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Preface

This book captures the latest exciting developments comugione of the un-
solved mysteries about our originsow did the first stars and galaxies fornviost
research on this question has been theoretical so far. Butekt few years will
bring about a new generation of large telescopes with uegletted sensitivity that
promise to supply a flood of data about the infant Universéndits first billion
years after the Big Bang. Among the new observatories ardahmes Webb Space
Telescope (JWST) — the successor to the Hubble Space Tpesaod three ex-
tremely large telescopes on the ground (ranging from 24 tmdt&rs in diameter),
as well as several new arrays of dipole antennae operatiog/aadio frequencies.
The fresh data on the first galaxies and the diffuse gas indmtwhem will test ex-
isting theoretical ideas about the formation and radiafects of the first galaxies,
and might even reveal new physics that has not yet beenatiecl. This emerging
interface between theory and observation will constitutédeal opportunity for
students considering a research career in astrophysiassonalogy. With this in
mind, the book is intended to provide a self-contained thikion to research on
the first galaxies at a technical level appropriate for a gaael student.

Various introductory sections of this book are based on atetgraduate-level
book, entitled “How Did the First Stars and Galaxies Form¢"one of us (A.L.),
which followed a cosmology class that he had taught over #s gecade in the
Astronomy and Physics departments at Harvard UniversitheOparts relate to
overviews that both of us wrote over the past decade in thra @direview articles.
Where necessary, selected references are given to advaagexs and other review
articles in the scientific literature.

The writing of this book was made possible thanks to the helpegeived from a
large number of individuals. First and foremost, ... Spibianks go to ... for their
careful reading of the book and detailed comments. We altktioey Munoz and
Ramesh Narayan for their help with two plots. Finally, we pagticularly grateful
to our families for their support and patience during ougtigry pregnancy period
with the book.

-A.L.&S. F.






Chapter One

Introduction

1.1 PRELIMINARY REMARKS

As the Universe expands, galaxies get separated from orteeapand the average
density of matter over a large volume of space is reduced.elfmagine playing
the cosmic movie in reverse and tracing this evolution baoklain time, we would
infer that there must have been an instant when the densityatter was infinite.
This moment in time is the “ Big Bang”, before which we canratably extrap-
olate our history. But even before we get all the way back &éBig Bang, there
must have been a time when stars like our Sun and galaxieslikilky Way'
did not exist, because the Universe was denser than theyfae.how and when
did the first stars and galaxies form?

Primitive versions of this question were considered by hosnfor thousands
of years, long before it was realized that the Universe edparReligious and
philosophical texts attempted to provide a sketch of thepgure from which
people could derive the answer. In retrospect, these atteappear heroic in view
of the scarcity of scientific data about the Universe priothe twentieth century.
To appreciate the progress made over the past century,dan&r example, the
biblical story of Genesis. The opening chapter of the Bildseats the following
sequence of events: first, the Universe was created, thienvigs separated from
darkness, water was separated from the sky, continentssepegated from water,
vegetation appeared spontaneously, stars formed, lifegadeand finally humans
appeared on the scehdnstead, the modern scientific order of events begins with
the Big Bang, followed by an early period in which light (ratdon) dominated
and then a longer period dominated by matter, leading to pipe@rance of stars,
planets, life on Earth, and eventually humans. Interebtinbe starting and end
points of both versions are the same.

Cosmology is by now a mature empirical science. We are pged to live in
a time when the story of genesis (how the Universe startecddandloped) can be
critically explored by direct observations. Because offihie time it takes light
to travel to us from distant sources, we can see images oftihvet$se when it was
younger by looking deep into space through powerful telpsso

Existing data sets include an image of the Universe when & 4@0 thousand

IA star is a dense, hot ball of gas held together by gravity and paieyeuclear fusion reactions.
A galaxy consists of a luminous core made of stars or cold gas sureslibg an extended halo dérk
matter

il Of course, it is possible to interpret the biblical text inipgoossible ways. Here | focus on a plain
reading of the original Hebrew text.
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Figure 1.1 Image of the Universe when it first became traresgad00 thousand years af-
ter the Big Bang, taken over five years by télkinson Microwave Anisotropy
Probe (WMAP) satellite (http://map.gsfc.nasa.gov/). Slighingigy inhomo-
geneities at the level of one partin10° in the otherwise uniform early Universe
imprinted hot and cold spots in the temperature map of thenzomicrowave
background on the sky. The fluctuations are shown in unitglof with the
unperturbed temperature being 2.73 K. The same primordf@rmogeneities
seeded the large-scale structure in the present-day Weiverhe existence of
background anisotropies was predicted in a number of thieafgapers three
decades before the technology for taking this image becaaimble.
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years old (in the form of the cosmic microwave backgroundiguFe 1.1), as well
as images of individual galaxies when the Universe was dlter a billion years.
But there is a serious challenge: in between these two epaha period when the
Universe was dark, stars had not yet formed, and the cosnciomave background
no longer traced the distribution of matter. And this is ety the most interesting
period, when the primordial soup evolved into the rich zoobjects we now see.
How can astronomers see this dark yet crucial time?

The situation is similar to having a photo album of a persat begins with the
first ultra-sound image of him or her as an unborn baby and gkgrs to some
additional photos of his or her years as teenager and aduét.|&fe photos do not
simply show a scaled up version of the first image. We are atlyreearching for
the missing pages of the cosmic photo album that will tell as lthe Universe
evolved during its infancy to eventually make galaxies ke own Milky Way.

The observers are moving ahead along several fronts. Théfidves the con-
struction of large infrared telescopes on the ground angats that will provide
us with new (although rather expensive!) photos of galaxighe Universe at in-
termediate ages. Current plans include ground-basedtgles which are 24-42
meter in diameter, and NASA's successor to the Hubble Spalesdope, the James
Webb Space Telescope. In addition, several observatiooapg around the globe
are constructing radio arrays that will be capable of mag e three-dimensional
distribution of cosmic hydrogen left over from the Big Bamghe infant Universe.
These arrays are aiming to detect the long-wavelength lfitteld 21-cm) radio
emission from hydrogen atoms. Coincidentally, this longe¥angth (or low fre-
quency) overlaps with the band used for radio and televisroadcasting, and so
these telescopes include arrays of regular radio antehaasme can find in elec-
tronics stores. These antennas will reveal how the clumstyidution of neutral
hydrogen evolved with cosmic time. By the time the Universsa few hundreds
of millions of years old, the hydrogen distribution had beenched with holes like
swiss cheese. These holes were created by the ultravidlieticn from the first
galaxies and black holes, which ionized the cosmic hydragémeir vicinity.

Theoretical research has focused in recent years on pireglitte signals ex-
pected from the above instruments and on providing motiveftr these ambitious
observational projects.

1.2 STANDARD COSMOLOGICAL MODEL

1.2.1 Cosmic Perspective

In 1915 Einstein came up with the general theory of relativite was inspired by
the fact that all objects follow the same trajectories uriierinfluence of gravity
(the so-called “equivalence principle,” which by now hagsibéested to better than
one part in a trillion), and realized that this would be a malttvesult if space-time
is curved under the influence of matter. He wrote down an éguudescribing how
the distribution of matter (on one side of his equation) daiees the curvature
of space-time (on the other side of his equation). He thetiexppis equation to
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describe the global dynamics of the Universe.

Back in 1915 there were no computers available, and Eiristeguations for the
Universe were particularly difficult to solve in the most geal case. It was there-
fore necessary for Einstein to alleviate this difficulty bgnsidering the simplest
possible Universe, one that is homogeneous and isotropaamddeneity means
uniform conditions everywhere (at any given time), andriggy means the same
conditions in all directions when looking out from one vagggoint. The combina-
tion of these two simplifying assumptions is known asd¢bemological principle

The universe can be homogeneous but not isotropic: for ekagrtiye expansion
rate could vary with direction. It can also be isotropic amd homogeneous: for
example, we could be at the center of a spherically-symmetess distribution.
But if it is isotropic aroundeverypoint, then it must also be homogeneous. Isotropy
is well established for the distribution of faint radio soes, optical galaxies, the X-
ray background, and most importantly the CMB. The constsaim homogeneity
are less strict, but a cosmological model in which the Ursees isotropic and
significantly inhomogeneous in spherical shells aroundspecial location, is also
excluded based on surveys of galaxies and quasars.

Under the simplifying assumptions associated with the adggical principle,
Einstein and his contemporaries were able to solve the mmsafThey were look-
ing for their “lost keys” (solutions) under the “lamppos8ithplifying assump-
tions), but the real Universe is not bound by any contracetthie simplest that we
can imagine. In fact, it is truly remarkable in the first pldbat we dare describe
the conditions across vast regions of space based on thprisiuef the laws of
physics that describe the conditions here on Earth. Ouy diéél teaches us too
often that we fail to appreciate complexity, and that an &hgnodel for reality is
often too idealized for describing the truth (along the $iloé approximating a cow
as a spherical object).

Back in 1915 Einstein had the wrong notion of the Universehattime people
associated the Universe with the Milky Way galaxy and regdmll the “nebulae,”
which we now know are distant galaxies, as constituentamvitr own Milky Way
galaxy. Because the Milky Way is not expanding, Einsteiarafited to reproduce
a static universe with his equations. This turned out to besipte after adding
a cosmological constant, whose negative gravity would tixaounteract that of
matter. However, later Einstein realized that this solui®unstable: a slight en-
hancement in density would make the density grow even furtAg it turns out,
there are no stable static solution to Einstein’s equatfona homogeneous and
isotropic Universe. The Universe must either be expandingoatracting. Less
than a decade later, Edwin Hubble discovered that the nelpwkviously consid-
ered to be constituents of the Milky Way galaxy are recediwgyafrom us at a
speedv that is proportional to their distanege namelyv = Hyr with H a spatial
constant (which could evolve with time), commonly termeetubble constant
Hubble’s data indicated that the Universe is expanding.

i The redshift data examined by Hubble was mostly collecteddsjo Slipher a decade earlier and
only partly by Hubble’s assistant, Milton L. Humason. Theelr local relation between redshift and
distance was first formulated by Georges Léimeain 1927, two years prior to the observational paper
written by Hubble and Humason.
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Einstein was remarkably successful in asserting the casgied! principle. As
it turns out, our latest data indicates that the real Un&ésshomogeneous and
isotropic on the largest observable scales to within oneipa hundred thousand.
Fortuitously, Einstein’s simplifying assumptions turneat to be extremely accu-
rate in describing realitythe keys were indeed lying next to the lamppa3tr
Universe happens to be the simplest we could have imagineditfich Einstein’s
equations can be easily solved.

Why was the Universe prepared to be in this special st&@e8mologists were
able to go one step further and demonstrate that an earlephassition, called
cosmic inflation— during which the expansion of the Universe accelerate@d-exp
nentially, could have naturally produced the conditionstplated by the cosmo-
logical principle. One is left to wonder whether the existerf inflation is just a
fortunate consequence of the fundamental laws of natur@hether perhaps the
special conditions of the specific region of space-time wealnit were selected
out of many random possibilities elsewhere by the preréiguisat they allow our
existence. The opinions of cosmologists on this questiersplit.

1.2.2 Origin of Structure

Hubble’s discovery of the expansion of the Universe has idiate implications
with respect to the past and future of the Universe. If we re&xén our mind the
expansion history back in time, we realize that the Univensist have been denser
in its past. In fact, there must have been a point in time whiggematter density
was infinite, at the moment of the so-called Big Bang. Indeediw detect relics
from a hotter denser phase of the Universe in the form of ligetments (such
as deuterium, helium and lithium) as well as the Cosmic Miege Background
(CMB). At early times, this radiation coupled extremely Mgl the cosmic gas
and obtained a spectrum known as blackbody, that was peed&icentury ago
to characterize matter and radiation in equilibrium. The Ekrovides the best
example of a blackbody spectrum we have.

To get a rough estimate of when the Big Bang occurred, we nmaglgidivide
the distance of all galaxies by their recession velocityisTives a unique answetr,
~ r/v ~ 1/Hy, which is independent of distan¥eT he latest measurements of the
Hubble constant give a value &f; ~ 70 kilometers per second per Megapar$ec,
implying a current age for the Universe/ H, of 14 billion years (or5 x 107
seconds).

The second implication concerns our future. A fortunatéfiesaof a spherically-
symmetric Universe is that when considering a sphere ofenattit, we are al-
lowed to ignore the gravitational influence of everythingside this sphere. If we
empty the sphere and consider a test particle on the boumdany empty void

v Although this is an approximate estimate, it turns out to littiw a few percent of the true age
of our Universe owing to a coincidence. The cosmic expanatdirst decelerated and then accelerated
with the two almost canceling each other out at the presem;tgiving the same age as if the expansion
were at a constant speed (as would be strictly true only imapty Universe).

