source density, just as in the simple counting case (see
§10.4.1). However, in contrast to our earlier discussion of shot noise (see
equation 10.22), in which we were only concerned with counting galaxies,
for a diffuse background the contribution from different sources to the ob-
served signal is weighted by their luminosity – thus this expression has a
factor ofL2

i inside the integral.
The shot noise is therefore dominated by the most luminous sources, and

one can often substantially decrease its amplitude by removing those bright
sources that can be individually detected. In that case the remaining diffuse
background is the sum of the emission from galaxies below thedetection
limit of the survey – extending the “dynamic range” of measurements. Al-
ternatively, the shot noise term can often be removed statistically because
its shape (white noise) is precisely defined.

Note that we have expressed these fluctuation spectra in their fractional
forms; i.e. Pi has units of volume, independent of the emissivity. This
means that they apply equally well to the emissivity or to theobserved in-
tensity – for example, one simply multiplies by the mean observed intensity
to recover the latter in dimensional form.

13.2.1 The Near-Infrared Background

As an important example, we consider the integrated background from ultra-
violet photons emitted during the cosmic dawn. This has two principal com-
ponents: first, a broadband background from stellar continua, and second,
line and continuum components from the reprocessing of ionizing photons
– principally resulting in Lyman–α photons (see chapter 11). The latter is
the most useful, because the broadband component involves amix of many
emission redshifts for any given observed frequency, making tomography
impossible.

To estimate the monopole amplitude of this background and its spectrum,
we must estimate the contribution of all these different processes. Assuming
that the background is generated entirely by star formation, a convenient
parameterization is

ǫ(ν, z) = ρ̇⋆(z)c
2
∑

i

〈

f i
ν

〉

, (13.14)
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whereρ̇⋆ is the formation rate of stellar mass per comoving volume, the sum
extends over all radiation processes (labeled byi), and

〈

f i
ν

〉

is the fraction
of the stellar rest mass energy that is released in processi in the frequency
interval (ν, ν + dν) (for stars, it must therefore be averaged over both their
IMF and their lifetimes). The nuclear burning efficiency forstars implies
ν
〈

f i
ν

〉

∼ 10−3. With this estimate, and assuming high redshifts for the
integrand, equation (13.10) becomes257

νobsIνobs
≈ 11 nW m−2 sr−1

∫

dz

1 + z
ρ̇⋆(z)

(

10

1 + z

)5/2
∑

i





ν(z)
〈

f i
ν(z)

〉

10−3



 ,

(13.15)
whereρ̇⋆ is measured in units M⊙ yr−1 Mpc−3.

The processes contributing to this background are:

• The stellar continuum, which (below the Lyman edge) can be roughly
approximated as a blackbody with some effective temperature Teff

that is a function of stellar mass.

• Free-free and free-bound emission from H II regions. The total lumi-
nosity of this component may be written

Lff,fb
ν =

ǫff,fb
ν Q̇iṀ⋆

nenpαB
, (13.16)

whereǫff,fb
ν is the volume emissivities of these processes,Q̇i is the

production rate of hydrogen ionizing photons per unit star formation
rate, andQ̇iṀ⋆/nenpαB is simply the volume of the ionized regions
assuming the Strömgren sphere limit. Because these processes are
generated by collisions of electrons and protons, the emissivity is

ǫff,fb
ν = 4πnenpgeff

e−hν/kBT

T
, (13.17)

where the “Gaunt factor”geff ∼ 1 depends weakly on temperature
and density.258 Thus, thetotal luminosity is independent of the local
density. This means that, for the purposes of estimating thediffuse
background, we do not need to worry about the internal structures
of the galaxies, or even whether the ionizing photons escapeinto the
IGM: that will clearly affect the small-scale spatial distribution of the
photons, it has no effect on the overall luminosity, as long as the H II
regions are unresolved and in ionization equilibrium.
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• Recombination line emission – and in particular the Lyman-α line
(higher Lyman-series photons are absorbed and cascade to either Lyman-
α or the two-photon continuum discussed next). In§11, we saw that
the Lyman-α profiles (both spatial and spectral) of individual galax-
ies depended strongly on the structure and physics of the galaxies and
their local environments. However, the integrated emission is much
simpler to estimate; assuming only that the mean free path ofan ioniz-
ing photon is much shorter than the Hubble length, and that ionization
equilibrium applies, the net luminosity of Lyman-α photons is simply
(compare to equation 11.2)

Ldb
Lyα =

2

3
T ISM

Lyα Q̇ihναṀ⋆. (13.18)

HereT ISM
Lyα accounts for absorption – and subsequent destruction – of

Lyman-α photons by dust; note that there is no corresponding factor
for absorption of the Lyman-α photons inside the IGM, because those
photons are scattered but not destroyed. As with the free-free and
free-bound processes, there is no distinction between ionizations that
occur inside a galaxy and in the IGM, for both can produce Lyman-
α photons through recombinations (though we do assume here that
recombinations instantaneously follow ionizations, which is not ac-
curate at low IGM densities). We ignore the Balmer series or longer
wavelength transitions because they carry much less energythan the
Lyman-α line.

• Two-photon emission from (forbidden) decays between the 2S and
1S levels of hydrogen. The former level can be populated by radiative
cascades following recombinations. The luminosity of thisprocess is
again proportional to the rate of ionizing photon production,

L2γ
ν =

2hν

να
(1 − fLyα)P (ν/να)Q̇iṀ⋆, (13.19)

wherefLyα ≈ 0.74 is the fraction of cascades that result in Lyman-
α photons (here we have assumed efficient mixing of the angularmo-
mentum states), the factor of two appears because of the two pho-
tons produced in each decay, andP (x)dx is the normalized prob-
ability per two-photon decay of obtaining one photon in the range
dx = dν/να.259

Figure 13.6 shows some example (monopole) spectra containing all of
these processes; they are normalized to the overall star formation rate den-
sity ρ̇⋆. These examples only include stars fromz = 7–15, with ρ̇⋆ held
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Figure 13.6 Near-infrared background spectrum (seeColor Plate 31for a color version of
this figure). This example includes star formation fromz = 7–15 (with con-
stant comoving star formation rate), which dominates the background between
1–2 µm. The left panel assumes metal-free stars, while the right panel takes
a metallicity Z = 0.02 Z⊙. The different line styles show different IMFs
(see text). The different curves show the total emission, the Lyman-α contri-
bution, the stellar continua, the two-photon continua, thefree-bound emission,
and finally the free-free emission (from top to bottom at1µm). Figure credit:
Fernandez, E. R. & Komatsu, E.,Astrophys. J.646, 703 (2006). Reproduced
with permission of the American Astronomical Society.

constant over that interval. The left and right panels vary the metallicity
(which has a significant effect on the rate of ionizing photonproduction);
within each panel, the different line styles take differentprescriptions for
the IMF. The solid line corresponds to a standard Salpeter IMF, with the
number of stars forming per unit mass∝ m−2.35. The dashed line refers
to a Larson IMF, with the mass spectrum∝ m−1

⋆ (1 +m⋆/mc)
−1.35 where

the characteristic mass ismc = 50 M⊙. Finally, in the left-hand panel
the double-dot-dashed curve takes a flat distribution by mass over the range
100–500 M⊙.

The curves in each panel show the contributions of differentprocesses
to the overall spectrum. The uppermost is of course the totalbackground
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per unit star formation rate. The straight line peaking at∼ 1µm shows
the contribution from Lyman-α photons; note that the shape is simply a
consequence of the assumption of a constant star formation rate and is not
a robust prediction. The next strongest process, which peaks near1µm as
well, is the stellar continuum; the curves here continue through the Lyman
series without taking into account the sawtooth IGM absorption of these
photons (see Figure 6.2). The curve peaking at somewhat lower energy, but
with a comparable amplitude, comes from the two-photon decays: note that
this is well below the Lyman-α peak not because significantly less energy
goes into this process but because it is distributed over a wide frequency
interval. Finally, the lowest amplitude curves (visible atlower left) show
the contribution from free-bound and free-free emission, neither of which is
significant.

