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0.1 GRAVITATIONAL LENSING

The chance alignment of a foreground object along the line ofsight to a high red-
shift source could result in the magnification, distortion,and potentially splitting of
the source image due the deflection of its light rays by the gravitational field of the
foreground object. The probability forgravitational lensing grows with increasing
source redshift, due to the increase in the path length of thesource photons. Al-
though the lensing probability is only of anecdotal significance of< 1% for sources
atz < 2, its magnitude could rise by an order of magnitude and affectthe statistics
of bright sources during the epoch of reionization.

Assuming that the gravitational potential of the lens is non-relativistic|Φ/c2| ≪
1, the effect of spacetime curvature on the propagation of light rays is equivalent to
the effect of an effective index of refractionn,

n = 1 − 2

c2
Φ. (1)

This follows from the deviation imparted to the phase of the electromagnetic wave
by the potential of the lens (relative to a flat spacetime metric). The lens potential
Φ is negative and approaches zero at infinity. As in normal geometrical optics, a
refractive indexn > 1 implies that light travels slower than in vacuum. Thus, the
effective speed of a ray of light in a gravitational field is

v =
c

n
≃ c − 2

c
|Φ| . (2)

The total time delay∆t, so-called the Shapiro delay, is obtained by integrating over
the light path from the observer to the source:

∆t =

∫ observer

source

2

c3
|Φ| dl . (3)

A light ray is defined as the normal to the phase front. SinceΦ and hence the phase
delay of the electromagnetic wave vary across the lens, a light ray will be deflected
by the lens as in a prism. The deflection is the integral along the light path of the
gradient ofn perpendicular to the light path, i.e.

~̂α = −
∫

~∇⊥n dl =
2

c2

∫

~∇⊥Φ dl . (4)

In all cases of interest the deflection angle is very small. Wecan therefore simplify
the computation of the deflection angle considerably if we integrate~∇⊥n not along
the deflected ray, but along an unperturbed light ray with thesame impact parameter
(with multiple lenses, one takes the unperturbed ray from the source as the reference
trajectory for calculating the deflection by the first lens, the deflected ray from
the first lens as the reference unperturbed ray for calculating the deflection by the
second lens, and so on).

The simplest lens is a point mass,M , with a Newtonian potential,

Φ(b, z) = − GM

(b2 + z2)1/2
, (5)
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whereb is the impact parameter of the unperturbed light ray, andz indicates dis-
tance along the unperturbed light ray from the point of closest approach. We there-
fore have

~∇⊥Φ(b, z) =
GM ~b

(b2 + z2)3/2
, (6)

where~b is orthogonal to the unperturbed ray and points toward the point mass.
Equation (6) then yields the deflection angle

α̂ =
2

c2

∫

~∇⊥Φ dz =
4GM

c2b
. (7)

Since the Schwarzschild radius isRSch = (2GM/c2), the deflection angle is sim-
ply twice the inverse of the impact parameter in units of the Schwarzschild radius.
As an example, the Schwarzschild radius of the Sun is2.95 km, and the solar radius
is 6.96 × 105 km. A light ray grazing the limb of the Sun is therefore deflected by
an angle8.4 × 10−6 radians = 1.′′7.

The deflection angle from more a complicated mass distribution can be treated
as the sum over the deflection caused by the infinitesimal point mass elements that
make the lens. Since the deflection occurs on a scale∼ b which is typically much
shorter than the distances between the observer and the lensor the lens and the
source, the lens can be regarded as thin. The mass distribution of the lens can then
be replaced by a mass sheet orthogonal to the line-of-sight,with a surface mass
density

Σ(~ξ) =

∫

ρ(~ξ, z) dz , (8)

where~ξ is a two-dimensional vector in the lens plane. The deflectionangle at
position~ξ is the sum of the deflections from all the mass elements in the plane:

~̂α(~ξ) =
4G

c2

∫

(~ξ − ~ξ′)Σ(~ξ′)

|~ξ − ~ξ′|2
d2ξ′ . (9)