VA megaparsec (abbreviated as ‘Mpc’) is equivalen 1086 x 1024 centimeter, or roughly the
distance traveled by light in three million years.
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embedded in a uniform Universe, the particle will expergno net gravitational
acceleration. This result, known as Birkhoff’s theorenrgisiiniscent of Newton'’s
“iron sphere theorem.” It allows us to solve the equationsofion for matter on
the boundary of the sphere through a local analysis withautying about the rest
of the Universe. Therefore, if the sphere has exactly theesgonditions as the rest
of the Universe, we may deduce the global expansion histbtiieoUniverse by
examining its behavior. If the sphere is slightly densenttiee mean, we will infer
how its density contrast will evolve relative to the backgnd Universe.

The equation describing the motion of a spherical shell atenégs identical to
the equation of motion of a rocket launched from the surfacthe Earth. The
rocket will escape to infinity if its kinetic energy exceetisgravitational binding
energy, making its total energy positive. However, if ittateenergy is negative,
the rocket will reach a maximum height and then fall back. ridhen to figure out
the future evolution of the Universe, we need to examine tieggy of a spherical
shell of matter relative to the origin. With a uniform demsit, a spherical shell
of radiusr would have a total masd/ = p x (4Xr?®) enclosed within it. Its
energy per unit mass is the sum of the kinetic energy due texjgnsion speed
v = Hr, 1v?, and its potential gravitational energy(G M /r (whereG is Newton’s
constant), namely = %vQ — % By substituting the above relations forand
M, it can be easily shown thaf = v%(1 — Q), whereQ = p/p. andp. =
3H? /8@ is defined as theritical density We therefore find that there are three
possible scenarios for the cosmic expansion. The Univeaseefther: (i) Q >
1, making it gravitationally bound witt < 0 — such a “closed Universe” will
turn-around and end up collapsing towards a “big crun¢h(i) Q < 1, making
it gravitationally unbound withF > 0 — such an “open Universe” will expand
forever, or the borderline casgii) Q2 = 1, making the Universe marginally bound
or “flat” with £ = 0.

Einstein’s equations relate the geometry of space to itéemabdntent through
the value of2: an open Universe has a geometry of a saddle with a negattiabkp
curvature, a closed Universe has the geometry of a sphejlicla¢ with a positive
curvature, and a flat Universe has a flat geometry with no ¢urgaOur observable
section of the Universe appears to be flat.

Now we are at a position to understand how objects, like theyMNay galaxy,
have formed out of small density inhomogeneities that gedldied by gravity.

Let us consider for simplicity the background of a margipaibund (flat) Uni-
verse which is dominated by matter. In such a backgroundy antlight en-
hancement in density is required for exceeding the crititdsity p.. Because
of Birkhoff’s theorem, a spherical region that is densenttize mean will behave
as if it is part of a closed Universe and increase its densityrast with time, while
an underdense spherical region will behave as if it is pasroépen Universe and
appear more vacant with time relative to the backgroundllastriated in Figure
1.2. Starting with slight density enhancements that brivegrt above the critical
valuep,, the overdense regions will initially expand, reach a maximradius, and
then collapse upon themselves (like the trajectory of aebldunched straight up,
away from the center of the Earth). An initially slightly inmogeneous Universe
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Figure 1.2 Top: Schematic illustration of the growth of perturbations tdlajesed halos
through gravitational instability. Once the overdensearg exceed a threshold
density contrast above unity, they turn around and collapgerm halos. The
material that makes the halos originated in the voids thadisge themMiddle:

A simple model for the collapse of a spherical region. Theadyital fate of a
rocket which is launched from the surface of the Earth depemdthe sign of its
energy per unit massy = %vQ — GMg /7. The behavior of a spherical shell of
matter on the boundary of an overdense region (embeddedomadeneous and
isotropic Universe) can be analyzed in a similar fashiBottom: A collapsing
region may end up as a galaxy, like NGC 4414, shown here (iroeggtt: NASA
and ESA). The halo gas cools and condenses to a compact diskrsded by an
extended dark matter halo.
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will end up clumpy, with collapsed objects forming out of cdense regions. The
material to make the objects is drained out of the intervgninderdense regions,
which end up as voids.

The Universe we live in started with primordial density pebations of a frac-
tional amplitude~ 10~°. The overdensities were amplified at late times (once
matter dominated the cosmic mass budget) up to values abogaity and col-
lapsed to make objects, first on small scales. We have noeget the first small
galaxies that started the process that eventually led tiotiheation of big galaxies
like the Milky Way. The search for the first galaxies is a sedor our origins.

Life as we know it on planet Earth requires water. The watelecwde includes
oxygen, an element that was not made in the Big Bang and digxistt until the
first stars had formed. Therefore our form of life could novéaxisted in the
first hundred millions of years after the Big Bang, beforefirst stars had formed.
There is also no guarantee that life will persist in the distature.

1.2.3 Geometry of Space

How can we tell the difference between the flat surface of & lamal the curved
surface of a balloonA simple way would be to draw a triangle of straight lines
between three points on those surfaces and measure the silva ihiree angles
of the triangle. The Greek mathematician Euclid demorstrahat the sum of
these angles must be 180 degrees7{aadians) on a flat surface. Twenty-one
centuries later, the German mathematician Bernhard Riereatended the field of
geometry to curved spaces, which played an important ralledérdevelopment of
Einstein’s general theory of relativity. For a triangle @wraon a positively curved
surface, like that of a balloon, the sum of the angles is latigen 180 degrees.
(This can be easily figured out by examining a globe and mgjithat any line
connecting one of the poles to the equator opens an angleddé@@es relative to
the equator. Adding the third angle in any triangle stretchetween the pole and
the equator would surely result in a total of more than 18Q-ekeg}) According to
Einstein’s equations, the geometry of the Universe is thctdy its matter content;
in particular, the Universe is flat only if the tot®l equals unity.ls it possible to
draw a triangle across the entire Universe and measure is1ggry?

Remarkably, the answerygs At the end of the twentieth century cosmologists
were able to perform this experimérity adopting a simple yardstick provided by
the early Universe. The familiar experience of droppinganstin the middle of
a pond results in a circular wave crest that propagates adswveSimilarly, per-
turbing the smooth Universe at a single point at the Big Baogld/have resulted
in a spherical sound wave propagating out from that poine Wave would have
traveled at the speed of sound, which was of order the spe&ghbfc (or more
precisely,% c) early on when radiation dominated the cosmic mass budgetny
given time, all the points extending to the distance travelethe wave are affected
by the original pointlike perturbation. The conditions side this “sound horizon”
will remain uncorrelated with the central point, becauseustic information has
not been able to reach them at that time. The temperaturadticts of the CMB
trace the simple sum of many such pointlike perturbatioas Were generated in
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the Big Bang. The patterns they delineate would therefoosvsh characteristic
correlation scale, corresponding to the sound horizonatithe when the CMB
was produced, 400 thousand years after the Big Bang. By miegdhe apparent
angular scale of this “standard ruler” on the sky, known asdhboustic peak in
the CMB, and comparing it to theory, experimental cosmdtsginferred from the
simple geometry of triangles that the Universe is flat.

The inferred flatness is a natural consequence of the eanilydpef vast expan-
sion, known as cosmic inflation, during which any initial cature was flattened.
Indeed a small patch of a fixed size (representing our cugiesgrvable region in
the cosmological context) on the surface of a vastly inflé@itbon would appear
nearly flat. The sum of the angles on a non-expanding triguigeed on this patch
would get arbitrarily close to 180 degrees as the ballooates.

1.2.4 Observing our Past: Cosmic Archaeology

Our Universe is the simplest possible on two counts: it Batithe cosmological
principle, and it has a flat geometry. The mathematical dgtson of an expanding,
homogeneous, and isotropic Universe with a flat geometrirasghtforward. We
can imagine filling up space with clocks that are all syncimed. At any given
shapshot in time the physical conditions (density, tenmpeghare the same every-
where. But as time goes on, the spatial separation betweendbks will increase.
The stretching of space can be described by a time-deperdalet factora(t).

A separation measured at timgasr(¢,) will appear at timet, to have a length
r(ta) = r(ty)[a(t) /a(t,)].

A natural question to ask is whether our human bodies or dwesdlar system,
are also expanding as the Universe expands. The answerl&oa,se these sys-
tems are held together by forces whose strength far excheasosmic force. The
mean density of the Universe today,is 29 orders of magnitude smaller than the
density of our body. Not only are the electromagnetic fortted keep the atoms
in our body together far greater than gravity, but even thaigational self-force
of our body on itself overwhelms the cosmic influence. Onlywery large scales
does the cosmic gravitational force dominate the scenes dlsb implies that we
cannot observe the cosmic expansion with a local laboraepgriment; in order
to notice the expansion we need to observe sources whiclperadsover the vast
scales of millions of light years.

Einstein’s equations relate the geometry of space to it¢emebntent. Recent
data indicates that our observable section of the Univarflati (meaning that the
sum of the angles in a triangle is 190 The inferred flatness is a natural conse-
quence of the early period of vast expansion, known as cosifiation, during
which any initial curvature was flattened. Indeed a smaltipaf a fixed size (rep-
resenting our current observable region in the cosmoldgaaext) on the surface
of a vastly inflated balloon would appear nearly flat. The sunthe angles on
a non-expanding triangle placed on this patch would getraridy close to 180
degrees as the balloon inflates.

Einstein’s general relativity (GR) equations do not admétable steady-state
(non-expanding or contracting) solution. A decade afterskin’s invention of
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GR, Hubble demonstrated that our Universe is indeed expgndihe space-time
of an expanding, homogeneous and isotropic, flat Univeraeébeadescribed very
simply. Because the cosmological principle, we can eshldiunique time coordi-
nate throughout space by distributing clocks which areyaitbronized throughout
the Universe, so that each clock would measure the same sinee the Big Bang.
The space-time (4—dimensional) line eleméntcommonly defined to vanish for
a photon, is described by the Friedmann-Robertson-Wal&W\() metric,

ds? = Adt* — de?, (1.1)

wherec is the speed of light and/ is the spatial line-element. The cosmic ex-
pansion can be incorporated through a scale faetorwhich multiples the fixed
(z,y, z) coordinates tagging the clocks which are themselves “camgdwith the
cosmic expansion. For a flat space,

de? = a(t)?(dz? + dy?® + dz?) = a*(t)(dR? + R?dQ), (1.2)

wheredQ = df? + sin? d¢? with (R, 0, ¢) being the spherical coordinates cen-
tered on the observer, afid, y, z) = R(cos 6, sin 0 cos ¢, sin  sin ¢)

A source located at a separation= «(t)R from us would move at a velocity
v = dr/dt = aR = (a/a)r, wherea = da/dt. Herer is a time-independent
tag, denoting the present-day distance of the source. Dgffdi= a/a which is
constant in space, we recover the Hubble expansionlawH r.

Edwin Hubble measured the expansion of the Universe usm®tppler effect.
We are all familiar with the same effect for sound waves: waeroving car sounds
its horn, the pitch (frequency) we hear is different if the isaapproaching us or
receding away. Similarly, the wavelength of light dependgitwe velocity of the
source relative to us. As the Universe expands, a light sowiit move away from
us and its Doppler effect will change with time. The Dopplanfiula for a nearby
source of light (with a recession speed much smaller thaspked of light) gives

HQ_&:_(Q) (f):_w:_ﬁ (1.3)

v c a) \c a a’

with the solution,r « a~!. Correspondingly, the wavelength scales)as=
(¢/v) =« a. We could have anticipated this outcome since a wavelerathbe
used as a measure of distance and should therefore be stitedshthe Universe
expands. The redshift is defined through the factdii + =) by which the pho-
ton wavelength was stretched (or its frequency reducedydszt its emission and
observation times. If we define = 1 today, them = 1/(1 + z) at earlier times.
Higher redshifts correspond to a higher recession spedteafdurce relative to us
(ultimately approaching the speed of light when the redsgfaiés to infinity), which
in turn implies a larger distance (ultimately approaching leorizon, which is the
distance traveled by light since the Big Bang) and an eaglieission time of the
source in order for the photons to reach us today.

We see high-redshift sources as they looked at early cogmést Observational
cosmology is like archaeology — the deeper we look into sgfzeenore ancient the
clues about our history are (see Figure 1.3). But there im@ 1o how far back we
can see. In principle, we can image the Universe only as Isrigveas transparent,
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Figure 1.3 Cosmic archaeology of the observable volumeetihiverse, in comoving co-
ordinates (which factor out the cosmic expansion). Theroutet observable
boundary ¢ = co) marks the comoving distance that light has traveled sinee t
Big Bang. Future observatories aim to map most of the obbrwealume of our
Universe, and improve dramatically the statistical infation we have about the
density fluctuations within it. Existing data on the CMB pesbmainly a very
thin shell at the hydrogen recombination epoehy{( 10, beyond which the Uni-
verse is opaque), and current large-scale galaxy survepomig a small region
near us at the center of the diagram. The formation epocheofitst galaxies
that culminated with hydrogen reionization at a redshift 10 is shaded grey.
Note that the comoving volume out to any of these redshifitesas the distance
cubed.
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corresponding to redshifts < 103 for photons. The first galaxies are believed to
have formed long after that.