Figure 13.6 shows several interesting points. First, in themost interesting
wavelength range (∼ 1–2µm here) the background is usually dominated
by the Lyman-α photons, especially for the (hotter) metal-free stars. This
is because this line contains a significant fraction of the entire ionizing lu-
minosity of the starlight. Nevertheless, other processes provide non-trivial
corrections at higher wavelengths. Note that stars at higher redshifts do not
significantly affect the background in this band either, because their Lyman-
α emission lies at longer wavelengths and (unless the comoving star for-
mation rate becomes much higher at high redshifts) the stellar continua are
quite weak. The near-infrared background therefore offersa relatively clean
probe of the ionizing photon budget during the bulk of the cosmic dawn era.

Unfortunately, measuring this signal is extremely difficult: like the spin-
flip background, it suffers severe contamination from “local” sources, in-
frared emission from lower-redshift galaxies and zodiacallight from our
own solar system, which is roughly three times the expected signal. This
background arises from dust particles inhabiting the ecliptic plane that scat-
ter sunlight, and has proven very difficult to model with sufficient precision
to extract the high-redshift signal reliably.

Fortunately, as with the spin-flip background,fluctuationsin the near-
infrared background light may be easier to detect than this monopole spec-
trum, because variations in the foreground contaminants have different spa-
tial and spectral structure than the high-redshift light. In fact, the current
best estimates of the monopole background come from measurements of
the fluctuations themselves; they indicate that the excess over the known
backgrounds cannot be much larger than∼ 1 nWm−2 sr−1. This provides
an interesting limit on the cosmic star formation rate atz ∼ 10.260

However, for higher-frequency diffuse backgrounds like this one, it is
very difficult to recover fluctuations along the line of sight, as that requires
an integral field spectrograph with sufficiently high spectral resolution to
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separate the features. To date, no such instruments are available over the
wide fields of view necessary to measure this background in the near-infrared.
Instead, these backgrounds are integrated over a finite frequency interval,
and we typically measure the angular fluctuations (just as inthe CMB) rather
than the three-dimensional structure. This makes the foreground subtraction
somewhat more difficult (unless several contiguous filters are used), because
the spectral information is lost. Most often, the subtraction relies on model-
ing of the foreground structures.

In this case, we measure the band-averaged intensityI(n̂),

I(n̂) =
c

4π

∫

dz
ǫ̃[n̂r(z), z]

H(z)(1 + z)2
, (13.20)

whereǫ̃ is the integral of the comoving specific volume emissivity over the
emission frequency range corresponding to the observed band.

To construct the angular fluctuation spectrum, we take the spherical har-
monic transform of equation (13.20). We begin with Rayleigh’s formula for
the spherical decomposition of a plane wave,

e−ik·x = 4π
∑

ℓm

(−i)ℓjℓ(kx)Y ∗
ℓm(k̂)Yℓm(n̂), (13.21)

wherejℓ is the spherical Bessel function of orderℓ andYℓm are the spherical
harmonics. As a reminder,ℓ fixes the angular scale of variations in the
function andm chooses amongst the possible configurations on that scale.
This determines the expansion coefficients of

I(n̂) =
∑

lm

aℓmYℓm(n̂) (13.22)

in terms of the three-dimensional Fourier transform of the emissivity, ǫ̃(k, z),

aℓm = c(−i)ℓ
∫

dz

H(z)(1 + z)2

∫

d3k

(2π)3
ǫ̃(k, z)jℓ[kr(z)]Y

∗
ℓm(k̂).

(13.23)
The angular power spectrum is usually expressed as the ensemble aver-

age of the spherical harmonic coefficients,Cℓ =
〈

|aℓm|2
〉

. The ensemble
average acts on the two factors of the (band-averaged) emissivity to give the
three-dimensional power spectrum of the emissivity,Pǫ̃ (which we will de-
fine relative to the mean emissivity,〈ǫ̃(z)〉, so thatPǫ̃ has units of volume,
just like the matter power spectrum). Thus, the angular power spectrum is

Cℓ =
c2

8π3

∫

dz

H(z)(1 + z)2

∫

dz′

H(z′)(1 + z′)2
(13.24)

×
∫

k2dk 〈ǫ̃(z)〉2 Pǫ̃(k, z)jℓ[kr(z)]jℓ[kr(z
′)]. (13.25)
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This form has units of (flux per solid angle)2, because we have integrated
the flux density over a narrow band.

Fortunately, the inner integral can be simplified in the small-angle limit
(ℓ≫ 1). The integral of a product of two spherical Bessel functions is

∫

k2dk jℓ(kx)jℓ(kx
′) =

π

2

δ(x − x′)

x2
. (13.26)

In the largeℓ limit, jℓ oscillates very rapidly, and the integral is dominated
by k ≈ ℓ/r. Thus, provided thatPǫ̃ is a slowly varying function, we can pull
it out of the integral and evaluate its argument atk = ℓ/r. This Limber’s
approximationallows us to write

Cℓ ≈
c

(4π)2

∫

dz

H(z)r2(z)(1 + z)4
〈ǫ̃(z)〉2 Pǫ̃

(

k =
ℓ

r(z)
, z

)

. (13.27)

In other words, the angular power spectrum is simply the projection of the
three-dimensional power spectrum, using the simple conversion ℓ ≈ kr.
Note that, if the observed band is very thin, so that the line component of
the background arises from only a narrow redshift window, one can easily
invert the angular power spectrum to obtain the three-dimensional version,
at least on scales larger than the width of the redshift window (on smaller
scales the angular power is damped by cancellations along the line of sight).
However, even with such a narrow window, the broadband component still
arises from a wide range of redshifts, so it still requires modeling to invert
properly.

The cumulative near-infrared background fluctuations willagain be built
from the Lyman-α emission, stellar continua, two-photon continua, and
free-free/free-bound emission. However, unlike for the mean signal, the
spatial location of this emission (within or outside of galaxies) is important,
because recombinations that occur over the∼ 10 Mpc ionized bubbles in the
IGM will change the spatial scales of the fluctuations (and create such low
surface-brightness features that they will be all but unobservable in prac-
tice). In most circumstances, the fluctuations trace the galactic component
and diminish as the escape fraction of UV photons,fesc approaches unity.

Figure 13.7 shows some predictions for this fluctuating background in a
range of models for star-forming galaxies during the reionization era. These
examples all use a numerical simulation of reionization to construct the pre-
dicted signal; the simulation only fixes thetotal ionizing efficiencyζ, so
there remains a good deal of freedom in the amplitude of the near-infrared
background, which has a different dependence onfesc in particular. The two
models shown here span the range of possibilities in this simulation (though
it is worth noting that there is even more variation outside of its particu-
lar star formation history). The solid line corresponds to alow-metallicity
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Figure 13.7 Comparison of recent observational data with theoretical predictions (taken
from a numerical simulation of reionization) for the angular power spectrum of
near-infrared background fluctuations. The two panels alsoshow measurements
of angular fluctuations in the 3.6µm IRAC band and the 1.6µm NICMOS band
(see text). In each one, the double-dot-dashed curve shows predictions for the
IGM emission, while the solid and dashed curves show the range of predic-
tions for the total angular power spectra; these two limiting cases take a light,
metal-poor population with highf⋆ and smallfesc (solid) and a heavy, metal-
free population with lowf⋆ and highfesc (dashed curve), both normalized to
have the same overall IGM ionization. The dotted curves showthe associated
shot noise terms. Figure credit: Fernandez, E. R. et al.,Astrophys. J.710, 1089
(2010). Reproduced with permission of the American Astronomical Society.

stellar population with a Salpeter IMF (a mass spectrum∝ m−2.35
⋆ , ranging

from 3–150M⊙), a very highf⋆ = 0.5, and a relatively smallfesc = 0.19.
The dashed line, on the other hand, refers to very massive Population III
stars (with the Larson IMF described previously and a characteristic mass
mc = 250M⊙), a low f⋆ = 0.01, and an escape fractionfesc = 1. Since
the latter model hasno line emission from inside galaxies, the fluctuations
seen here are almost entirely due to the stellar continua.