In general, the deflection angle is a two-component vector. In the special case
of a circularly symmetric lens, the deflection angle points toward the center of
symmetry and has an amplitude,

α̂(ξ) =
4GM(ξ)

c2ξ
, (10)

whereξ is the distance from the lens center andM(ξ) is the mass enclosed within
radiusξ,

M(ξ) = 2π

∫ ξ

0

Σ(ξ′)ξ′ dξ′ . (11)

The basic lensing geometry is illustrated in Figure 1. A light ray from a source
S is deflected by the angle~̂α at the lens and reaches an observer O. The angle
between some arbitrarily-chosen axis and the true source position is ~β, and the
angle between the same axis and the image I is~θ. The angular diameter distances
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Figure 1 Geometry of gravitational lensing. The light ray propagates from the source S at
transverse distanceη from an arbitrary axis to the observer O, passing the lens
at transverse distanceξ. It is deflected by an anglêα. The angular separations
of the source and the image from the axis as seen by the observer areβ andθ,
respectively. The distances between the observer and the source, the observer and
the lens, and the lens and the source areDs, Dd, andDds, respectively.
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between observer and lens, lens and source, and observer andsource are denoted
here asDd, Dds, andDs, respectively.

It is convenient to introduce the reduced deflection angle

~α =
Dds

Ds

~̂α . (12)

The triangular geometry in Figure 1 implies thatθDs = βDs − α̂Dds, so that the
positions of the source and the image are related through thesimplelens equation,

~β = ~θ − ~α(~θ) . (13)

The nonlinear lens equation allows for multiple images~θ at a fixed source position
~β. In a flat Universe, the comoving angular-size distances simply add up, with
Dds(1 + zs) = Ds(1 + zs) − Dd(1 + zd).

Because of the equivalence principle, the gravitational deflection is independent
of photon wavelength. In addition, since the phase space density of photons must be
conserved (Liouville’s theorem), gravitational lensing preserves the surface bright-
ness of the source and only changes its apparent surface area. The total flux re-
ceived from a gravitationally lensed image of a source is therefore changed in pro-
portion to the ratio between the solid angles of the image andthe source. For a
circularly symmetric lens, the magnification factorµ is given by

µ =
θ

β

dθ

dβ
. (14)

0.1.1 Special Examples of Lenses

0.1.1.1 Constant Surface Density

For a mass sheet with a constant surface densityΣ, equation (10) implies a reduced
deflection angle of,

α(θ) =
Dds

Ds

4G

c2ξ
(Σπξ2) =

4πGΣ

c2

DdDds

Ds

θ , (15)

whereξ = Ddθ. In this special case, the lens equation is linear with,β ∝ θ. Let us
define a critical surface-mass density

Σcr =
c2

4πG

Ds

DdDds

= 0.35 g cm−2

(

D

1 Gpc

)−1

, (16)

where the effective distanceD is defined through the following combination of
distances

D =
DdDds

Ds

. (17)

For a lens withΣ = Σcr, the deflection angle isα(θ) = θ, and soβ = 0 for all θ.
Such a lens focuses perfectly, with a single focal length. For a typical gravitational
lens, however, light rays which pass the lens at different impact parameters cross
at different distances behind the lens. Usually, lenses with Σ > Σcr somewhere in
them, produce multiple images of the source.
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0.1.1.2 Circularly Symmetric Lenses

For a circularly symmetric lens with an arbitrary mass profile, equations (10) and
(12) give,

β(θ) = θ − Dds

DdDs

4GM(θ)

c2 θ
. (18)

A source which lies exactly behind the center of symmetry of the lens (β = 0) is
imaged as a ring. Substitutingβ = 0 in equation (18) yields the angular radius of
the ring to be,

θE =

[

4GM(θE)

c2

Dds

DdDs

]1/2

. (19)