The expansion history of the Universe is captured by theestzattora(t). We
can write a simple equation for the evolution@ft) based on the behavior of a
small region of space. For that purpose we need to incorpdhat fact that in
Einstein’s theory of gravity, not only does mass dengitgravitate but pressure
p does too. In a homogeneous and isotropic Universe, the itpagpt., = (p +
3p/c?) plays the role of the gravitating mass dengityf Newtonian gravity: There
are several examples to consider. For a radiation flyigl,q /¢ = %prad, implying
thatpg,av = 2prada. ON the other hand, for a constant vacuum density (the deecal
“cosmological constant”), the pressure is negative bexdysopening up a new
volume incrementAV one gains an energyc’AV instead of losing energy, as
is the case for normal fluids that expand into more space. émtbhdynamics,
pressure is derived from the deficit in energy per unit of nelumne, which in this
case giVePyac/c? = —pyac. Thisin turn leads to another reversal of SigNSav =
(Pvac + 3Pvac/c?) = —2pvac, Which may be interpreted as repulsive gravity! This
surprising result gives rise to the phenomenon of accedrabsmic expansion,
which characterized the early period of cosmic inflation adlas the latest six
billions years of cosmic history.

As the Universe expands and the scale factor increases, dkternrmass den-
sity declines inversely with volume,,..;r < a3, whereas the radiation energy
density (which includes the CMB and three species of rakiitvneutrinos) de-
creases ag..qc’> « a~*, because not only is the density of photons diluteda%
but the energy per photdw = he/X (whereh is Planck’s constant) declines as
a~!. Todaypmaster IS larger tharp,,q (assuming massless neutrinos) by a factor of
~ 3,300, but at(1 + z) ~ 3,300 the two were equal, and at even higher redshifts
the radiation dominated. Since a stable vacuum does notilgetaiwith cosmic
expansion, the present-day,. remained a constant and dominated opgkte:
andp,.q only at late times (whereas the unstable “false vacuum” dioatinated
during inflation has decayed when inflation ended).

1.2.5 Luminosity and Angular-Diameter Distances

When we look at our image reflected off a mirror at a distance ofeter, we see
the way we looked 6 nano-seconds ago, the time it took ligtraiel to the mirror
and back. If the mirror is spaced)!® cm = 3pc away, we will see the way we
looked twenty one years ago. Light propagates at a finitedspseby observing
distant regions, we are able to see how the Universe lookedrdithe past, a light
travel time ago (see Figure 1.3). The statistical homodgmdithe Universe on
large scales guarantees that what we see far away is a féstistd representation
of the conditions that were present in our region of the Ursigea long time ago.
This fortunate situation makes cosmology an empiricalrsme We do not need
to guess how the Universe evolved. By using telescopes wsiggly see the way

vViThe momentum of each photon isof its energy. The pressure is defined as the momentum flux

along one dimension out of three, and is therefore give%byadc2, wherep, .4 is the mass density of
the radiation.
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distant regions appeared at earlier cosmic times. Sinceat@rdistance means
a fainter flux from a source of a fixed luminosity, the obsdprabf the earliest
sources of light requires the development of sensitiveumsénts, and poses tech-
nological challenges to observers.

We can image the Universe only if it is transparent. Earlimt 400 thousand
years after the Big Bang, the cosmic gas was sufficientlydibétfully ionized (i.e.,
atoms were broken into free nuclei and electrons), and theddse was opaque due
to scattering by the dense fog of free electrons that filled'litus, telescopes can-
not be used to image the infant Universe at earlier timese@shifts> 10%). The
earliest possible image of the Universe can be seen in thmicasicrowave back-
ground, the thermal radiation left over from the transittortransparency (Figure
1.1).

How faint will the earliest galaxies appear to our telescep®/e can easily ex-
press the flux observed from a galaxy of luminoditat a redshift:. The observed
flux (energy per unit time per unit telescope area) is obthlmespreading the en-
ergy emitted from the source per unit timg, over the surface area of a sphere
whose radius equals to the effective distance of the source,

L
= 4rd}’
wheredy, is defined as theuminosity distancén cosmology. For a flat Universe,
the comoving distance of a galaxy which emitted its photdrestémet.,, and is
observed at time,},s is obtained by summing over infinitesimal distance elements
along the path length of a photosjt, each expanded by a factfr + z) to the
present time:

tobs z /
Tem = / C;dt = i/ dz y (15)
tew 0()  HoJo /Qu(1+2)3+Qx

em

wherea = (1 + z)~!. Theangular diameter distancé,, corresponding to the
angular diametet = D/da occupied by a galaxy of siz@, must take into account
the fact that we were closer to that gal¥kpy a factor(1 + z) when the photons
started their journey at a redshiftso it is simply given bylp = rem/(1+ 2). But
to find d;, we must take account of additional redshift factors.

If a galaxy has an intrinsic luminosit¥, then it would emit an energ¥idter,
over a time intervalit.,,. This energy is redshifted by a factor Of + z) and is
observed over a longer time intervéth,s = dtem (1 + 2) after being spread over a
sphere of surface arelarr2, . Thus, the observed flux would be

(1.4)

Ldtem /(1 + 2) L
= = 1.6
/ 4772 dtobs amr2 (14 2)?’ (1.6)
implying that'
dL - rem(]- + Z) - dA(]- + Z)2~ (17)

Villn a flat Universe, photons travel along straight lines. Thgle at which a photon is seen is
not modified by the cosmic expansion, since the Universeregat the same rate both parallel and
perpendicular to the line of sight.

viil A simple analytic fitting formula fol, (z) was derived by Pen, U.-lAstrophys. J. Suppl120,

49 (1999); http://arxiv.org/pdf/astro-ph/9904172v1 .
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Figure 1.4 The solid line (corresponding to the label on #iehand side) shows Lag of
the conversion factor between the luminosity of a sourceindbserved flux,
4rd? (in Gpd), as a function of redshift;. The dashed-dotted line (labeled
on the right) gives the angk (in arcseconds) occupied by a galaxy of a 1 kpc
diameter as a function of redshift.
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The area dilution factotrd? is plotted as a function of redshift in the bottom panel
of Figure 1.4. If the observed flux is only measured over aavatrand of frequen-
cies, one needs to take account of the additional convefaor of (1 4 z) =
(dvem/dvons) between the emitted frequency interda.,,, and its observed value
dvons. This yields the relatiotidf /dvons) = (1 + 2) X (dL/dVem)/(47d?). Fig-
ure ?? compares the predicted flux per unit frequehégom a galaxy at a redshift
zs = 10 for a Salpeter IMF and for massive-(100M) Population 111 stars, in
units of nJy pen0®M, in stars (where 1 ndy 10732 erg cm =2 s~! Hz~!). The
observed flux is an order of magnitude larger in the Populdticcase. The strong
UV emission by massive stars is likely to produce bright reboation lines, such
as Lymane and He Il 16404, from the interstellar medium surrounding these
stars.

Theoretically, the expected number of early galaxies ded#nt fluxes per unit
area on the sky can be calculated by dressing up the darkmhattes in Figure 3.4
with stars of some prescribed mass distribution and formnatistory, then finding
the corresponding abundance of galaxies of different lagities as a function of
redshift? There are many uncertain parameters in this approach (Suth #esc,
the stellar mass function, the star formation time, the fheitg, and feedback), so
one is tempted to calibrate these parameters by obserengkiff

1.3 MILESTONES IN COSMIC EVOLUTION

The gravitating mass\,,av = perav V', €nclosed by a spherical shell of radit(g)
and volumel/ = %”aB, induces an acceleration

d’a _ GMgay
dez a2
Sincepgray = p+3p/c?, we need to know how pressure evolves with the expansion
factora(t). This is obtained from the thermodynamic relation mentibabove
between the change in the internal enedgyc*V') and thepdV work done by
the pressured(pc?V) = —pdV. This relation implies-3paa/c® = a?p + 3paa,
where a dot denotes a time derivative. Multiplying equaf(ib®8) bya and making
use of this relation yields our familiar result

(1.8)

=4 : (1.9)

whereFE is a constant of integration and = pV'. As discussed before, the spher-
ical shell will expand forever (being gravitationally unba) if £ > 0, but will
eventually collapse (being gravitationally bound)Hf < 0. Making use of the
Hubble parametet]/ = a/a, equation (1.9) can be re-written as

E

15 =1-9, (1.10)
a

N =

XThe observed flux per unit frequency can be translated to aivagnt AB magnitude using the
relation, AB = —2.5log;[(df /dvobs)/erg s~! cm™2 Hz~1] — 48.6.
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whereQ2 = p/p., with

H? H 2
po= B g9 10308 ( > . (1.11)

- 8@ cm? \ 70 km s—1Mpc—1!

With Q,,,, 24, and(2,. denoting the present contributions@from matter (includ-
ing cold dark matter as well as a contributi@p from ordinary matter of protons
and neutrons, or “baryons”), vacuum density (cosmologicaistant), and radia-
tion, respectively, a flat universe satisfies

Hb)
Hy

where we defind, andQy = (Q,, + Qa + ,.) = 1 to be the present-day values
of H and(2, respectively.

In the particularly simple case of a flat Universe, we find thatatter dominates
thena o t2/3, if radiation dominates thea « ¢'/2, and if the vacuum density
dominates them o exp{ Hy,ct} With Hyae = (87ervaC/3)1/2 being a constant.
In the beginning, after inflation ended, the mass densityuofuniversep was at
first dominated by radiation at redshifis> 3, 300, then it became dominated by
matter at0.3 < z < 3,300, and finally was dominated by the vacuunmzat: 0.3.
The vacuum started to dominagg.,, already atz < 0.7 or six billion years ago.
Figure 1.6 illustrates the mass budget in the present-dayelse and during the
epoch when the first galaxies had formed.

The above results far(t) have two interesting implications. First, we can figure
out the relationship between the time since the Big Bang addhift sincex =
(1 + z)~1. For example, during the matter-dominated dra<(z < 102, with the
low-z end set by the conditioft + z] > [Q4/Qm]'/?),

¢~ 2 ~0.95 x 10° years
3Ho 2 (14 2)3/2  [(1+2)/73/2 7

In this same regime, wher®,, ~ 1, H ~ 2/(3t) anda = (1 + 2)7! =~
(3Ho/Shm /2)%/34%/3.

Second, we note the remarkable exponential expansion facansm dominated
phase. This accelerated expansion serves an importaragriip explaining a few
puzzling features of our Universe. We already noticed theitniverse was pre-
pared in a very special initial state: nearly isotropic anthlngeneous, witk close
to unity and a flat geometry. In fact, it took the CMB photonanhethe entire age
of the Universe to travel towards us. Therefore, it shouke thhem twice as long to
bridge across their points of origin on opposite sides ofsthe How is it possible
then that the conditions of the Universe (as reflected in #erly uniform CMB
temperature) were prepared to be the same in regions tha¢ wever in causal
contact before?Such a degree of organization is highly unlikely to occuraat-r
dom. If we receive our clothes ironed out and folded neatky,kmow that there
must have a been a process that caused it. Cosmologistsdemtdied an analo-
gous “ironing process” in the form afosmic inflation This process is associated
with an early period during which the Universe was dominaésdporarily by the
mass density of an elevated vacuum state, and experienpedential expansion

Q, 0,12
= [F + Qp + F] ) (1.12)

(1.13)
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by at least~ 60 e-folds. This vast expansion “ironed out” any initial cunueg
of our environment, and generated a flat geometry and neaifgrin conditions
across a region far greater than our current horizon. Aftelevated vacuum state
decayed, the Universe became dominated by radiation.

The early epoch of inflation is important not just in prodigcthe global prop-
erties of the Universe but also in generating the inhomoijesehat seeded the
formation of galaxies within i®. The vacuum energy density that had driven in-
flation encountered quantum mechanical fluctuations. Alfteperturbations were
stretched beyond the horizon of the infant Universe (whaday would have oc-
cupied the size no bigger than a human hand), they matexibdig perturbations in
the mass density of radiation and matter. The last pertiotsto leave the horizon
during inflation eventually entered back after inflation ed@when the scale factor
grew more slowly thamt). It is tantalizing to contemplate the notion that galaxies
which represent massive classical objects with0%7 atoms in today’s Universe,
might have originated from sub-atomic quantum-mechariagatuations at early
times.

After inflation, an unknown process, called “baryo-geniesis|epto-genesis”,
generated an excess of particles (baryons and leptons)amieparticlest As
the Universe cooled to a temperature of hundreds of MeV (WkkeV /kp =
1.1604 x 10'°K), protons and neutrons condensed out of the primordiallguar
gluon plasma through the so-call€@CD phase transition At about one second
after the Big Bang, the temperature declinedtd MeV, and the weakly interact-
ing neutrinos decoupled. Shortly afterwards the abundahoeutrons relative to
protons froze and electrons and positrons annihilatechémext few minutes, nu-
clear fusion reactions produced light elements more maghkian hydrogen, such
as deuterium, helium, and lithium, in abundances that mistobe observed today
in regions where gas has not been processed subsequeotlglthstellar interi-
ors. Although the transition to matter domination occuraéd redshift ~ 3,300
the Universe remained hot enough for the gas to be ionizetighlattron-photon
scattering effectively coupled ordinary matter and radrat At z ~ 1,100 the
temperature dipped below 3, 000K, and free electrons recombined with protons
to form neutral hydrogen atoms. As soon as the dense fog®&lectrons was de-
pleted, the Universe became transparent to the relic iadiavhich is observed at
present as the CMB. These milestones of the thermal histerglepicted in Figure
1.5.