The wide range of amplitudes for the angular power spectrum between
these two extreme models illustrates how sensitive the near-infrared back-
ground is to the parameters of star formation in high-redshift galaxies. In
combination with an independent measure of the IGM ionization state, this
probe can help to break important degeneracies in the ionization efficiency.
For a givenζ, the signal is maximized with a large star formation efficiency
and smallfesc (so that more stars form, increasing both the stellar contin-
uum and the overall production rate of ionizing photonswithout affecting
the IGM) and a low-mass stellar population (which also boosts the stellar
continuum as compared to the ionization rate).

The shapes of the power spectra are set by a combination of thetwo-
halo term and the shot-noise contribution (which is shown separately by the
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dotted curves). The latter is characterized by a white noisepower spectrum
with Cℓ ∝ ℓ0. The former mirrors the linear power spectrum multiplied by
the bias – in this case, nonlinear corrections are quite significant; otherwise
the power spectrum would have actuallypeakedat ℓ ∼ 103. Instead, the
two-halo term hasℓ(ℓ+ 1)Cℓ ∝ ℓ1/2 when the nonlinear bias is included.

Interestingly, current observations are starting to pose interesting limits
on these models: the two sets of points in the left hand panel show inde-
pendent estimates of the residual fluctuations due to unresolved sources in
images from the Infrared Array Camera on theSpitzersatellite at 3.6µm.261

From our discussion of the mean background above, this is most sensitive
to Lyman-α at very high redshifts and (most importantly in these models)
continuum processes at a range of redshifts. The right panelshows data
from the NICMOS camera on theHubble Space Telescope, which operates
at 1.6µm and so is sensitive to Lyman-α emission atz ∼ 12 (and continuum
processes at all redshifts).262

All of these efforts attempt to find fluctuations near the upper limits of
theoretical expectations; however, note that the observedfluctuations may
very well include other currently unresolved populations,such as faint low-
redshift galaxies. In fact, the solid line in these models corresponds to a
meanintensity of15 and60 nWm−2 sr−1 in these two bands, well above
current limits, which suggests that in fact most of the observed fluctuations
are due to lower-redshift or local contamination. The dashed line produces
a mean background of0.2–0.8 nWm−2 sr−1 in these two bands, which can
easily be accommodated by estimates of the mean intensity.

The dot-dashed curves in these plots show the prediction forthe angular
fluctuations generated inside IGM H II regions. Given a particular simula-
tion of reionization, this component is fixed by the densities and locations
of the ionized bubbles. In any case it is very small, almost always negligi-
ble compared to the halo contribution, because of the very low IGM density
(and hence recombination and collision rates).

In summary, the near-infrared background offers an intriguing view of
the evolution of early stellar populations, highly complementary to other
approaches which focus on measuring the ionization state ofthe IGM or on
detecting individual bright objects. The primary challenges to understand-
ing the background are, as in so many other areas, foregrounds: learning
how to separate the relatively featureless angular and spectral behavior from
other low-redshift contaminants and the zodiacal light. A combination with
other, complementary probes may very well prove to be the best way to
accomplish this goal.
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13.2.2 Diffuse Backgrounds of Radio Lines

Another set of interesting diffuse backgrounds arise from radio and submil-
limeter lines: the same strong emission lines we have discussed in§8.9.4.
Two particularly interesting examples are CO, which has a forest of rota-
tional lines with rest frequenciesJνCO for a transition from excited state
J to J − 1 (hereνCO = 115.3 GHz), and the fine structure line of singly
ionized carbon C II, which has a rest wavelength of 158µm (or frequency
1.9 THz). Unlike Lyman-α, these lines fundamentally trace thefuel for
star formation rather than the feedback exerted by young stars on their sur-
roundings. [C II] is a common line from neutral gas (because the ionization
potential of C I lies below that of H I), and it is an important coolant in the
outskirts of gas clouds. CO, on the other hand, forms in the molecular com-
plexes out of which stars form, and it is an important coolantin that gas.
Table 8.1 lists the most prominent interstellar emission lines in star forming
galaxies, along with their characteristic luminosity per star formation rate
[in units ofL⊙/(M⊙/yr)].

Some of these lines are particularly strong; for example, the [C II] line
may carry as much as a percent of the total luminosity of nearby quiescent
galaxies like the Milky Way. Another advantage of these lower-frequency
lines, which thanks to the cosmological redshift are observed in the centime-
ter or millimeter range, is the relative ease of building instruments with both
large fields of view and good spectral resolution to measure adiffuse back-
ground. Such measurements are then ideally suited for cross-correlation
with other lines or the spin-flip background (see§13.3 below).

Moreover, cross-correlation is likely necessary to recover any of these
line backgrounds, because a single observed frequency willpick up emis-
sion from many different lines at many different redshifts.For example, an
observed band around30 GHz will be sensitive to CO(2-1) atz = 6.7 and to
CO(1-0) atz = 2.8. One can isolate the high-redshift signal by comparing
two different lines at the proper observed frequencies. For example, CO(1-
0) at 10.5 GHz and CO(2-1) at 21 GHz both samplez = 10 galaxies. So
long as no other emission lines have the same spacing, the cross-correlation
between these two measurements will pick up information from z = 10
while eliminating all the contaminants, which simply contribute to the over-
all noise.

For unresolved point sources emitting in a pair of lines labeled 1 and 2,
the cross power spectrum at a wavenumberk can be approximated as

P1,2(k) = S̄1S̄2b̄
2Plin(k) + Pshot, (13.28)

whereS̄1 and S̄2 are the average fluxes in lines1 and2 respectively,̄b is
the average bias factor of the sources,Plin(k) is the (linear) matter power
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spectrum, andPshot is the shot-noise power spectrum due to the discrete
nature of galaxies (see equation 13.13). The root-mean-square error in the
cross power spectrum at a particulark-mode is given by

δP 2
1,2 =

1

2
(P 2

1,2 + P1totalP2total), (13.29)

whereP1total andP2total are the total power spectra of the individual line
measurements. Each of these includes terms for the power spectra of the
target line, detector noise, and any contaminating lines that fall in the same
band. Figure 13.8 shows the expected errors in the determination of the
cross power spectrum using the O I(63µm) and O III(52µm) lines at
a redshiftz = 6 for an optimized spectrometer on a 3.5 meter space-
borne infrared telescope, providing background limited sensitivity for 100
diffraction-limited beams covering a square on the sky which is1.7◦ across
(corresponding to 250 comoving Mpc) and a redshift range of∆z = 0.6
(280 Mpc) with a spectral resolution of(∆ν/ν) = 10−3 and a total integra-
tion time of2 × 106 seconds.

Figure 13.9 shows another example of a diffuse background inthe ra-
dio, the auto-correlation of CO(2-1). (Again, this would likely only be ob-
servable if cross-correlated with another CO line, but thatonly marginally
affects the amplitude). The predictions are derived from a numerical sim-
ulation of reionization, and we show results for several different redshifts
from the early to late stages of reionization (in the simulation,QHII = 0.82
at z = 6.8 and0.21 at z = 8.8).

The key assumptions to such a model are the mean intensity of the CO
emission (which sets the overall normalization of the curves) and the luminosity-
mass relationship of the source halos (which affects the shape of the curve
by weighting the halos differently). The overall normalization requires
two ingredients: an estimate of the total star formation rate density and a
recipe for estimating the CO luminosity as a function of starformation rate
(and possibly other factors, like the metallicity). Here, the latter is sim-
ply calibrated to low-redshift rapidly star-forming galaxies following equa-
tion (8.16). As described in§8.9.4, this means that we assume that the local
dust (and hence CO) excitation temperature is much larger than the CMB
temperature even at these high redshifts and that the metallicity is not ex-
tremely small inside the molecular clouds.