This so-calledEinstein radius defines the characteristic angular scale of lensed im-
ages: when multiple images are produced, the typical angular separation between
the images images is∼ 2θE. Also, sources which are closer than∼ θE in projection
relative to the lens center, experience strong lensing in the sense that they are sig-
nificantly magnified, whereas sources which are located welloutside the Einstein
ring are magnified very little. In many lens models, the Einstein ring also repre-
sents roughly the boundary between source positions that are multiply-imaged and
those that are only singly-imaged. Interestingly, by comparing equations (16) and
(19) we see that the mean surface mass density inside the Einstein radius is just the
critical densityΣcr.

For lensing by a galaxy massM at a cosmological distanceD, the typical Ein-
stein radius is

θE = (0.′′4)

(

M

1011 M⊙

)1/2 (

D

5Gpc

)−1/2

. (20)

0.1.1.3 Point Mass

For a point massM the lens equation has the form,

β = θ − θ2
E

θ
. (21)

This equation has two solutions,

θ± =
1

2

(

β ±
√

β2 + 4θ2
E

)

. (22)

Any source is imaged twice by a point mass lens. The two imagesare on opposite
sides of the source, with one image inside the Einstein ring and the other outside.
As the source moves away from the lens (i.e. asβ increases), one of the images
approaches the lens and becomes very faint, while the other image approaches the
true position of the source and asymptotes to its unlensed flux.

By substitutingβ from the lens equation (21) into equation (14), we obtain the
magnifications of the two images,

µ± =

[

1 −
(

θE

θ±

)4
]−1

=
u2 + 2

2u
√

u2 + 4
± 1

2
, (23)
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whereu is the angular separation of the source from the point mass inunits of the
Einstein angle,u = βθ−1

E . Sinceθ− < θE, µ− < 0, and so the magnification of
the image which is inside the Einstein ring is negative implying that this image has
its parity flipped with respect to the source. The net magnification of flux in the
two images is obtained by adding the absolute magnifications,

µ = |µ+| + |µ−| =
u2 + 2

u
√

u2 + 4
. (24)

When the source lies on the Einstein radius, we haveβ = θE, u = 1, and the total
magnification becomes

µ = 1.17 + 0.17 = 1.34 . (25)

0.1.1.4 Singular Isothermal Sphere

A simple model for the mass distribution in a galaxy assumes that its collisionless
particles (stars and dark matter) possess the same isotropic velocity dispersion ev-
erywhere. Surprisingly, this simple model appears to describe extremely well the
dynamics of stars and gas in the cores of disk galaxies (whoserotation curve is
roughly flat), as well the strong lensing properties of spheroidal galaxies.

We assume a spherically symmetric gravitational potentialwhich confines the
collisionless particles that produce it. We can associate an effective “pressure”
with the momentum flux of these particles at a mass densityρ,

p = ρσ2
v , (26)

whereσv is the one-dimensional velocity dispersion of the particles, assumed to
be constant across the galaxy. The equation of hydrostatic equilibrium (which is
derived from the second moment of the collisionless Boltzmann equation) gives

1

ρ

dp

dr
= −GM(r)

r2
,

dM(r)

dr
= 4π r2 ρ , (27)

whereM(r) is the mass interior to radiusr. A particularly simple solution of
equations (26) through (27) is

ρ(r) =
σ2

v

2πG

1

r2
. (28)

This mass distribution is called thesingular isothermal sphere (and will be abbrevi-
ated as SIS below). Sinceρ ∝ r−2, the massM(r) increases∝ r, and therefore the
rotational velocity of test particles in circular orbits inthe gravitational potential is

V 2
c (r) =

GM(r)

r
= 2 σ2

v = constant. (29)

As mentioned, the flat rotation curves of disk galaxies are naturally reproduced by
this model.