The Big Bang is the only known event in our past history wheagigles in-
teracted with center-of-mass energies approaching treated “Planck scale®
[(he®/G)1/? ~ 10" GeV], at which quantum mechanics and gravity are expected
to be unified. Unfortunately, the exponential expansiorhefWniverse during in-
flation erased memory of earlier cosmic epochs, such as #reRtime.

*Anti-particles are identical to particles but with oppesttlectric charge. Today, the ordinary
matter in the Universe is observed to consist almost epto€particles. The origin of the asymmetry
in the cosmic abundance of matter over anti-matter is stilraesolved puzzle.

XIThe Planck energy scale is obtained by equating the quantaahanical wavelength of a rela-
tivistic particle with energyFE, namelyhc/E, to its “black hole” radius~ GE/c*, and solving for
E.
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Figure 1.5 Following inflation, the Universe went througlvesal other milestones which
left a detectable record. These include baryogenesis twigisulted in the ob-
served asymmetry between matter and anti-matter), theelezak phase transi-
tion (during which the symmetry between electromagnetitwaeak interactions
was broken), the QCD phase transition (during which protms neutrons nu-
cleated out of a soup of quarks and gluons), the dark mattugding epoch
(during which the dark matter decoupled thermally from tlosroic plasma),
neutrino decoupling, electron-positron annihilatioghli-element nucleosynthe-
sis (during which helium, deuterium and lithium were syisiked), and hydro-
gen recombination. The cosmic time and CMB temperatureef/éious mile-
stones are marked. Wavy lines and question marks indicdéstmnes with un-
certain properties. The signatures that the same milestiefiein the Universe
are used to constrain its parameters.
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1.4 MOST MATTER IS DARK

Surprisingly, most of the matter in the Universe is not thmsardinary matter that
we are made of (see Figure 1.6). If it were ordinary matteri¢vialso makes stars
and diffuse gas), it would have interacted with light, thsreevealing its existence
to observations through telescopes. Instead, obsergatfomany different astro-
physical environments require the existence of some migsieidark component
of matter which only reveals itself through its gravitat@dimfluence and leaves no
other clue about its nature. Cosmologists are like a deteegtho finds evidence
for some unknown criminal in a crime scene and is anxious tbHis/her identity.
The evidence for dark matter is clear and indisputable,rassythat the laws of
gravity are not modified (although a small minority of scistg are exploring this
alternative).

Without dark matter we would have never existed by now. Téikdcause or-
dinary matter is coupled to the CMB radiation that filled up thniverse early on.
The diffusion of photons on small scales smoothed out peations in this pri-
mordial radiation fluid. The smoothing length was stretcteed scale as large as
hundreds of millions of light years in the present-day Unéee This is a huge scale
by local standards, since galaxies — like the Milky Way — wassembled out of
matter in regions a hundred times smaller than that. Becargseary matter was
coupled strongly to the radiation in the early dense phagbefJniverse, it also
was smoothed on small scales. If there was nothing else iti@utb the radiation
and ordinary matter, then this smoothing process would hadea devastating ef-
fect on the prospects for life in our Universe. Galaxies lilke Milky Way would
have never formed by the present time since there would hese bo density per-
turbations on the relevant small scales to seed their foomatThe existence of
dark matter not coupled to the radiation came to the resculeebping memory
of the initial seeds of density perturbations on small scala our neighborhood,
these seed perturbations led eventually to the formatidgheMilky Way galaxy
inside of which the Sun was made as one out of tens of billidretass, and the
Earth was born out of the debris left over from the formatioagess of the Sun.
This sequence of events would have never occurred witheuddhnk matter.

We do not know what the dark matter is made of, but from the gunatth ob-
tained between observations of large-scale structurefandduations describing a
pressureless fluid (see equations 2.3-2.4), we infer tiwlikely made of particles
with small random velocities. It is therefore called “colard matter” (CDM). The
popular view is that CDM is composed of particles which pesseeak interactions
with ordinary matter, similarly to the elusive neutrinos lweow to exist. The abun-
dance of such particles would naturally “freeze-out” atmperaturel’ > 1MeV,
when the Hubble expansion rate is comparable to the antidrileate of the CDM
particles. Interestingly, such a decoupling temperatateinally leads through a
Boltzmann suppression facter exp{—mc?/kgT} to 2, of order unity for parti-
cle masses ofic? > 100 GeV with a weak interaction cross-section, as expected
for the lightest (and hence stable) supersymmetric partickimple extensions of
the standard model of particle physics. The hope is that CRMiges, owing
to their weak but non-vanishing coupling to ordinary matteill nevertheless be
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Figure 1.6 Mass budgets of different components in the pteday Universe and in the
infant Universe when the first galaxies formed (redshifts 10-50). The CMB
radiation (not shown) makes up a fractien 0.03% of the budget today, but
was dominant at redshifts > 3,300. The cosmological constant (vacuum)
contribution was negligible at high redshifts & 1).

produced in small quantities through collisions of endmyearticles in future lab-
oratory experiments such as the Large Hadron Collider (LEO)her experiments
are attempting to detect directly the astrophysical CDMiplas in the Milky Way
halo. A positive result from any of these experiments willdagiivalent to our de-
tective friend being successful in finding a DNA sample of pineviously uniden-
tified criminal.

The most popular candidate for the cold dark matter (CDM)iglaris a Weakly
Interacting Massive Particle (WIMP). The lightest supengyetric particle (LSP)
could be a WIMP. The CDM particle mass depends on free pammietthe parti-
cle physics model; the LSP hypothesis will be tested at thhgd_Bladron Collider
or in direct detection experiments. The properties of theMJfarticles affect their
response to the primordial inhomogeneities on small scaldse particle cross-
section for scattering off standard model particles setsefoch of their thermal
decoupling from the cosmic plasma.

The dark ingredients of the Universe can only be probed éudy through a
variety of luminous tracers. The distribution and naturetted dark matter are
constrained by detailed X-ray and optical observationsatdixjes and galaxy clus-
ters. The evolution of the dark energy with cosmic time wal ¢tonstrained over
the coming decade by surveys of Type la supernovae, as wellrasys of X-ray
clusters, up to a redshift of two.

According to the standard cosmological model, the CDM bebas a collec-
tion of collisionless particles that started out at the dpot matter domination
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with negligible thermal velocities, and later evolved ersively under gravitational
forces. The model explains how both individual galaxies tedlarge-scale pat-
terns in their distribution originated from the small, inltdensity fluctuations. On
the largest scales, observations of the present galaxjbdison have indeed found
the same statistical patterns as seen in the CMB, enhaneegbasted by billions
of years of gravitational evolution. On smaller scales, itihedel describes how
regions that were denser than average collapsed due tcethfgnced gravity and
eventually formed gravitationally-bound halos, first oredimpatial scales and later
on larger ones. In this hierarchical model of galaxy formatithe small galaxies
formed first and then merged, or accreted gas, to form larglexges. At each snap-
shot of this cosmic evolution, the abundance of collapséashahose masses are
dominated by dark matter, can be computed from the initiabitions. The com-
mon understanding of galaxy formation is based on the naliabstars formed out
of the gas that cooled and subsequently condensed to higitidsrin the cores of
some of these halos.

Gravity thus explains how some gas is pulled into the deepntial wells within
dark matter halos and forms galaxies. One might naively eipat the gas outside
halos would remain mostly undisturbed. However, obseowatshow that it has not
remained neutral (i.e., in atomic form), but was largelyizenl by the UV radiation
emitted by the galaxies. The diffuse gas pervading the spatstde and between
galaxies is referred to as the intergalactic medium (IGM). the first hundreds
of millions of years after cosmological recombination (wtgrotons and electrons
combined to make neutral hydrogen), the so-called cosnaitk‘dges,” the universe
was filled with diffuse atomic hydrogen. As soon as galaxgekd, they started
to ionize diffuse hydrogen in their vicinity. Within lessah a billion years, most
of the IGM was reionized.

The initial conditions of the Universe can be summarized @ingle sheet of
paper. The small number of parameters that provide an atecstiatistical descrip-
tion of these initial conditions are summarized in Table. lHbwever, thousands
of books in libraries throughout the world cannot summatiee complexities of
galaxies, stars, planets, life, and intelligent life, ire thresent-day Universe. If
we feed the simple initial cosmic conditions into a gigamiienputer simulation
incorporating the known laws of physics, we should be ableefmoduce all the
complexity that emerged out of the simple early universendée all the informa-
tion associated with this later complexity was encapsdlaighose simple initial
conditions. Below we follow the process through which lameet complexity ap-
peared and established an irreversible arrow to the flow singo timet

The basic question that cosmology attempts to answeWbat is the com-
position of the Universe and what initial conditions generged the observed
structures in it? In detail, we would like to know:

(a) Did inflation occur and when? If so, what drove it and how dielritl?
(b) What is the nature of of the dark energy and how does it changetione and

Xii|n previous decades, astronomers used to associate thiciyngf the early Universe with the
fact that the data about it was scarce. Although this wasdttiee infancy of observational cosmology,
it is not true any more. With much richer data in our hands,itfiteal simplicity is now interpreted as
an outcome of inflation.



22 CHAPTER 1

Table 1.1 Standard set of cosmological parameters (definddadopted throughout the
book). Based on Komatsu,E., et Alstrophys. J. SupplL80, 330 (2009).

QA Qm Qb h Ng g8
0.72] 0.28| 0.05| 0.7 1 | 0.82

space?
(c) What is the nature of the dark matter and how did it regulageebolution of
structure in the Universe?

The first galaxies were shaped, more than any other classropagsical ob-
jects, by the pristine initial conditions and basic constits of the Universe. Study-
ing the formation process of the first galaxies could reve&ue evidence for new
physics that was so far veiled in older galaxies by complé&ophysical processes.



Chapter Two

From Recombination to the First Galaxies

After cosmological recombination, the Universe entereel ‘tthark ages” during
which the relic CMB light from the Big Bang gradually fadedayv During this
“pregnancy” period which lasted hundreds of millions of ggdhe seeds of small
density fluctuations planted by inflation in the matter dlsttion grew up until they
eventually collapsed to make the first galaxies.

2.1 GROWTH OF LINEAR PERTURBATIONS

As discussed earlier, small perturbations in density graet the unstable nature
of gravity. Overdense regions behave as if they reside imsed Universe. Their
evolution ends in a “big crunch”, which results in the foriatof gravitationally
bound objects like the Milky Way galaxy.

Equation (1.10) explains the formation of galaxies out afdsdensity fluctua-
tions in the early Universe, at a time when the mean mattesitiewas very close
to the critical value anf,,, ~ 1. Given that the mean cosmic density was close to
the threshold for collapse, a spherical region which wagy shghtly denser than
the mean behaved as if it was part of@n> 1 universe, and therefore eventually
collapsed to make a bound object, like a galaxy. The matidead which objects
are made originated in the underdense regions (voids) #prate these objects
(and which behaved as part of @< 1 Universe), as illustrated in Figure 1.2.

Observations of the CMB show that at the time of hydrogenmdzioation the
Universe was extremely uniform, with spatial fluctuatiom#tie energy density and
gravitational potential of roughly one part if9°>. These small fluctuations grew
over time during the matter dominated era as a result of tgg@nal instability, and
eventually led to the formation of galaxies and largersaatuctures, as observed
today.