The overall star formation rate density is fixed by requiringthat, atz =
6.8, it is sufficient tokeepthe Universe ionized, according to equation (9.44).
Note that, in the simulation, the Universe is not actually fully ionized at this
time – but this nevertheless provides a reasonable fiducial value. At higher
redshifts, the simulation assumes that the star formation rate is proportional
to the collapse fractionfcoll.
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Figure 13.8 The cross power spectrum of O I(63µm) and O III(52µm) atz = 6 measured
from mock simulation data for a hypothetical infrared spacetelescope (see text).
The solid line is the cross power spectrum measured when onlyline emission
from galaxies in the target lines is included. The points with error bars are the
recovered power spectrum when detector noise, contaminating line emission,
galaxy continuum emission, dust in our galaxy and the CMB areincluded (see
equation 13.29). Figure credit: Visbal, E., Trac, H., & Loeb, A., J. Cosm.
Astropart. Phys.11, 16 (2011). Copyright 2011 by the Institute of Physics.

As discussed in§8.9.4, the expected brightness of the CO lines depends
on the detailed physics of the ISM of high-redshift galaxies, which is cur-
rently essentially unconstrained by observations. Thus, the overall ampli-
tude of this signal is very uncertain. The short-dashed linein Figure 13.9
illustrates this with a model in which galaxies withM < 1010 M⊙ are in-
visible in CO (but still produce stars), possibly because their relatively small
star formation rates are not enough to excite the gas temperature above the
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Figure 13.9 Three-dimensional power spectrum of CO(2-1) fluctuations in a simulation of
reionization at several different epochs (z = 6.8, 7.3, 8.8, and 9.8). The CO
emissivity of each galaxy is calibrated to local relations,and the total star for-
mation rate density atz = 6.8 is fixed to the critical value required to maintain
ionization (see text). The short-dashed line assumes that only massive galaxies
emit CO radiation (possibly because the CMB dominates the dust temperature
in smaller galaxies). For this scenario, we also show a simple model that in-
cludes shot noise (long-dashed curve) and an estimate of thetwo-halo term
using the bias from the simulations (solid curve). Figure credit: Lidz, A. et al.,
Astrophys. J.741, 70 (2011). Reproduced with permission of the American
Astronomical Society.

CMB temperature. In this case the signal declines by roughlya factor of
1000 on large scales, simply because of the drastically reduced overall emis-
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sivity of the gas.
Figure 13.9 reports the observed fluctuation amplitude in brightness tem-

perature units, for which the typical value is∼ 1µK2 on moderately large
scales. The shape of the power spectrum depends on both the large-scale
clustering (or two-halo term in equation 13.12) and shot noise variations in
the galaxy number counts (equation 13.13), with the former dominating on
large scales and the latter on small scales. The Figure also shows the di-
vision between these two components for the case in which only massive
galaxies emit; note that the halo model decomposition givenby these two
equations provides a very good description of the signal. When less mas-
sive galaxies contribute to the CO emissivity, the shot noise term becomes
less important (because the existence of many more sources implies smaller
fractional fluctuations). However, the shape of the power spectrum remains
nearly the same, because the nonlinear, scale-dependent bias is important
for such galaxies.

While this signal is therefore thousands of times smaller than the spin-
flip background, its appearance at much higher frequencies (observed at
∼ 10–50 GHz rather than∼ 50–200 MHz) means that the sky noise is
also much, much smaller – in fact, at these frequencies the∼ 10 K noise
inside the detectors dominates. Moreover, these frequencies are near those
already used for CMB experiments, so this technology is well-developed,
with both interferometers and large focal plane arrays available on the near-
term horizon.

These properties enable CO mapping with much more modest instru-
ments than those aiming to observe the spin-flip background.Equation (12.57)
suggests that a single 3.5 m dish can reach a noise level of∼ 1µK per
10′ pixel (its diffraction limit) in a spectral channel of a fractional width
∆ν/ν = 0.01 at 30 GHz after an integration time of just a few days. Thus,
a survey over several tens of square degrees could be accomplished rela-
tively easily. In combination with detailed radio observations of individual
galaxies from instruments like ALMA, such surveys would provide a com-
plete census of molecular emission from the cosmic dawn. The[C II] line,
at even higher frequencies, has relatively modest observational requirements
as well and can provide a complementary view of the lower density neutral
ISM and its cooling mechanisms.

13.3 THE CROSS-CORRELATION OF DIFFERENT PROBES

These diffuse backgrounds can be relatively easy to measurein absolute
terms but often very difficult to isolate from the many contaminants that
occupy the same wavebands. One way around this problem is to cross-
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correlate one measurement with another; such a correlationwill eliminate
any foreground contaminant that is not shared by both signals, greatly easing
the extraction problem. We have already discussed in the previous section
how the cross-correlation of different radio lines can helpto isolate them
from other radio line contaminants. Here we consider the correlation of two
very different physical probes.

Crucially, such a cross-correlation can help to isolate interesting physical
information as well as ease the signal processing. As an example, con-
sider the cross-correlation of a galaxy survey with the spin-flip background.
Ignoring redshift space distortions, the cross-power spectrum will be (c.f.
equation 12.54, recalling that the 21-cm signal is shaped bythe baryon den-
sity and ionization fields)

∆2
21,g(k) = T0 〈xHI〉 [∆2

δ,g(k) + ∆2
x,g(k) + ∆2

xδ,g(k)], (13.30)

where the subscriptg refers to the fractional overdensity in the galaxy field
andx and δ denote the same for the neutral fraction and baryon density,
respectively. On the relevant (large) scales, the first of these terms,∆2

δ,g, is
simply proportional to the matter power spectrum multiplied by a bias factor
(for the galaxy component).

Similarly, the second term is simply the cross-correlationbetween matter
density and ionization, multiplied by the same bias factor.We have studied
the behavior of this term in§9.7 and found two important results. First, on
large scales, it isnegativebecause the ionized bubbles appear where there
are many galaxies, or conversely the gas is neutral only where there are
no galaxies. Thus, the neutral gas and galaxy fields trace opposite ends of
the dark matter density. On the other hand,∆2

x,g approaches zero on scales
below the bubble size, because the IGM bubble is entirely ionized regardless
of its small-scale density structure (at least at the level probed by the spin-
flip background). Importantly, there is a relatively sharp transition to zero
in this field, though that is hidden in the spin-flip background itself by the
other terms.

However, in the cross-correlation the turnover is more apparent, because
the final term in equation (13.30) actually cancels∆2

δ,g on small scales.263

To see this, note that the sum of these two terms is the Fouriertransform of
the quantity

xHI(1)δ(1)ng(2) = 〈xHI〉 [1 + δx(1)]δ(1)ng(2)

= 〈xHI〉 δ(1)ng(2) + 〈xHI〉 δx(1)δ(1)ng(2),(13.31)

where the labels 1 and 2 refer to the two spatial positions andthese two terms
are respectively proportional to the Fourier transforms of∆2

δ,g and∆2
xδ,g.
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However, we can explicitly write the corresponding two-point function:

〈xHI(1)δ(1)ng(2)〉=

∫

dxHI(1)dδ(1)dng(2)xHI(1)δ(1)ng(2)

×p[xHI(1), δ(1)|ng(2)]p[ng(2)], (13.32)

where we have simply expressed the correlation through a conditional prob-
ability function and noted that the mean ofy is the integral ofy times its
overall probability distribution. On separations much smaller than a typical
bubble, the two points 1 and 2 will either be within the same ionized bubble
or both neutral. In the former case,xHI(1) = 0 and so the integral gets no
contribution at all. In the latter case, outside of ionized bubbles, there must
be no galaxies, song(2) = 0. In this simple model, the cross-correlation
therefore probesonly the cross term∆2

x,g, which contains a clear feature on
the scale of the typical bubble.

One way to extract this information is therefore by conducting a galaxy
redshift survey in the same volume as a 21-cm survey. However, such a
project would be very difficult, because the coarse resolution and huge fields
of view of the radio telescopes (typically dozens or hundreds of square de-
grees, with several arcminute resolution) provide a very poor match to near-
infrared galaxy surveys (which, at these high-redshifts, typically subtend at
best several square arcminutes, but with exquisite angularresolution). A
diffuseprobe of the galaxy field therefore provides a much better match;
in particular, the diffuse CO or [C II] backgrounds are excellent candidates
because they also produce spectral fluctuations (note that broadband fluctua-
tions, like the stellar continuum component of the near-infrared background,
will not correlate as well because each wavelength comes from multiple red-
shifts). Figure 13.10 illustrates how such a probe would work.