By projecting the mass distribution along the line-of-sight, we obtain the surface
mass density,

Σ(ξ) =
σ2

v

2G

1

ξ
, (30)
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whereξ is the distance from the center of the two-dimensional profile. The reduced
deflection angle from (10),

α̂ = 4π
σ2

v

c2
= (1.′′16)

( σv

200 kms−1

)2

, (31)

is independent ofξ and points toward the center of the lens. The Einstein radiusof
the SIS follows from equation (19),

θE = 4π
σ2

v

c2

Dds

Ds

= α̂
Dds

Ds

= α . (32)

Due to circular symmetry, the lens equation is one dimensional. Multiple images
are obtained only if the source lies inside the Einstein ring. If β < θE, the lens
equation has the two solutions

θ± = β ± θE . (33)

The images atθ±, the source, and the lens all lie on a straight line. Technically, a
third image with zero flux is located atθ = 0; this image acquires a finite flux if the
divergent density at the center of the lens is replaced by a core region with a finite
density.

The magnifications of the two images follow from equation (14),

µ± =
θ±
β

= 1 ± θE

β
=

(

1 ∓ θE

θ±

)−1

. (34)

If the source lies outside the Einstein ring, i.e. ifβ > θE, there is only one image
atθ = θ+ = β + θE.

0.1.2 Lensing Probability

A SIS lens has the simple property that the deflection angleα̂ is independent of the
impact parameter of the light ray. The condition for multiple imaging (and hence
strong lensing) is then that the source would lie inside the Einstein radius. The
probability that a line-of-sight to a source at a redshiftzs passes within the cross-
sectional area associated with the Einstein radius of SIS lensesπθ2

E gives a lensing
optical depth,

τ(zs) =
16π3

H0

∫ zs

0

dz
D2(1 + z)2

(Ωm(1 + z)3 + ΩΛ)1/2

∫ ∞

0

dσv
dn

dσv
σ4

v, (35)

where(dn/dσv)dσv is the (redshift-dependent) comoving density of SIS halos with
a one-dimensional velocity dispersion betweenσv andσv + dσv.

In calculating the probability of lensing it is important toallow for various se-
lection effects. Lenses magnify the observed flux, and lift sources which are in-
trinsically too faint to be observed over the detection threshold. At the same time,
lensing increases the solid angle within which sources are observed so that their
number density in the sky is reduced. If there is a large reservoir of faint sources,
the increase in source number due to the apparent brightening outweighs their spa-
tial dilution, and the observed number of sources is increased due to lensing. This
so-called magnification bias can substantially increase the probability of lensing
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Figure 2 Probability for multiple imaging of high redshift galaxies by an unevolving popu-
lation of SIS lenses.Panel a: lensing probabilityτ as a function of source redshift.
Panel b: magnification bias as a function of the difference between the character-
istic magnitude of a galaxyM⋆ (assuming a Schechter luminosity function) and
the limiting survey magnitudeMlim. Three values of the faint-end slope of the
luminosity function (labeled byα here) are shown.Panel c: Contours of the frac-
tion of multiply-imaged sources as a function of source redshift and(M⋆−Mlim),
assuming a faint end slope of−2. Figure credit: J. S. B. Wyithe, et al. Nature469,
7329 (2011)

for bright sources whose number-count function is steep. The magnification bias
for sources at redshiftzs with luminosities betweenL andL + dL is,

B(L) =
1

dns(L)/dL

∫ µmax

µmin

dµ

µ

dP

dµ

dns(L)

dL
, (36)

wherens(< L) is the density of sources with luminosity< L anddP/dµ is the
probability for magnificationµ. For example, the brighter SIS image has a magni-
fication distribution(dP/dµ) = 2(µ − 1)−3 for 2 < µ < ∞.

A simplified model for the redshift evolution of SIS lenses isto use the mass
function of dark matter halos that was derived in§?? and identifyσv = Vc/

√
2 at

the virial radius. Another simplified approach is to adopt the observed(dn/dσv)
at z = 0 and assume no evolution in the comoving density of lenses. The latter
approach gives the approximate results shown in Figure .