In describing the gravitational growth of perturbationglie matter-dominated
era ¢ < 3,300), we may consider small perturbations of a fractional atagk
|6| < 1 on top of the uniform background densjiyof cold dark matter. The three
fundamental equations describing conservation of massamdentum along with
the gravitational potential can then be expanded to leadlider in the perturbation
amplitude. We distinguish between physical and comovirgydioates (the latter
expanding with the background Universe). Using vectortimtathe fixed coordi-
nater corresponds to a comoving positian= r/a. We describe the cosmological
expansion in terms of an ideal pressureless fluid of pagjaach of which is at
fixed x, expanding with the Hubble flow = H (¢)r, wherev = dr/dt. Onto this
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uniform expansion we impose small fractional density pétions

5(x) = Py 2.1)

p

where the mean fluid mass densitygswith a corresponding peculiar velocity
which describes the deviation from the Hubble flav= v — Hr. The fluid is then
described by the continuity and Euler equations in comoeo@ydinates:

06 1

ot + EV (14 6)u]=0 (2.2)
ou 1 1
§+Hu+a(u-V)u——EV¢. (2.3)

The gravitational potentiap is given by the Newtonian Poisson equation, in terms
of the density perturbation:

V2¢ = 47Gpa’s . (2.4)

This fluid description is valid for describing the evolutiohcollisionless cold dark
matter particles until different particle streams crosise Trossing typically occurs
only after perturbations have grown to become non-lineén Wwj > 1, and at that
point the individual particle trajectories must in gendyalfollowed.
The combination of the above equations yields to leadingmirdy,
2
% + 2H% =4rGpo . (2.5)
This linear equation has in general two independent saigfionly one of which
grows in time. Starting with random initial conditions,gHfgrowing mode” comes
to dominate the density evolution. Thus, until it becomes-lioear, the density
perturbation maintains its shape in comoving coordinatesggows in amplitude in
proportion to a growth factob(t). The growth factor in a flat (matter-dominated)
Universe at: < 10? is given by

D(t) x

Orad QO /2 g 13/2 g1
(Qra® + Q) / : a’>’* da (2.6)
0

a3/? QAa/3+Qm)3/2 ’

In the matter-dominated regime of the redshift radge: z < 102, the growth
factor is simply proportional to the scale factoft). Interestingly, the gravita-
tional potentialp « 6/a does not grow in comoving coordinates. This implies
that the potential depth fluctuations remain frozen in atagé as fossil relics from
the inflationary epoch during which they were generated. liNear collapse only
changes the potential depth by a factor of order unity, baterside collapsed ob-
jects its rough magnitude remains as testimony to the infiatly conditions. This
explains why the characteristic potential depth of cokahbsbjects such as galaxy
clusters ¢/c*> ~ 10~5) is of the same order as the potential fluctuations probed by
the fractional variations in the CMB temperature acrosssthe At low redshifts

z < 1 and in the future, the cosmological constant dominafgs ( 24) and

IAn analytic expression for the growth factor in terms of spkfunctions was derived by Eisen-
stein, D. (1997), http://arxiv.org/pdf/astro-ph/970202 .
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the density fluctuations freeze in amplitudg(¢) —constant) as their growth is
suppressed by the accelerated expansion of space.

It is also useful to consider the velocity field To analyze its evolution, it is
convenient to express the density field as a sum over a coenpdttof periodic
“Fourier modes,” each having a sinusoidal (wave-like) aef@ce on space with a
comoving wavelengthh = 27 /k and wavenumbet. Mathematically, we write

Sk = / d3z 5(x)e’ ™ (2.7)
3
5(x) = / (gﬂl;(ske*ik*, (2.8)

with x being the comoving spatial coordinate. The charactemstiplitude of each
k-mode defines the typical value &bn the spatial scalg. It is easy to show that
equation (2.5) applies to each Fourier mode individualtyttee factorD(t) also
describes their growth (in the linear regime), and the eimtuof the density field
in Fourier space is easy to follow. In particular, note thiffiedent spatial scales
evolveindependentlyn the linear regime.

To linear order, the continuity equation (2.2) becorResu = —a(dd/dt), orin
Fourier space

dD
ik ug = —% 7 (2.9)
where we have assumed thigtis a pure growing mode. This has the solution
Hf(Q) . -
g = —i%()ékk, (2.10)

wheref(2) = (a/D)(dD/da) ~ QU5 to a very good approximation (note that it
is almost independent d¢2,). Interestingly, peculiar velocity perturbations grow
proportionally to density fluctuations, and their growingaes are parallel to the

wavevector. Note also that;b « dx/k, which implies that peculiar velocities are
sourced by gravitational fluctuations @amger scales than those of the density field.

2.1.1 The Power Spectrum of Density Fluctuations

The initial perturbation amplitude varies with spatial Isgaypically, large-scale

regions have a smaller perturbation amplitude than sncallesregions. The sta-
tistical properties of the perturbations as a function ddtisp scale can be best
captured by its Fourier transform in comoving wavenumb@iisis approach has
the convenient property that the spatial scalesfiaszlin time, rather than evolve
as the perturbation expands or collapses.

Because we cannot observe particular regions mature amd gyrer time, we
are typically concerned not with the amplitude of particudansity perturbations
or modes but with the properties of their statistical endembhere are two com-
plementary statistical measures that are used most oftenfirBt is thecorrelation
function

£(x) = (6(x)8(0)), (2.11)

i Note that cosmologists typically absorb the volume faciothe Fourier transform intéy, which
has units of volume.
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where the angular brackets represent averaging over tive stdtistical ensemble
of points separated by a comoving distasc@and where we made use of the trans-
lational invariance of statistical averages in centeringapordinate system on the
second point. The correlation function expresses the @erevhich a particular
overdensity is more likely to be surrounded by other ovesgargions. Note that
for an isotropic distribution of perturbationsjs a function only of the magnitude
of the spatial separation,= |x|.

The second is thpower spectrum

P(k) = (661) = (27)38(k — K')P(k), (2.12)

which has units of volume. Again, it is a function only lof= |k| for an isotropic
universe.

In fact, the correlation function and power spectrum aririately related. If we
write the former using the Fourier transformdifx), we obtain

P FY
£(x):< / e’ / W&;;,> (2.13)
B[P
:/(277)3/(27r)3ek {Ox0ier) (2.14)
3
:/ (;iwl;eik'xp (k), (2.15)

where in the first line we have used the fact h@) is real. Thug (r) andP (k) are
simply Fourier transforms of each other. Theoretical clattons are generally sim-
plest using the Fourier representation and power spectoutrthe two approaches
have different error properties so both are used regulartiaé literature.

Inflation generates perturbations in which differkatnodes are statistically in-
dependent, and each has a random phase constant in itsidinidte statisti-
cal properties of these fluctuations are perfectly desdrtibethe power spectrum.
Moreover, in the standard cosmological model, inflationdoimes a very simple
primordial power-law spectrun? (k) oc k™ with n, ~ 1. This spectrum admits
the special property that gravitational potential flucitoras of all wavelengths have
the same amplitude at the time when they enter the horizaméhya when their
wavelength matches the distance traveled by light duriegatie of the Universe),
and so this spectrum is called “scale-invariant.” This speo has the aesthetic
appeal that perturbations can always be small on the hosezate. A different
power-law spectrum would either lead to an overdensity deounity across the
horizon, resulting in black hole formation, either in theilrse’s future or past.
Quantum fluctuations during cosmic inflation naturally fesin a nearly scale-
invariant spectrum because of the near constancy of the ldy#yameter for a
nearly steady vacuum density.

However, the power spectrum becomes more complex as patiins grow at
later times in a CDM universe. In particular, the modified fipawer spectrum is
characterized by a turnover at a scale of order the horZdn! at matter-radiation
equality, and a small-scale asymptotic shapé’(f) « k™:—*. The turnover re-
sults from the fact that density perturbations experierig®at no growth during
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the radiation dominated era, because the Jeans length-then {/3; see the next
chapter) is comparable to the scale of the horizon insidehd¢lgrowth is enabled
by causality. Therefore, modes on a spatial scale thatexhtée horizon during
the early radiation-dominated era show a smaller amplitettgive to the power-
law extrapolation of long wavelength modes that enteredhtbréizon during the
matter-dominated era. For a scale-invariant indexs 1, the small-scale fluctua-
tions have the same amplitude at horizon crossing, and \eiinlyyno growth they
have the same amplitude on all sub-horizon mass scales &rmadiation equal-
ity. The associated constancy of the fluctuation amplitudemall mass scales
(in real space)§? o< P(k)k® ~ const, implies a small-scale asymptotic slope for
P(k) of ® —3 or (ns — 4). The resulting power-spectrum after matter-radiation
equality is crudely described by the fitting functi®n,

P(k) o< k™ /(1 + ok + Bpk?)?, (2.16)

with o, = 8(Q,,h%)~! Mpc andg, = 4.7(Q,,,h?)~2 Mpc?, and refinements that
depend on the baryon mass fraction and neutrino propertiasg and number of
flavors)?

Species that decouple at a particular time from the cosnaismpa (like the dark
matter or the baryons) would show fossil evidence for agowsicillations in their
power spectrum of inhomogeneities due to sound waves indtliation fluid to
which they were coupled at early times. This phenomenon eamnolerstood as
follows. Imagine a localized point-like perturbation frdnflation att = 0. The
small perturbation in density or pressure will send out ansbwave that will reach
the sound horizon,t at any later time. The perturbation will therefore correlate
with its surroundings up to the sound horizon andkiathodes with wavelengths
equal to this scale or its harmonics will be correlated. Tresults in a series of
peaks in the power-spectrum corresponding to these haoniofmhe peaks in the
power spectrum of the baryons after recombination induceesponding peaks in
the dark matter sector at later times. These peaks are omlspetiles far greater
than the intrinsic peaks associated with the much earlieodigling epoch of the
dark matter (which for weakly-interacting particles capend to mass scales of
planets or smaller). The mass scales of the perturbati@gtow to become the
first collapsed objects at < 100 cross the horizon in the radiation dominated era
after the dark matter had already decoupled from the costaga.

Although this shape is well determined by linear pertudmatheory in an ex-
panding universe, the overalmplitudeof the power spectrum is not specified by
current models of inflation, and is usually set by comparmthe observed CMB
temperature fluctuations or to measures of large-scaletateibased on surveys of
galaxies, clusters of galaxies, or the intergalactic gasng@uter codes that compute
the detailed shape of the power-spectrum are publiclyavkglathttp://camb.info/
andhttp://www.cmbfast.org

The most popular large-scale structure normalization isubh the observed
mass fluctuation amplitude (at the present day) bn'8Mpc, roughly the scale of
galaxy clusters. To relate this quantity to the power spmefrwe must consider
the statistical distribution of the smoothed density fidlde define a window (or
filter) functionW (r) normalized so thaf d®r W (r) = 1, with the smoothed den-
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sity perturbation field being d®ré(x)W (r). The simplest observed quantity is to
measure masses (relative to the mean) inside spheres of#radin this case we
use a “spherical top-hat” window (similar to a three-dimenal cookie cutter), in
which W = constant inside a sphere of radiiandW = 0 outside.

The normalization of the present power spectrum at0 is then specified by the
variance of this density field when smoothed on the particsdale ofS8h~!Mpc,
os = o(R = 8h~'Mpc). For the top-hat filter, the smoothed perturbation field
is denoted by or é,;, where the enclosed masg is related to the comoving
radiusR by M = 4rp,, R3/3, in terms of the current mean density of matte.
We then write the varianc&?, ) (relative to the mean) ds

UQ(M)=<% / d3a:5(x)W(x)% / d3x'5(x')W(x’)> (2.17)

:% B d®s' W(x)W(x)é(|x — x'|) (2.18)
>k Wi |?
:/ (2w)3p(k>| Vk2| ! (2.19)

wherelVy is the Fourier transform of the window function. For the Ustheice of
a spherical top hat, this is

_ [ dk 31 (kR)1?
02(M)202(R)_/0 ?AQ(k) {W] : (2.20)

wherej;(r) = (sinx — x cosz)/z? andA?%(k) = k3P (k)/2=? is the so-called di-
mensionless power spectrum? expresses the contribution, per log wavenumber,
of the power spectrum to the net variance.

While the normalization of the power spectrum only requirgswe will see in
the next chapter that the functietf A1) plays a major role in fixing the abundance
of collapsed objects. We therefore show it in Figure 2.1 asnation of mass and
redshift for the standard cosmological model. Note #atx §2 o D(t)?, so the
time dependence is trivial (at least in linear theory).

For modes with random phases, the probability of differegtons with the same
comoving sizel! to have a perturbation amplitude betwe@eamndd+dd is Gaussian
with a zero mean and a variane&(M ),

1
V2mo?

These so-called Gaussian perturbations are a key pretictimflation; they have
the convenient property that the statistical distributiblensities is described en-
tirely by the power spectrum (througt?). A very small amount of primordial
non-gaussianity can be accommodated; the nonlinear pHagawtational col-
lapse generates more.

P(5)ds = e=8° /2% s, (2.21)

il Note thato2 can equally well be considered a function of spatial séale
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Figure 2.1 The root-mean-square amplitude of linearlyapdlated density fluctuations
as a function of masa/ (in solar masses/,, within a spherical top-hat filter) at
different redshiftsz. Halos form in regions that exceed the background density
by a factor of order unity. This threshold is only surpassgddre (manys)
peaks for high masses at high redshifts. When discussirgptinredance of halos,
we will factor out the linear growth of perturbations and tise functiono (M)
atz = 0. The comoving radius of an unperturbed sphere containingssi’
is R = 1.85 Mpc(M /102 My)'/3.
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2.2 THERMAL HISTORY DURING THE DARK AGES: COMPTON COOL-
ING ON THE CMB

In addition to the density evolution, the second key “initiandition” for galaxy
formation is the temperature of the hydrogen and helium igatswill collapse into
the first galaxies. If it were isolated, the gas would simmplcadiabatically with
the overall expansion of the universe. In general, thisingakte can be written as
(v=1)(pw/pv)Te, Wwherep, is the baryon density angd= 5/3 is the adiabatic index
of a mono-atomic gas. For gas at the mean density, the faetp) = —3H is just
due to the Hubble expansion. However, in an overdense regiogre expansion is
slowed by gravity and eventually even turns into contragtthis cooling is slower
(and may turn into heating); in an underdense region, thérgpaccelerates. Thus,
the cosmic gas (also called, “intergalactic medium” andrabbted as IGM) will
be seeded by small temperature fluctuations reflecting ftsityestructure.