The top panel of Figure 13.11 shows the resulting cross-power spectrum
for the CO(2-1) line in a numerical simulation of reionization. The bottom
panel shows the cross-correlation coefficient, which is defined as

r21,CO(k) =
P21,CO(k)

√

P21(k)PCO(k)
. (13.33)

This quantity will be unity for perfectly correlated fields,equal to negative
one for perfectly anti-correlated fields, and zero for uncorrelated fields.

The Figure shows predictions for three different stages of reionization.
At every stage, the cross-power spectrum is negative on large-scales, reach-
ing near perfect anti-correlation on sufficiently large scales. But this anti-
correlation gradually turns into a nearly random association (r21,CO = 0)
on small scales, with the turnover scale increasing asQHII increases, re-
flecting the rapidly growing ionized bubbles. This kind of cross-correlation
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Figure 13.10 Schematic illustration of the cross-correlation between the spin-flip back-
ground and galaxy probes (seeColor Plate 32for a color version of this fig-
ure). Each panel shows a slice from a numerical simulation∼ 185 Mpc across.
Upper left: Map of the ionized fraction midway through reionization (ionized
regions are shown in white).Upper right: Map of the galaxy field. White
squares show regions∼ 4× 8 arcmin across; these are each equivalent tofour
adjacent pointings of the James Webb Space Telescope.Lower left: Spin-flip
background from this slice.Lower right: Galaxy map smoothed over a 6 ar-
cmin beam, as might be observed in an intensity mapping measurement. Note
the strong large-scale anti-correlation between the bottom two figures. Figure
credit: A. Lidz.

therefore offers a clear measurement of the size of the H II bubbles, some-
thing that affects the spin-flip power spectrum but that is much more difficult
to extract from it in a model-independent manner (compare Figures 12.16
and 13.11).

Another interesting cross-correlation is between the CMB and the spin-
flip background. On degree scales – much larger than the size of each ion-
ized bubble – the cross-correlation is relatively easy to estimate. Qualita-
tively, a cross-correlation should arise because fluctuations in the density
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Figure 13.11 Cross-correlation between CO(2-1) emission and the spin-flip background in
a numerical simulation of reionization (as in Figure 13.9).The dot-dashed,
dotted, and solid curves takez = 9.8, 7.3, and 6.8 (orQHII = 0.21, 0.54, and
0.82 in this model), assuming that all galaxies emit CO(2-1). The long-dashed
curve takesz = 7.3 but assumes that only massive galaxies emit CO. The top
and bottom panels show the absolute value of the cross-powerspectrum and
the cross-correlation coefficient, respectively. Figure credit: Lidz, A. et al.,
Astrophys. J.741, 70 (2011). Reproduced with permission of the American
Astronomical Society.

field source fluctuations in the ionized fraction (and hence 21-cm back-
ground) as well as in the baryon velocity field (which Dopplershifts CMB
photons through scattering on free electrons). As we have already seen, the
Doppler contribution to the CMB usually cancels out, because photons trav-
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eling across an overdense region will be upscattered when they encounter
gas falling toward the observer (on the far side of the overdensity) but be
downscattered when they encounter gas falling away from theobserver.
However, if the ionized fraction changes across the overdensity, the can-
cellation will be imperfect.264

If reionization were homogeneous, this would lead to ananti-correlation
between the 21-cm brightness temperature and the CMB temperature. In
this case, an overdensity would increase the 21-cm brightness but cool the
CMB, as Thomson scattering would be more effective on the near side than
the far side. But in the case of “inside-out” inhomogeneous reionization,
we generically expect apositivecorrelation, because overdense regions host
ionized bubbles (decreasing the spin-flip signal) and stillcool the CMB.
Unfortunately, this correlation – which in principle provides a clean probe
of the evolution of the averageQHII – is still quite weak, with a cross-
correlation coefficient< 3%, because the primary CMB anisotropies dom-
inate so strongly on the relevant scales (multipolesℓ ∼ 100). Only in the
case that reionization occurs at very high redshifts (z > 15) will we be able
to detectthat there is a correlation, and even then at low confidence.265

On smaller angular scales, the spin-flip background and CMB should
anti-correlate in the case of inhomogeneous reionization.Because the vari-
ations in the kinetic Sunyaev-Zel’dovich effect describedin §13.1.2 appear
where the 21-cm signal vanishes – on scales comparable to (orsmaller
than) the bubble size, the sign of the correlation is driven not by the ve-
locity modes along the line of sight but by the projectionq⊥ of the velocity-
electron density (see equation 13.4 and Figure 13.4). In principle, this small-
scale correlation provides a clean probe of the ionized bubble properties.
Unfortunately, the cross-correlation is again dwarfed by the primary CMB
anisotropies: although the kinetic Sunyaev-Zel’dovich signal itself peaks on
quite large angular scales, the cross-correlation component is confined to
ℓ < 8000 (where the primary CMB signal is still large), largely because of
cancellation of the structures in the integrated CMB map. Thus, although
the CMB temperature-21 cm cross-correlation contains interesting physical
information, it does not appear to be a useful observable in practice.266

13.4 THE FOSSIL RECORD OF THE LOCAL GROUP

The focus of this book is on studies of the distant Universe: direct observa-
tions of galaxies (and the objects in them) or indirect probes of their environ-
ment. But of course these early generations of galaxies are the progenitors
of today’s galaxies, including the Milky Way, which must therefore contain
remnants and signatures of these first structures. Here we will briefly dis-
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cuss the prospects forstellar archaeologyand its utility in understanding the
cosmic dawn.

The hierarchical structure formation paradigm implies that the small dark
matter halos, in which the first stars and galaxies formed, merged to form
larger and larger galaxies over time. During these violent merger events,
existing gas reservoirs in galaxy cores would likely have undergone com-
pression and formed stars, and continuing accretion at latetimes would have
formed even more stars. Thus, the large majority of stars in today’s galaxies
had formed long after the cosmic dawn.

But what of theexistingstars within the merging halos, that may have
formed in pristine conditions (Population III) or shortly after, with very low
metallicity? Recent large multi-object spectroscopic surveys have uncov-
ered several hundredextremely metal-poorstars, characterized as having a
relative abundance of iron to hydrogen at least three ordersof magnitude
smaller than that in the Sun (denoted as [Fe/H]< −3). Stellar archaeolo-
gists hope to use these stars to uncover information like theIMF and effi-
ciency of second-generation star formation and the nucleosynthetic yields
of the very first stars, which may have provided the heavy elements for the
extremely metal-poor stars.

A related question is whether the small galaxies that surround the Milky
Way – many containing so few stars that they remained hidden until the most
recent generation of large surveys – can be traced back to thecosmic dawn.
If so, they may carry imprints of important feedback mechanisms, such as
initial metal enrichment, the growth of the Lyman-Werner background, or
reionization. For example, galaxies with halo massesMh ∼ 108M⊙ may
have formed some stars before reionization and then been shut off by the
photoheating that accompanied that event (see§9.9.2). Because these sys-
tems would then have undergone relatively little star formation in the past
10 Gyr, they may carry more obvious records of these events than large
galaxies like the Milky Way.