However, this is not the entire story because of the CMB. éltjh cosmological
recombination at ~ 1100 results in a nearly neutral universe, a small fraction
~ 10~* of electrons remain free until the era of the first galaxiehede free
electrons scatter off CMB photons and bring the gas closeqtalibrium with the
radiation field.

A free electron moving at a speed« c relative to the cosmic rest frame would
probe a Doppler shifted CMB temperature with a dipole patter

T(0) =1, (1 + %cos 9) , (2.22)

wheref is the angle relative to its direction of motion aifid is the average CMB
temperature. Naturally, the radiation will exert a frigtidorce on the electron
opposite to its direction of motion. The CMB energy densityhim a solid an-
gle d = dcosfde (in spherical coordinates) would b& = aT*(0)dS)/4x.
Since each photon carries a momentum equal to its energyediiyc, the elec-
tron will be slowed down along its direction of motion by a medmentum flux
c(de/c) x cos . The product of this momentum flux and the Thomson (Compton)
cross-section of the electron) yields the net drag force acting on the electron,
d 4

med—: = —/O'T cosfde = —goTanv. (2.23)
The rate of energy loss by the electron is obtained by myitigl the drag force
with v, giving

d SUT

_ 4
P = e, (2.24)

where & = %mevz. For a thermal ensemble of electrons at a non-relativistic

temperaturel’, the average energy i) = %kBTe. If the electrons reach ther-
mal equilibrium with the CMB, then the net rate of energy exge must vanish.
Therefore, there must be a stochastic heating term whicmnbak the above cool-
ing term whenI" = T.,. The origin of this heating term is obvious. Electrons

starting at rest will be pushed around by the fluctuatingtate€eld of the CMB
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until the ensemble reaches an average kinetic energy peraieof(E) = %kBT ,
at which point it stays in thermal equilibrium with the ratilen.

The temperature evolution of gas at the mean cosmic demdiigh cools only
through its coupling to the CMB and its adiabatic Hubble ergdan (with no radia-
tive cooling due to atomic transitions or heating by galakies therefore described
by the equation,

dTe xT S(J'TCLT,;1

dt — (14z) 3mec

wherez is the fraction of all electrons which are free. For an eleetproton gas,

x = n./(ne + ny) wheren, andny are the electron and hydrogen densities, and
T, x (1 + z). The second term on the right-hand-side of equati#), (—2HT,
yields the adiabatic scalirif. o (1 + 2)? in the absence of energy exchange with
the CMB.

The relative importance of these two heating and coolinghraeisms therefore
depends on the residual fraction of free electrons aftenodsgical recombination.
The rate at which electrons recombineis = —apz?ni, whereap o T, %7 is
the case-B recombination coefficiéhtUsing our preferred cosmological parame-
ters, the fractional change inper Hubble time is therefore

(T, — T.) — 2HT,, (2.25)

Te
Hn,
Electrons “freeze-out” when this factor becomes of ordetyrafter that point,
the Hubble expansion time is shorter than the recombinaimoe. More precise
numerical calculations give ~ 3 x 10~ atz ~ 200, as shown in Figure 2.2,

Inserting this value into equation (2.25), we find that Commptooling becomes
inefficient atz ~ 160. This small fraction of electrons suffices to maintain tharm
contact between the baryons and CMB unti~ 300, when Compton heating
becomes inefficient. Figure 2.2 shows a more precise caionlanote how the gas
and CMB temperatures begin to depart at 200, and the gas begins to follow the
expected adiabatic evolutidh o (1 + 2)? atz ~ 100.

Note, however, that Compton cooling can become importaainai§ the Uni-
verse is “reionized” by stars or quasars; once: 1, the Compton cooling time is
still shorter than the age of the Universe (and hence sigmifirelative to adiabatic
cooling) down to a redshift ~ 6.

~ Tx(1+ 2)°8. (2.26)

VThis ignores recombinations to the ground state, which ggae new ionizing photon and so do
not change the net ionized fraction.
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Figure 2.2 Thermal and ionization history of the Universébe the first stars form (pan-
els a and b, respectively). In the top panel, the solid antedaturves show
T. and T, respectively. Note how the ionized fractiondecreases rapidly af-
ter recombination at ~ 1100 and then “freezes-out” at ~ 300. Mean-
while, Compton scattering keeffd ~ T, until z ~ 200, after which the de-
clining CMB energy density and small residual ionized fiactare no longer
sufficient to maintain thermal contact between the gas an® CA later times,
T. « (1 + z)? as appropriate for an adiabatically expanding non-rekite
gas. These results were produced with the publicly avalabde RECFAST
(http://www.astro.ubc.ca/people/scott/recfast.html



Chapter Three

Nonlinear Structure and Halo Formation

3.1 SPHERICAL COLLAPSE

Existing cosmological data suggests that the dark matteoid,” that is, its pres-
sure is negligible during the gravitational growth of gatesx This makes the non-
linear evolution relatively simple, as it depends purelytba gravitational force.
We can therefore make some progress in understanding gédaxwation by con-
sidering models for this gravitational growth that are sudfintly simple to extend
into the nonlinear regime.

For simplicity, let us consider an isolated, sphericallynsyetric density or ve-
locity perturbation of the smooth cosmological backgroand examine the dy-
namics of a test particle at a radiuselative to the center of symmetry. Birkhoff's
theorem implies that we may ignore the mass outside thisisddicomputing the
motion of our particle. The equation of motion describing fystem reduces to the
usual Friedmann equation for the evolution of the scaleofaat a homogeneous
Universe, but with a density parameterthat now takes account of the additional
mass interior to the shell and its modified expansion vejodih particular, de-
spite the arbitrary density and velocity profiles given te frerturbation, only the
total mass interior to the particle’s radius and the pecwi@ocity at the particle’s
radius contribute to the effective value@f We may thus find a solution to the par-
ticle’s motion which describes its departure from the baokgd Hubble flow and
its subsequent collapse or expansion. This solution hattisaur particle crosses
paths with one from a different radius, which happens rak&ier for most initial
conditions.

As with the Friedmann equation for a smooth Universe, it isgilde to refor-
mulate the problem in a Newtonian form. At some early epoahesponding to
a scale facton; < 1, we consider a spherical patch of uniform overdenéity
making a so-called ‘top-hat’ perturbation. {If,,, is essentially unity at this time
and if the perturbation is a pure growing mode, then thedhjieculiar velocity is
radially inward with magnitudeé; H (¢;)r /3, whereH (¢;) is the Hubble constant at
the initial time and- is the radius from the center of the sphere. This can be easily
derived from mass conservation (continuity equation) inesfcal symmetry. The
collapse of a spherical top-hat perturbation beginningdiusr; is described by

d?r GM
ﬁ:HgQAT_T—Q, (31)
wherer is the radius in a fixed (not comoving) coordinate frarfg,is the present-

day Hubble constant, and the unperturbed Hubble flow velqtit which the
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above-mentioned peculiar velocity should be added) isrgiwedr /dt = H (t)r.
The total mass enclosed within radius, M = (47/3)r? p;(1+6;), with p; being
the background density of the Universe at tithe/Ve next define the dimensionless
radiusz = ra;/r; and rewrite equation (3.1) as
I d%z Qo

——— = - (1 4+ 6;) + Qax, 3.2
where we assume a flat universe with = 1 — €2,,,. Our initial conditions for the
integration of this orbit are

.23(72) = a; (33)

dx

E(tl) = H(ti)l‘(ti) <]. — §> = Hypa; <]. — §> a? + QA, (34)

where H(t;) = Ho[Qn/a? + (1 — Q,,)]*/? is the Hubble parameter for a flat
Universe at the initial time;. Integrating equation (3.2) yields

1 /dz\®> Q
— (=] =20 +8§)+W2? + K, 35
wherekK is a constant of integration. Evaluating this at the inifirale and dropping
terms of order,; (with ¢; < a;), we find
K- _2ig (3.6)
3&1'

If K is sufficiently negative, the particle will turn-around atié sphere will col-
lapse to zero size at a time

Hoteou = 2/ da (Qn/a+ K + QAaQ)_l/Q , (3.7
0

wherea, .« IS the value of: which sets the denominator of the integrand to zero.
Itis easier to solve the equation of motion analyticallytfe regime in which the
cosmological constant is negligible, = 0 and(,,, = 1 (adequate for describing
redshiftsl < z < 10%). There are three branches of solutions: one in which the
particle turns around and collapses, another in which ithiea an infinite radius
with some asymptotically positive velocity, and a thirdemhediate case in which
it reaches an infinite radius but with a velocity that appresczero. These cases
may be written as:

r = A(cosn —1)
t = B(n —sin 1) } Closed 0<np<2m) (3.8)
:: BZB% } Flat (0<n<00) (3.9)

r = A(coshn — 1)
t = B(sinhn —7) } Open (0<n<o0) (3.10)
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whereA? = GM B? applies in all cases. All three solutions have= 9G M2 /2
ast goes to zero, which matches the linear theory expectatianttie perturba-
tion amplitude get smaller as one goes back in time. In theetl@ase, the shell
turns around at timer B and radiu2A (when its density contrast relative to the
background of a2, = 1 Universe is972/16 = 5.6), and collapses to zero ra-
dius at time27 B. Interestingly, these collapse times are independentspiiitial
distance from the origin: perturbations with fixed initiadrtsity contrast collapse
homologously, with all shells turning around and collagsih the same time.

This is the fully nonlinear solution for the simplified preoh of collapse of a
purely spherical top hat perturbation. Of course, the realsity distribution of the
Universe is much more complicated. Although we cannot dies@nalytically the
full nonlinear evolution of density perturbations, wanfully describe their linear
evolution. A compromise is then to use this linear evolutiondentify regions
(such as galaxies) where spherical nonlinear evolutiomisrbad approximation.
It is therefore useful to determine the mapping betweenlitrear density field
described by perturbation theory and tlenlineardensities in the spherical model.

To do this, we are faced with the problem of relating the sjghécollapse pa-
rametersA, B, and M to the linear theory density perturbation This exercise is
straightforward for the case 6f, =0 and(2,, = 1. K > 0 (K < 0) produces an
open (closed) model. Comparing coefficients in the energyaggn (3.5) and the
integral of the equation of motion, one finds

1
i (55i) (3.11)

- QCLZ‘ 3CLZ‘
1 (56\

InanQ = 1 Universe, wherd + » = (3Hyt/2)~2/3, we find that a shell collapses
at redshiftl + z. = 0.59296;/a,. Noting that,n linear theory perturbations grow
asé o t2/3 o a in the matter dominated era, the quandify: is constant with time.
Thus, a shell collapsing at redshift had alinearizedoverdensity extrapolated to
the present dayof

1.686
Ocrit (Zc) = m

where D(z) is the linear growth factor, although the true density (cated with
the full nonlinear theory) differs. This critical densityays a key role in calcula-
tions of the halo abundance below.

Of course, we do not expect a real object to collapse to a zeep anisotropies
and angular momentum in the initial distribution will prexgerfect collapse. In-
stead, we envision that the material wiltialize, with strong particle interactions
transforming the bulk kinetic energy of collapse into ramdeelocities. The re-
sult is adark matter halowith a centrally-concentrated mass distribution; we will
discuss the properties of such halog®4 below.

~ 1.686(1 + ), (3.13)

iLinear evolution also give§y = 1.063(1 + z.) at turnaround.
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While this derivation has been for spheres of constant tense may treat a
general spherical density profibe(r) up until shell crossing. A particular radial
shell evolves according to the mass interior to it; therefove define the average
overdensitys;

R
0i(R) = 47r3R3 /O d3ré(r), (3.14)

so that we may usg in place ofg; in the above formulae. K; is not monotonically
decreasing withR, then the spherical top-hat evolution of two different rawiil
predict that they cross each other at some late time; thisasvk as shell crossing
and signals the breakdown of the solution. Even well-bethayerofiles will pro-
duce shell crossing if shells are allowed to collapse te 0 and then re-expand,
since these expanding shells will cross infalling shells.suich a case, first-time
infalling shells will never be affected prior to their tuaround; the more compli-
cated behavior after turn-around is a manifestation oflization. While the end
state for general initial conditions cannot be predicteatjous results are known
for a self-similar collapse, in which(r) is a power-law, as well as for the case of
secondary infall models.

3.2 COSMOLOGICAL JEANS MASS

Of course, the most interesting components of galaxiesrs, sjaasars, and people
— are not made of dark matter but of baryons. As the densityrasinbetween
a spherical gas cloud and its cosmic environment grows, tam forces which
come into play. The first igravity and the second involves tipeessure gradient
of the gas. The second modifies the simple picture of spHeridimpse above for
the baryonic matter.

We can obtain a rough estimate for the relative importandeede forces from
the following simple considerations. The increase in gassife near the center of
the cloud sends out a pressure wave which propagates owt apéed of sound
cs ~ (kpT/m,)'/? whereT is the gas temperature. The wave tries to even out the
density enhancement, consistent with the tendency of predss resist collapse.
At the same time, gravity pulls the cloud together in the mgifgodirection. The
characteristic time-scale for the collapse of the cloudivem by its radiusk di-
vided by the free-fall speedt (2GM/R)'/?, yieldingteon ~ (G{p))~/? where
(p) = M/4ER?3 is the characteristic density of the cloud as it turns aroomdts
way to collapsé.