13.4.1 Stellar Archaeology

Successfully using metal-poor stars to understand the earliest generations
of structure requires a number of inputs. First, one mustfind such stars –
no easy task, only becoming possible with large spectroscopic surveys that
can identify very rare objects. Second, one must understandthe dynamics
of these stars and where they may have originated. Finally, one must relate
their chemical abundances to the stars that enriched them, requiring detailed
models of massive star supernovae, metal mixing in the ISM, and second-
generation star formation.
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• Where are the extremely metal-poor stars?So far, observations have
found most of these stars in the outer halo of our Milky Way, which
appears to have a somewhat lower mean metallicity (centeredat [Fe/H]∼
−2.2) than the inner halo (by a factor of three).267

Numerical simulations are consistent with this picture, showing that
extremely metal-poor stars should appear throughout the Galaxy. This
is largely because metal enrichment throughout the IGM is highly
inhomogeneous, so that pockets of metal-free gas may persist until
relatively late in the Universe’s history, fromz ∼ 5–3. These relics
would then be incorporated into the outer halo of the galaxy.268

• Where are theoldest extremely metal-poor stars?If galaxies were
composed solely of dark matter and stars, numerical simulations of
hierarchical structure formation models would provide a fairly robust
answer to this question: near the centers of galaxies. Thesesimu-
lations show that galaxies form “inside-out,” with the firstobjects to
be accreted (i.e., the most overdense nearby regions, wherethe first
stars would also have formed) residing closest to the bottomof the
galaxy’s potential well, and later additions located farther and farther
out in the galaxy’s halo. Thus, although extremely metal-poor stars
may be spread throughout the halo, theoldestwould be located near
the center.269 This presents significant problems for surveys, as these
few old stars would be buried in the much more numerous stars of our
Galactic bulge and be subject to relatively large extinction.

However, baryonic processes may mitigate this difficulty tosome ex-
tent. In particular, spiral perturbations driven by accretion events can
cause stars to migrate over large radial distances, gettingdeflected to
much larger orbits.270 If so, such stars may be much more accessible
to searches in the outskirts of galaxies, although their spatial distribu-
tion after a sequence of such events has not been well-quantified.

• What are the “chemical fingerprints” of the first stars?Once a set
of such stars are found, stellar archaeologists hope to use their abun-
dance patterns and other properties to learn about star formation in the
early Universe – both at the time these stars formed and in theearlier
generations that enriched their fuel supply. The simplest approach is
to use the “chemical fingerprints” present in these stars’ abundance
patterns to deduce the properties of the precursor stellar populations
supernovae.

Such efforts have a long tradition in astronomy, dating backto ef-
forts to understand abundance patterns within our own solarsystem
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and in nearby stars. However, although the general problem is well-
posed, extracting quantitative information remains difficult. Astro-
physicists have a good qualitative understanding of the nuclear path-
ways through which heavy elements form – broadly, there are two dif-
ferent processes. In ther-process, which occurs during supernovae,
neutrons are added to seed nuclei (usually56Ni) much more rapidly
thanβ decay can occur. The resulting nuclei form a distinct pattern
set by the locations of closed neutron shells, where the cross-section
for continued neutron capture drops rapidly. However, the shells that
form during the r-process are overabundant in neutrons and so suffer
a sequence ofβ decays before they reach stability. The contrasting
s-processoccurs when neutrons are added over long timescales, so
that the nuclei can undergoβ decay and grow through a sequence of
stable nuclei. This occurs largely in the atmospheres of asymptotic
giant-branch stars, over longer timescales than supernovanucleosyn-
thesis.

Interestingly, the chemical patterns produced in supernovae depend
strongly on the properties of their progenitors.271 As discussed in
§5.5, stars of∼ 140–260 M⊙ are subject to a pair-production insta-
bility, where much of the star’s internal energy is lost whenphoton
collisions create electron-positron pairs, locking up much of the ther-
mal energy in the rest mass of those particles. The star then explodes
violently. Before the explosion of pair-instability supernovae, the star
has only a very small excess of neutrons, which strongly suppresses
the formation of elements with an odd atomic number as compared
to even ones. Moreover, these stars have large oxygen-fusing regions,
which leads to an overproduction of silicon and sulfur compared to
more normal supernovae.

Assuming that the extremely metal-poor stars were formed from gas
enriched by only one or a few supernovae in the early generation
of stars, one might therefore expect to see such fingerprintsin their
abundance patterns. However, to date this has proved not to be the
case: instead, these stars – just like most of those in the Milky Way
– appear to have been enriched by supernovae from stars with masses
∼ 10–40 M⊙, based largely on their overabundance of so-calledα
elements. These are nuclei made up of integer multiples of helium
nuclei and are synthesized in the silicon-burning phase before such
stars explode. Thus there is so far little evidence for earlier genera-
tions of very massive (> 100M⊙) stars in these Galactic searches, al-
though there are extragalactic clues for possible pair-instability super-
nova explosions272 and their odd-even abundance pattern in damped
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Lyman-α systems.273.

There are also several interesting anomalies that currently remain to
be understood in the abundances of particular elements within the ex-
tremely metal-poor population. One interesting feature isthe large
scatter in carbon and nitrogen, which can be greatly enhanced rel-
ative to iron. Many (but not all) of these stars also have enhanced
s-process abundances; most likely, they have therefore been polluted
by an intermediate-mass binary companion, which makes it difficult
to tease out the abundances of the precursor supernovae.

The cooling rate by atomic carbon and oxygen dominates over that
of molecular hydrogen once their abundances exceed∼ 10−3.5 of the
solar values. If such enhanced cooling is a pre-requisite for the ability
of the gas to fragment into low-mass stars, then one would expect
all low-mass stars in the Milky Way halo to show carbon or oxygen
abundances above this threshold (see§6.5). Figure 13.12 shows that
existing data are consistent with this theoretical expectation.

• What can we learn about the IMF of the earliest stars?The mere
fact that nometal-freestars have been found – despite the relatively
large number of extremely metal-poor stars – suggests that the very
first generation of stars was skewed towards high-masses, with no
evidence for Population III stars with a mass< 0.8 M⊙. The rela-
tively common carbon-enhancement found in these stars alsopoints
to a higher characteristic mass, since it requires a large fraction of
the binary companions to have evolved so as to donate some of their
material to the observed stars to have relatively large masses as well.

On the other hand, the lack of clear signatures of pair-instability su-
pernovae, with masses> 100 M⊙, and the relative success of “nor-
mal” supernovae at reproducing the abundance patterns of extremely
metal-poor stars, argues against very massive stars being common
even in the earliest phases of structure formation – in contrast to the
results of most numerical simulations. However, such an interpreta-
tion assumes that the heavy element products of the supernova mix
efficiently with the ISM of the galaxy; if instead the mixing occurs
only slowly, the second-generation stars may actually haverelatively
high metallicities and so lie outside the target area of existing surveys.
A great deal remains to be learned from these surveys, and improved
modeling of the transition from one stellar population to the next will
be a crucial element of extracting the best possible information.

• What additional information can we extract from these surveys? It has
become increasingly clear that, in the local Universe, starformation
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Figure 13.12 Measure of the carbon and oxygen abundance for metal-poor stars,Dtrans ≡

log10

“

10[C/H] + 0.3 × 10[O/H]
”

, as a function of the iron abundance rela-

tive to hydrogen, [Fe/H].Top panel: Galactic halo stars.Bottom panel: Stars
in dwarf spheroidal galaxies and globular clusters. G and SGindicate giants
and subgiants. The critical limit marked with a dashed line was predicted the-
oretically by comparing the cooling rate for carbon and oxygen lines to H2
cooling (which controls the formation of massive Population III stars). With-
out metal line cooling, no low mass stars should be found below this line. The
dotted lines define the uncertainty in the theoretical prediction without dust
cooling. If dust cooling is added, the dashed line is loweredby ∼ 2 orders
of magnitude. Interestingly, all data points are well abovethe theoretical lines
for metal and dust cooling so far. Figure credit: Frebel, A.,Johnson, J. L., &
Bromm, V.,Mon. Not. R. Astron. Soc.380, L49 (2007). Copyright 2007 by
the Royal Astronomical Society.
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generally proceeds inside massive star clusters of uniformabundance
(albeit of widely varying masses). If similar processes occurred dur-
ing the early generations of star formation, we would expectto find
“clumps” in the abundance patterns characteristic of thesestar clus-
ters, even if the stars themselves have dispersed on widely varying
orbits. Such clumps could tell us about the environments in which
early stars formed and the processes that regulated their birth; they
would also provide “uniform” samples of stars over which onecould
average to study metal abundance across larger scales than individ-
ual stars, and with which one could account for anomalies like mass-
transfer between binary companions.