If the sound wave does not have sufficient time to traverselthed during the
free-fall time, namelyR > Rj = cstcon, then the cloud will collapse. Under these
circumstances, the sound wave moves outward at a speed thlatvier than the
inward motion of the gas, and so the wave is simply carried@together with the
infalling material. On the other hand, the collapse will bkibited by pressure for

il Substituting the mean density of the Earth to this expresgields the characteristic time it takes
a freely-falling elevator to reach the center of the Eartimfrits surface{ 1/3 of an hour), as well as
the order of magnitude of the time it takes a low-orbit sétetb go around the Earti~( 1.5 hours).
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a sufficiently small cloud withR < Rj. The transition between these regimes is
defined by the so-called Jeans radilig, corresponding to the Jeans mass,

My = ()RS, (3.15)
This mass corresponds to the total gravitating mass of thedclincluding the
dark matter. As long as the gas temperature is not very diftefrom the CMB
temperature, the value dff; ~ 10°M,, is independent of redshitf. This is the
minimum total mass of the first gas clouds to collaps€00 million years after the
Big Bang.

A few hundred million years later, once the cosmic gas waiexhand heated
to a temperaturd > 10*K by the first galaxies, the minimum galaxy mass had
risen above- 10%M,. At even later times, the UV light that filled up the Universe
was able to boil the uncooled gas out of the shallowest grtiwital potential wells
of mini-halos with a characteristic temperature belodtK.! Below we derive
the above estimates more rigorously in the cosmologicalestrof an expanding
Universe.

Similarly to the discussion above, the Jeans lengthvas originally defined in
Newtonian gravity as the critical wavelength that separageillatory and exponentially-
growing density perturbations in an infinite, uniform, atat®nary distribution of
gas. On scaleg smaller than\;, the sound crossing timé/c, is shorter than
the gravitational free-fall ime,G)p) /2, allowing the build-up of a pressure force
that counteracts gravity. On larger scales, the pressadiaymt force is too slow to
react to a build-up of the attractive gravitational forceheTJeans mass is defined
as the mass within a sphere of radig/2, M; = (47/3)p(A;/2)3. In a pertur-
bation with a mass greater thddj, the self-gravity cannot be supported by the
pressure gradient, and so the gas is unstable to gravistmtiapse. The New-
tonian derivation of the Jeans instability suffers from a@eptual inconsistency,
as the unperturbed gravitational force of the uniform backgd must induce bulk
motions. However, this inconsistency is remedied when ttadyais is done in an
expanding Universe.

The perturbative derivation of the Jeans instability ciite can be carried out
in a cosmological setting by considering a sinusoidal pbetion superposed on a
uniformly expanding background. Here, as in the Newtoriiait| there is a critical
wavelength); that separates oscillatory and growing modes. Althouglexpan-
sion of the background slows down the exponential growtthefamplitude to a
power-law growth, the fundamental concept of a minimum ntlagscan collapse
at any given time remains the same.

We consider a mixture of dark matter and baryons with demsitpmeter§q., (z) =
Pdm/pe @andQy,(2) = pp/pe, Wwherepqa,, is the average dark matter densjiy,is the
average baryonic density, is the critical density, an@4,,(z) + Qb(2) = Q. (2).
We also assume spatial fluctuations in the gas and dark nothesities with the
form of a single spherical Fourier mode on a scale much snthlda the horizon,

pam(R,t) = pam(t) _ . sin(kR)
) TR o
Po(R,t) — pv(?) sin(kR)

ﬁb(t) = b() kR )

(3.17)
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wherepam () @andpy, (t) are the background densities of the dark matter and baryons,
dam(t) anddy,(¢) are the dark matter and baryon overdensity amplitudiess, the
comoving radial coordinate, arkdis the comoving perturbation wavenumber.

We adopt an ideal gas equation-of-state for the baryonsawtadiabatic index
(or specific heat ratioy=5/3. Initially, at time ¢t = t;, the gas temperature is
uniform Ty, (R, t;)=T;, and the perturbation amplitudes are sndall, ;, on ; < 1.
We define the region inside the first zerosti(kR)/(kR), namely0 < kR < ,
as the collapsing “object”.

The Jeans mass will clearly depend on the temperature éwoloitthe baryons,
since that determines their overall pressure. As descitbgdat very high redshifts
the baryon temperature traces the CMB temperaflifex T, « (1 + z), while at
z < z ~ 150 they instead cool adiabaticall, o p,@‘” o (1+2)2

The linear evolution of a cold dark matter overdensity, (¢) is given by

S+ 2H b = 2 H (05, + Q) (3.18)

whereas the evolution of the overdensity of the baryép&;), with the inclusion
of their pressure force is described by,

by + 2Hby = ;HQ (06 + Qamddm) —
KT, (k\? /ap\ (1+687) 2
<_> (_) <5b + 30710 — 5b,i]> . (3.19)

umy \ a a

Here,H (t) = a/ais the Hubble parameter at a cosmological time = 1.22 is the
mean atomic weight of the neutral primordial gas in unitsh&f proton mass, and
the last term describes the pressure force (being roughkRs;, /a?). The parameter
O describes the temperature evolution; it is 0 when the gaairesiin equilibrium
with the CMB and 1 in the adiabatic limit. The last term on thght hand side (in
square brackets) takes into account the extra pressuriegtddrce inV(p,T) =
(TVpp + ppVT), arising from the temperature gradient which develops & th
adiabatic limit.

The Jeans wavelengthy = 27/k; is obtained by setting the right-hand side
of equation (3.19) to zero, and solving for the critical waweberk;. As can be
seen from equation (3.19), the critical wavelengh(and therefore the madd)
is in general time-dependent. We infer from equation (3th8) as time proceeds,
perturbations with increasingly smaller initial waveléingstop oscillating and start
to grow.

To estimate this, we further approximaig ~ dqm, and consider sufficiently
high redshifts at which the Universe is matter dominatedt{atf2,,, ~ 1), Follow-
ing cosmological recombination at~ 103, the residual ionization of the cosmic
gas keeps its temperature locked to the CMB temperatureG@iapton scatter-
ing) down to a redshift ot; ~ 160 (see§2.2 and Figure 2.2) In the redshift range
between recombination ang, 5 = 0 and

ky = (21/A3) = [2KT,(0)/3pm,) Y/ 2\/Q,n Hy (3.20)
so that the Jeans mass is redshift independent and obtaahseg(for the total mass
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of baryons and dark matter),

dr (Ap)° o[ Qb2 T
MJE—”<—J> ﬁ(0)=1.35><10"< > My . (3.21)

3 2 0.15

At z < z;, the gas temperature declines adiabaticallif Bs- z) /(1 + 2;))? (i.e.,
Or = 1) and the total Jeans mass obtains the value,

Qnh2\ V7 2\ TP 14 2\
My =4.54 x 10% [ =2 —= M. 22
1= 454l (0.15) (0.022) ( 10 ) o (322)

So far, we have ignored similar effects in the dark matter gonent: although
these collisionless particles do not feel a pressure fdinedy, intrinsic velocity dis-
persion plays an analogous role to pressure, and a similarion for collapse
exists. However, in populaold dark matter models with weakly-interacting mas-
sive particles, the Jeans mass of the dark matter alone igifsdg but non zero,
of the order of the mass of a planet like Earth or JugiteAll halos between this
minimum clump mass ang 10° M, are expected to contain mostly dark matter
and little ordinary matteWWarmdark matter, with a moderately large velocity dis-
persion, could change this expectation and — if its Jeans eyaeeds that of the
baryons — substantially modify the early phases of strectommation.

It is not clear how the value of the Jeans mass derived ab¢sesdo the mass
of collapsed, bound objects. The above analysis is petiveb@quations 3.18 and
3.19 are valid only as long a%, anddq,, are much smaller than unity), and thus
can only describe the initial phase of the collapsedfanddy,, grow and become
larger than unity, the density profiles start to evolve antkdaatter shells may
cross baryonic shells due to their different dynamics. Hethe amount of mass
enclosed within a given baryonic shell may increase withetimntil eventually
the dark matter pulls the baryons with it and causes thelapsé even for objects
below the Jeans mass.

Even within linear theory, the Jeans mass is related onhhéevolution of
perturbations at a given time. When the Jeans mass itsesvaith time, the
overall suppression of the growth of perturbations depemds time-weighted
Jeans mass. The proper time-weighted mass is called thinfiltmass® My =
(47 /3) p(ma/kr)3, written in terms of the comoving wavenumber associated
with the “filtering scale”. This scale can be derived as fato

Consider a growing mode perturbation in the dark matggr and baryonsgy, in
the limit where the baryons are gravitationally unimpottén, < ,,). In this
regime, the linear perturbation equations admit a simplgtiem in the special case
where the Jeans wavenumligris constant in time,

5dm(t, k)
on(t, k) = T+ k22 (3.23)
where the dark matter fluctuation grows in proportion to iheadr growth factor,
dam o D(t). In the general case where the Jeans wavenuipirtime depen-
dent, we can identify the proper time averaging by considgttie perturbative ef-
fect of gas pressure on large scales. We therefore exparatihé, (¢, k) /dam(t, k)
in powers ofk? with (¢, k = 0) = dam(t,k = 0). The ratio between the linear
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overdensity of the baryons and dark matter in the limit of krha@an then be writ-
ten as

b k2
— =1——+... 24
or equivalently
on(t k) . AL,
(L) 1 D(t)k , (3.25)

whereA(t) = D(t)/k% can be solved for by substituting the latter relation inte th
coupled linear growth equations féelta;, andédy,, and ignoring terms of order*
or higher. This gives the differential equation,

d>A dA 2

7z +2H i QQD(t), (3.26)
wherec; is the sound speed of the baryons. The solution to this emuagives
the filtering wavenumbet is terms of time integrals of the Jeans wavenunier
(using the latter’s relation te,),

1 t o D(t/)—i-ZH(t/)D(t/) t g
k%(t) N D(t) /0 dt’a*(t') k?(t’) /t’ a2(t“) : (3.27)
At high redshifts (where,,, (z) — 1), this relation simplifies to
1 3 a da/ CL/
k%(t) - 5/0 k?(a/) <1 - E) . (328)

It is conventional to assume that the Jeans or filtering mesgrately reflects
the threshold for baryonic structure formation. Howevargar theory specifies
whether an initial perturbation, characterized by the petersk, d4m,i, dp,; and
t;, begins to grow. To determine the minimum mass of the resultionlinear
baryonic object following the shell-crossing and virialiion of the dark matter, we
typically appeal to the spherical collapse model describele previous section.

3.3 PRIMORDIAL STREAMING OF BARYONS RELATIVE TO DARK MAT-
TER

Prior to cosmological recombination, the baryons and tieergo background radi-
ation were tightly coupled and behaved as a single fluid, re¢@p&om the dark mat-
ter. The primordial density fluctuations produced acoustwes in the radiation-
baryon fluid. When the gas decoupled from the radiatior at¢ 103, it was
streaming relative to the dark matter with a root-mean-sg@fens) speed oy, ~
10~* = 30 kms~!. Figure 3.1 shows the variance of the velocity difference
perturbations (in units of) perln k£ as a function of the mode wavenumbeat

z = 103. The power extends to scales as large as the sound horizeccahbina-
tion, ~ 140 comoving Mpc, but declines rapidly &t> 0.5 Mpc~!, indicating that
the velocity of the baryons relative to the dark matter wdsecent over the photon
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Figure 3.1 The variance of the velocity difference perttidies (in units ofc) between
baryons and dark matter pét & as a function of comoving wavenumbkrat
z = 10%. Figure credit: D. Tseliakhovic & C. Hirata, Phys. ReD82, 3520
(2010).

diffusion (Silk damping) scale of several comoving Mpc. §hktale is larger by
two orders of magnitude than the size of the regions out ottwlte first galaxies
were assembled at later times. Therefore, in the rest-fraintlieose galaxies, the
background intergalactic baryons appeared to be movingreoitly as a wind. It
is therefore interesting to examine whether this wind haigaificant effect on the
assembly of baryons onto the earliest galaxies.

Following recombination, the neutral gas was freed to fathithe gravitational
potential wells of the dark matter and so its velocity difflece from the dark matter
declined as,. o (1+42). Thisimplies that by ~ 50, the typical streaming veloc-
ity ~ (50/10%) x 30 = 1.5 km s~! corresponded to an equivalent gas temperature
Tve ~ mpvi./kp = 270 K[(1 + 2)/50]2, comparable to the virial temperature
of the first gas clouds that cooled through molecular hydno@#,) transitions.
Therefore, in the frame of the dark matter the baryonic wiagehincreased by
a factor of order unity the minimum halo mass in which the viinst generation
of stars could have formed. The effect was more dramaticHerfiltering mass
(the time-averaged Jeans mass, without the cooling cam$trahich increased at
z ~ 20-100 from ~ 2 x 10*M, without streaming to~ 2 x 105M, at therms
streaming speed. Figure 3.2 shows the increase in the miminalo mass in which
gas was able to assemble and cool at various redshifts, asxadin of the initial
streaming veloCityysiream = vbe(z = 100). Thermsvalue ofvgiream = 3 km s—*
at z = 100 is marked by the horizontal line. As expected, the infall asgnto
halos more massive than 10°M, for which the virial temperatur@,;, > Ti.,
was not affected significantly by the baryonic wind.