13.4.2 Ultrafaint Dwarf Galaxies Around the Milky Way

Recent large spectroscopic surveys have revealed a wealth of information
about the structure of our Milky Way galaxy and its immediateneighbors. In
particular, they have enabled the discovery of a sizable class of “ultrafaint”
dwarf galaxies, with a total luminosity< 105 L⊙. These are particularly
intriguing objects, because they appear to have undergone only one or a
few star formation events (rather than the rich history common to larger
galaxies), so the current stellar populations offer relatively clean tracers of
the first generations of stars in these particular dark matter halos. Moreover,
these galaxies are small enough that one can realistically imagine obtaining
a fairly complete census of their stars.

The present data show that these dwarf galaxies have low average metal-
licities, some as small as [Fe/H]∼ −2.6, and substantial scatter in the abun-
dances (at least an order of magnitude). Overall, the abundance patterns
resemble those in the extremely metal-poor Galactic halo stars described in
§13.4.1.274

Thus, it seems that one of the feedback mechanisms that we have de-
scribed earlier was responsible for shutting down ongoing star formation in
these galaxies. Three possibilities immediately come to mind: (1) ultravi-
olet feedback from the first stars that photodissociated H2 and terminated
cooling in minihalos below the atomic cooling threshold;(2) the supernova
feedback generated by the first wave of star formation in the dwarf galaxy
itself; and(3) photoheating from reionization (or an even earlier stage) sup-
pressing accretion onto these small halos, or possibly evenevaporating any
existing gas.

The canonical theoretical picture assumes that the initialburst of star for-
mation in an isolated region contains only very high mass Population III
stars. If the ultrafaint dwarfs – which contain low-mass stars – are then to
form in the same dark matter halos, those galaxies must have been able to
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retain their gas (or at least re-accrete it) after these stars died. This generally
argues against extremely low mass halos with shallow gravitational potential
wells for the dwarfs. It also poses a challenge for any modelsthat attribute
the end of star formation in these galaxies to supernova winds: although
such winds could have arisen from a later generation of star formation, the
binding energy of the halo scales as∝ M2

h , so one naively expects halos to
become more stable as they grow.

The Lyman-Werner background on its own is also unlikely to bethe fac-
tor stopping star formation in these galaxies. It is important only when
H2 dominates the cooling function; thus, because the stellar populations in
these dwarfs have non-zero metallicity, it must not have been the dominant
coolant in these populations (even if it was responsible forslowing down or
stopping star formation in earlier phases).

The other key question is then how the first and second generations of star
formation are related spatially. If minihalos can either retain or reacquire
their gas after the initial burst of Population III star formation, they may
themselves have been able to form low-mass Population II stars that survive
to the present day. If, on the other hand, these halos insteadlose their gas
for a long period of time, larger objects – possibly above theatomic cool-
ing threshold – would have held the bulk of the second generation of stars.
Moreover, because in that case these new stars form in a different halo than
their Population III progenitors, it is easier to imagine that they form in a
burst mode that is able to evacuate the galaxy of its remaining gas, shutting
down later star formation. Thus, understanding the dynamics and contents
of these ultrafaint dwarfs offers the tantalizing possibility of constraining
the large-scale pathways that enabled high-redshift star formation.

More detailed information is also available from these objects: for exam-
ple, if an initial starburst did clear out the dwarf’s gas, the stellar popula-
tion should have little evidence of “self-enrichment:” rather, the stars might
all have abundances characteristic of core-collapse (and possibly Popula-
tion III) supernovae, without any substantial s-process elements. The ob-
served scatter in the metallicity within individual dwarfsalso suggests that
metals must not have been efficiently mixed across galactic scales, at least
if the picture of a single burst of star formation is correct.Interestingly,
old globular clusters have little or no apparent scatter in their abundances,
implying much more efficient mixing in such systems.

The recent discovery of these dwarfs, and the rapidly increasing samples
of metal-poor stars inside them and inside our own Galaxy, have opened a
new window into studies of the impact of star formation in theearly Uni-
verse. The implications of these studies are now only beginning to be un-
derstood, and a great deal of work on both the observational and theoretical
ends is needed in order to disentangle the clues lying within. Stellar archae-
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ology promises to remain a fascinating frontier for many years to come.
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725, 633 (2010).

215Keres, D., et al.Mon. Not. R. Astron. Soc., 363, 2 (2005); Keres, D., et al.,Mon. Not.
R. Astron. Soc.395, 160 (2009).

216Gould, A. & Weinberg, D. H.,Astrophys. J¿468, 462 (1996).
217Cantalupo, S., Porciano, C., & Lilly, S. J.,Astrophys. J.672, 48 (2008).
218Zheng, Z. et al.Astrophys. J.726, 38 (2011).
219Rybicki, G. B. & Lightman, A. P.,Radiative Processes in Astrophysics, New York:

Wiley (1986).
220Field, G. B.Astrophys. J.129, 525 (1959).
221Zygelman, B.,Astrophys. J.622, 1356 (2005); Furlanetto, S. R. & Furlanetto, M. R.

Mon. Not. R. Astron. Soc.374, 547 (2007); Furlanetto, S. R. & Furlanetto, M. R.Mon. Not.
R. Astron. Soc.379, 130 (2007).

222Wouthuysen, S. A.Astron. J.57, 31 (1952); Field, G. B.Proc. Inst. Radio Eng.46, 240
(1958).

223Pritchard, J. R. & Furlanetto, S. R.Mon. Not. R. Astron. Soc.367, 1057 (2006).; Hirata,
C. M. Mon. Not. R. Astron. Soc.367, 259 (2006).

224See, e.g., Bethe, H. A. & Salpeter, E. E.Quantum Mechanics of One- and Two-Electron
Atoms, New York: Academic Press (1957).

225Field, G. B.,Astrophys. J.129, 551 (1959).
226Field, G. B.Astrophys. J.129, 551 (1959).
227Hirata, C. M.Mon. Not. R. Astron. Soc.367, 259 (2006).
228Hirata, C. M.Mon. Not. R. Astron. Soc.367, 259 (2006).
229Dalal, N., Pen, U. L., & Seljak, U.,J. Cos. Astropart. Phys.11, 007 (2010).
230Barkana, R. & Loeb, A.Astrophys. J.626, 1 (2005).
231Furlanetto, S. R. & Johnson Stoever, S.Mon. Not. R. Astron. Soc.404, 1869 (2010).
232Furlanetto, S. R. & Pritchard, J. R.Mon. Not. R. Astron. Soc.372, 1093 (2006).
233Mirabel, F. et al.Astron. & Astrophys.528, 149 (2011).
234See http://www.haystack.mit.edu/ast/arrays/Edges/.
235Bowman, J. D. & Rogers, A. E. E.Nature468, 796.
236N. Kaiser,Mon. Not. R. Astron. Soc.227, 1 (1987).
237Barkana, R., & Loeb, A.Astrophys. J.624, 65 (2005).
238Kanekar, N., & Briggs, F. H.New Astronomy Reviews48, 1259 (2004).
239Mao, Y. et al.,Phys. Rev. D78, 023529 (2008).



588 NOTES

240Furlanetto, S. R., Oh, S. P., & Briggs, F. H.,Phys. Rep.433, 181 (2006).
241Paciga, G. et al.Mon. Not. R. Astron. Soc.413, 1174 (2011).
242See, e.g., Dodelson, S.Modern Cosmology, Amsterdam: Academic Press (2003) for a

pedagogical summary.
243See a similar diagram and complementary discussion in Kamionkowski, M., & Loeb,

A. Phys. Rev.D56, 4511 (1997).
244Zaldarriaga, M.,Phys. Rev.D44, 1822 (1997).
245Sunyaev, R. A. & Zel’dovich, I. B.,Mon. Not. R. Astron. Soc.190, 413 (1980).
246Dunkley, J. et al.,Astrophys. J. Supp.180, 306 (2009).
247See http://www.rssd.esa.int/index.php?project=planck.
248Mortonson, M. J. & Hu, W.,Phys. Rev.D77, 043506 (2008).
249Holder, G. P., Iliev, I. T., & Mellema, G.Astrophys. J. Lett.663, L1 (2007).
250See, e.g., Dodelson, S.,Modern Cosmology, Academic Press (2003).
251Jaffe, A. & Kamionkowski, M. 1998,Phys. Rev.D58,043001.
252Ostriker, J. P., & Vishniac, E. T.Astrophys. J.306, L51 (1986); Vishniac, E. T.Astro-

phys. J.322, 597 (1987).
253Gruzinov, A. & Hu, W.,Astrophys. J.508, 435 (1998); Knox, L., Scoccimarrao, R., &

Dodelson, S.,Phys. Rev. Lett.81, 2004 (1998).
254Dunkley, J. et al.,Astrophys. J.739, 52 (2011); Reichardt, C. L. et al.,Astrophys. J.,

submitted (2011); arXiv.org/1111.0932.
255Fixsen, D. J., et al.,Astrophys. J.473, 576 (1996).
256Tegmark, M., Silk, J., & Evrard, A.,Astrophys. J.417, 54 (1993).
257Fernandez, E. R. & Komatsu, E.,Astrophys. J.646, 703 (2006).
258Rybicki, G. B., & Lightman, A. P.Radiative Processes in Astrophysics, New York:

Wiley (1979), pp. 160-161.
259Brown, R. L. & Mathews, W. G.,Astrophys. J.160, 939 (1970).
260Kashlinksky, A. eta l.,Astrophys. J. Lett.654, L1 (2007); Thompson, R. I. et al.,

Astrophys. J.657, 669 (2007); Cooray, A. et al.,Astrophys. J. Lett.659, L91 (2007).
261Kashlinsky, A. et al.,Astrophys. J.654, L5 (2007); Cooray, A. et al.,Astrophys. J.659,

L91 (2007).
262Thompson, R. I. et al.,Astrophys. J.657, 669 (2007).
263Lidz, A. et al.,Astrophys. J.659, 865 (2007).
264Alvarez, M. A. et al.,Astrophys. J.647, 840 (2006).
265Adshead, P. J. & Furlanetto, S. R.,Mon. Not. R. Astron. Soc.384, 291 (2008).
266Jelic, V. et al.,Mon. Not. R. Astron. Soc.402, 2279 (2010).
267L. Gao, et al.Mon. Not. R. Astron. Soc.403, 1283 (2010).
268Scannapieco, E. et al.,Astrophys. J.653, 285 (2006).
269Tumlinson, J.,Astrophys. J.708, 1398 (2010).
270Sellwood, J. A. & Binney, J. J.,Mon. Not. R. Astron. Soc.336, 785 (2002).
271See, e.g., Heger, A. & Woosley, S. E.,Astrophys. J.567, 532 (2002).
272Gal-Yam, A. et al.Nature462, 624 (2009).
273Cooke, R., et al.Mon. Not. R. Astron. Soc.412, 1047 (2011).
274See, e.g., Karlsson, T., Bromm, V., & Bland-Hawthorn, J., arXiv.org/1101.4024 (2011),

and references therein.



Appendix B

Recommended Further Reading

Below we list a number of books, review articles, and other resources that
expand upon elements of the text in each of the chapters of this book. We
refer the reader to the endnotes in Appendix A for referencesto specific
papers in the astrophysical literature.

Chapter 1: Introduction and Cosmological Background, and Chapter
2: Linear Growth of Cosmological Perturbations

Dodelson, S.,Modern Cosmology, Academic Press (2003)
Kolb, E. W., & Turner, M. S.,The Early Universe, Addison Wesley (1990)
Liddle, D., & Lyth, A., The Primordial Density Perturbation: Cosmology,
Inflation, and the Origin of Structure, Cambridge University Press (2009)
Mukhanov, V.,Physical Foundations of Cosmology, Cambridge University
Press (2005)
Padmanabhan, T.,Structure Formation in the Universe, Cambridge Univer-
sity Press (1993)
Peacock, J. A.,Cosmological Physics, Cambridge University Press (1998)
Peebles, P. J. E.,Principles of Physical Cosmology, Princeton University
Press (1993)
Schneider, P.,Extragalactic Astronomy and Cosmology, Springer-Verlag
(2006)
Other Resources:Two useful computer codes areCAMB(http://camb.info/),
used for generating CMB anisotropies as well as accurate linear power spec-
tra, andRECFAST(http://www.astro.ubc.ca/people/scott/recfast.html), for
calculating the recombination history of the Universe.

Chapter 3: Nonlinear Structure and Halo Formation

Cooray, A., & Sheth, R.,Halo Models of Large-Scale Structure, Physics
Reports382, 1 (2002)
Springel, V., Smoothed Particle Hydrodynamics in Astrophysics, Annual
Reviews of Astronomy & Astrophysics48, 391 (2010)
Zentner, A. R.,The Excursion Set Theory of Halo Mass Functions, Halo
Clustering, and Halo Growth, International Journal of Modern Physics D
16, 763 (2007)
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Other Resources:Two publicly-available numerical simulation codes are
theN -body/SPH codeGADGET(http://www.mpa-garching.mpg.de/galform/gadget/)
and theN -body/adaptive mesh refinement codeEnzo(http://lca.ucsd.edu/portal/software/enzo).

Chapter 4: The Intergalactic Medium

Fan, X., Carillii, C. L., & Keating, B.Observational Constraints on Cosmic
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Fundamental Constants
Newton’s constant (G) = 6.67 × 10−8 cm3 g−1 s−2

Speed of light (c) = 3.00 × 1010 cm s−1

Planck’s constant (h) = 6.63 × 10−27 erg s
Electron mass (me) = 9.11 × 10−28 g ≡ 511 keV/c2

Electron charge (e) = 4.80 × 10−10esu
Proton mass (mp) = 1.67 × 10−24 g = 938.3 MeV/c2

Boltzmann’s constant (kB) = 1.38 × 10−16 erg K−1

Stefan-Boltzmann constant (σSB) = 5.67 × 10−5 erg cm−2 s−1 K−4

Radiation constant (arad) = 7.56 × 10−15 erg cm−3 K−4

Thomson cross-section (σT ) = 6.65 × 10−25 cm2

Astrophysical numbers
Solar mass (M⊙) = 1.99 × 1033 g
Solar radius (R⊙) = 6.96 × 1010 cm
Solar luminosity (L⊙) = 3.9 × 1033 erg s−1

Hubble constant today (H0) = 100h km s−1 Mpc−1

Hubble time (H−1
0 ) = 3.09 × 1017h−1 s = 9.77 × 109h−1 yr ≡ 3h−1 Gpc/c

critical density (ρc) = 1.88 × 10−29h2 g cm−3 = 1.13 × 10−5h2mpcm
−3

Unit conversions
1 parsec (pc) = 3.086 × 1018 cm
1 kiloparsec (kpc) = 103 pc
1 Megaparsec (Mpc) = 106 pc
1 Gigaparsec (Gpc) = 109 pc
1 Astronomical unit (AU) = 1.5 × 1013 cm
1 year (yr) = 3.16 × 107 s
1 light year (ly) = 9.46 × 1017 cm
1 eV = 1.60 × 10−12 ergs ≡ 11, 604 K × kB

1 erg = 10−7 J
Photon wavelength (λ = c/ν) = 1.24 × 10−4 cm (photon energy/1 eV)−1

1 nanoJansky (nJy) = 10−32 erg cm−2 s−1 Hz−1

1 Angstrom (̊A) = 10−8cm
1 micron (µm) = 10−4cm
1 km s−1 = 1.02 pc per million years
1 arcsecond (′′) = 4.85 × 10−6 radians
1 arcminute (′) = 60′′

1 degree (◦) = 3.6 × 103′′

1 radian = 57.3◦
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Cosmological Parameters

In this Appendix, we list the cosmological parameters assumed throughout
the text. These choices are based on Komatsu, E., et al.,Astrophys. J. Suppl.
180, 330 (2009).

Cosmological Parameters
Matter density Ωm = 0.28
Baryon density Ωb = 0.05
Dark energy density ΩΛ = 0.72
Dark energy equation of state w = -1
Hubble constant h = 0.7
Scalar index ns = 1
Power spectrum normalizationσ8 = 0.82
Helium mass fraction Yp = 0.24