In linear perturbation theory§R), each Fourier mode evolves independently.
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Figure 3.2 Effect of initial streaming speeg cam atz = 100 on the minimum halo mass
into which gas can assemble later and form stars (with thezdwtal bar at
3 km s~! marking the expecterimsvalue). Each line represents the necessary
halo mass for baryon collapse at the labeled redshift. Drataoepresent the fi-
nal halo masses found in standard collapse simulations {4 with no stream-
ing), squares represent masses from accelerated collaps&tons ¢ = 24
with no streaming), and the lines delineate the predictiba simple analytic
model. The halo masses do not increase significantly at loyusting veloci-
ties. Halos collapsing at high redshift are more affectedetstive streaming, as
the physical streaming velocities are higher at these e#nlgs. Figure credit:
A. Stacy, V. Bromm, & A. Loeb, MNRAS, in press (2010); arXi@11.4512.
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Figure 3.3 The total mass fraction (in percent) in halos abite filtering mass (dashed
lines) and above thé&l. cooling mass (solid lines). Thin lines ignore baryon
streaming and thick lines include it. Figure credit: D. Taktovic, R. Barkana,
& C. Hirata, MNRAS, submitted (2010); arXiv:1012.2574.

However, the streaming effect on the growth of structhi® manifestly non-linear
and results from second-order terms, such as the convelginative(vy - k) vy in
the equation of motion, which couple small-scale (higlhmodes — as they become
nonlinear, to large scale (low} modes. Effectively, the relative velocity acts as an
increased sound speed (since it needs to be dissipated ujadization of the gas)
and prevents the baryons from settling into the shallowestngial wells. Figure
3.3 compares the fraction of baryons that collapsed intohabove thél, cooling
threshold with and without streaming.

Since the streaming velocity varied spatially, the formiatf the earliest Popula-
tion Ill stars was modulated on large spatial scales of up 10 cMpc. The effects
of baryonic streaming were most pronounced in the lowessthalos & 10°M)
and at the highest redshifts & 20) —when the global collapse fraction of baryons
and the corresponding radiative effects of stars were small

The baryonic streaming alters the growth of structure, icaua small & 15%)
suppression in the matter power spectrum around the Jeavenwmberk; ~
200Mpc~!, and a strong scale-dependent bias for the earliest gadstmuscales
of up to~ 140 cMpc. As long ad, was not quickly dissociated by the UV back-
ground produced by the first stars, the streaming effectbithigve left observable
signatures on the 21-cm signal at redshifts- 20. However, at the reionization
redshifts during which the global star formation rate wamdwted by halos with
a virial temperature above the cooling threshold of atoryidrbgenT;, > 10* K
and a corresponding mass10® M [(1+2)/10]~3/2 (equation 3.33), the radiative
signatures of the primordial baryonic streaming were jikatgligible.



44 CHAPTER 3

3.4 HALO PROPERTIES

When an object above the Jeans mass collapses, the dark foatte a halo inside
of which the gas may cool, condense to the center, and eugnttagment into
stars. The dark matter cannot cool since it has very weakaatiens. As a result,
a galaxy emerges with a central core that is occupied by atadscold gas and is
surrounded by an extended halo of invisible dark matterc&eooling eliminates
the pressure support from the gas, the only force that caveptdehe gas from
sinking all the way to the center and ending up in a black helé centrifugal
force associated with its rotation around the center (eaargunbmentum). The slight
(~ 5%) rotation, given to the gas by tidal torques from nearby gjakas it turns
around from the initial cosmic expansion and gets assemhbtedthe object, is
sufficient to stop its infall on a scale whichds order of magnitude small¢hhan the
size of the dark matter hal®(the so-called “virial radius”). On this stopping scale,
the gas is assembled into a thin disk and orbits around therckr an extended
period of time, during which it tends to break into dense dewhich fragment
further into denser clumps. Within the compact clumps thatpoduced, the gas
density is sufficiently high and the gas temperature is saffity low for the Jeans
mass to be of order the mass of a star. As a result, the clurage&nt into stars
and a galaxy is born.

Inthe popular cosmological model, small objects formed.firbe very first stars
must have therefore formed inside gas condensations jostahe cosmological
Jeans mass, 10°M. Whereas each of these first gaseous halos was not massive
or cold enough to make more than a single high-mass starclsisters started to
form shortly afterwards inside bigger halos.

By solving the equation of motion (3.1) for a spherical overse region, we
can relate the characteristic radius and gravitationamtidl well of each of these
galaxies to their mass and their redshift of formation. limgiple, a spherical re-
gion would collapse to a point mass, but of course the redd¥enot so idealized.
As already mentioned, even a slight violation of the exaatsetry of the initial
perturbation can prevent the top-hat from collapsing to mtpdnstead, the halo
reaches a state of virial equilibrium through violent dyneahrelaxation. We are
familiar with the fact that the circular orbit of the Earttoand the Sun has a kinetic
energy which is half the magnitude of the gravitational ptitd energy. Accord-
ing to thevirial theorem this happens to be a property shared by all dynamically
relaxed, self-gravitating systems. We may thereforelise —2K to relate the
potential energy/ to the kinetic energy« in the final state of a collapsed halo.
This implies that the virial radius is half the turnaroundites (where the kinetic
energy vanishes). Using this result, the final mean oveitjergative top. at the
collapse redshift turns out to h&, = 1872 ~ 178 in the,, = 1 case, which
applies at redshifts > 1. Note that the virial overdensity at collapse implies that
the dynamical time within the virial radius of galaxies,(Gpvir)—l/Q, is of order
a tenth of the age of the Universe at any redshift. In a Uneverigh2,,, + Qp = 1
the virial overdensity at the collapse redshift admits thntj formulat®

A, = 187% 4 82d — 39d? , (3.29)
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whered = Q,,,(z) — 1 is evaluated at the collapse redshift, so that
Qn(1+2)3
Qn(z) = — . .
(2) D (14 2)3 4+ Qa + Qi (14 2)2 (3.30)
A halo of massV collapsing at redshift > 1 thus has a virial radius
Q,, A, —1/3 M 1/3 142 -1
vir = 1. - kpc, 31
" b [Qm(z) 187r2] (108M@) ( 10 ) pe, (33D
and a corresponding circular velocity,

M\ 12 o, A YS /N1 1/2
V. = G —17.0 ' - itz kms™'.
Tyir Qpn(2) 1872 108 Mg, 10

(3.32)

We may also define a virial temperature

1/3 2/3
umy, V.2 Y QA M 1+2
Ty = — 1.04x10* (2L K,
2%k 0410 (0.6) {Qm(z) 1872 105 My, 10
3

wherep is the mean molecular weight ama, is the proton mass. Note that the
value of x depends on the ionization fraction of the gas; for a fullyized pri-
mordial gasu = 0.59, while a gas with ionized hydrogen but only singly-ionized
helium has: = 0.61. The binding energy of the halo is approximately,

1GM? ol AR M N 142
E, == =29 x 10° us & .
by 910 [Qm(z) 18772} <108M@) ( 10 ) ere
(3.34)

Note that if the ordinary matter traces the dark matter,dtaltbinding energy is
smaller than®, by a factor ofQ2, /Q2,,,, and could be lower than the energy output
of a single supernoVa(~ 10°! ergs) for the first generation of dwarf galaxies.

Although spherical collapse captures some of the physigsrging the forma-
tion of halos, structure formation in cold dark matter madetoceeds hierarchi-
cally. At early times, most of the dark matter was in low-mhatos, and these
halos then continuously accreted and merged to form higésrhalos. Numerical
simulations of hierarchical halo formation indicate a rblyguniversal spherically-
averaged density profile for the resulting halos, thougthwitnsiderable scatter
among different halos. This so-called NFW profile has thenfor

3H O, dc
pr) = —= 5
87G Qm(2) enz(l + enz)

wherez = r/r;, and the characteristic density is related to the concentration
parametery by

(1+2)° (3.35)

0 =

.
3

In(1+ex) —en/(T4cen) (3.36)

il A supernova is the explosion that follows the death of a messar.
VThis functional form is commonly labeled as the ‘NFW profidfer the original paper by Navarro,
J. F., Frenk, C. S. & White, S. D. MAstrophys. J490, 493 (1997).
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The concentration parameter itself depends on the halo Masd a given redshift
z, with a value of order 4 for newly collapsed halos and a larger vakie20 at
later times. An even better fit to state-of-the-art CDM siatians is obtained with
the Einasto profil¥,

o[22 -] e

wherea = 0.16, r_1 is the radius where the logarithmic slope of the density fgofi
equals the isothermal sphere val(éln p/dInr) = —2. At this radiusr?p peaks
at a density value gf_» = p(r_s). For the NFW profiley_5 = ryir /en.

3.5 ABUNDANCE OF DARK MATTER HALOS

In addition to characterizing the properties of individbalos, a critical prediction
of any theory of structure formation is the abundance of fiad@amely, the number
density of halos as a function of mass, at any redshift. Thadiption is an impor-
tant step toward inferring the abundances of galaxies atakga&lusters. While
the number density of halos can be measured for particuamotogies in numeri-
cal simulations, an analytic model helps us gain physicdewstanding and can be
used to explore the dependence of abundances on all the loagoab parameters.

A simple analytic model which successfully matches moshefrtumerical sim-
ulations was developed by Bill Press and Paul Schechter7a ¥9The model is
based on the ideas of a Gaussian random field of density pations, linear grav-
itational growth, and spherical collapse. Once a regiorhemtass scale of interest
reaches the threshold amplitude for collapse according&ai theory, it can be
declared as a virialized object. Counting the number of slestsity peaks per unit
volume is straightforward for a Gaussian probability disttion.

To determine the abundance of halos at a redshifte usej,,, the density field
smoothed on a mass scdlg, as defined irg2.1.1. Since,, is distributed as a
Gaussian variable with zero mean and a standard deviaftidf) (which depends
only on the present linear power spectrum; see equation),at#d probability that
0 Is greater than some fixedequals

oo | 1 o | (5]2W :| _ 1 ( Om >
/5 ddh]i\/ﬂo(M)e p{ 502(M) —2erfc 7\/50(1\/‘[) . (3.38)

The basic ansatz is to identify this probability with thectian of dark matter parti-
cles that are part of collapsed halos of mgs=sater than)M at redshiftz. Note that

a given region smoothed on maas could be part of an even larger overdensity
above the threshold, which is why we have the fraction ofiglag in halos above
this mass threshold.

We need two additional ingredients to complete the modelstFive set the
threshold density td..;:(z) (see equation 3.13), which is the critical density of
collapse found for a spherical top-hat. Crucialdy,;; is the linearized density
associated with collapse in this nonlinear model, so itiealy comparable to the
linearized treatment of the density field in the Gaussiam@pmation.
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Atechnical note is now neededl;,;; is conventionally extrapolated to the present
day, sinces(M) is typically calculated using the power spectrum evaluated
z = 0. This is a subtle point: fof2,, ~ 1 the spherical collapse model finds
that collapse occurs at a fixed fractional overdensity={ 1.686) regardless of
redshift. However, because the model makes use of linehdeesities, we can
evolve this threshold (at each redshift) to the present daycampare to a single
linearized density field for all redshifts. In that case, theeshold for halo for-
mation decreases with cosmic time according to equatiod: 3egions with large
linearized, present-day densities collapse first, whibséwith more modest over-
densities collapse later. Because the linear evolutiondspendent of scale, this
also means that dense regions in the initial conditionsaps# first as naturally
expected.

The second key ingredient is to note that even regions dyith< 0 can actually
be part of collapsed objects, if they are part of a region& wit> J.,;; on a scale
M’ > M. The original Press & Schechter paper solved this in an addstdon by
multiplying the collapsed fraction of matter by a factor wit this guarantees that
every dark matter patrticle is part of a halo (of some> 0) even if its immediate
environment is underdense. Thus, the final formula for thestigaction in halos
aboveM at redshiftz, or thecollapse fractioris

5crit (Z)
feonn(> M|z) = erfc <\/§U(M)) . (3.39)
We will revisit the ad-hoc factor of 2, and provide a more&fging explanation for
the adjustment in the following sections.

Differentiating the fraction of dark matter in halos abovassl/ yields the mass
distribution. Lettingdn be the comoving number density of halos of mass between
M andM + dM, we have

dn [T pn —dlino)

dM ™ M dM -
wherev, = deit(2)/o(M) is the number of standard deviations away from zero
that the critical collapse overdensity represents on meag 8/. Thus, the abun-
dance of halos depends on the two functierid/) andd.,it(z), each of which
depends on cosmological parameters.

(3.40)

3.5.1 The Excursion Set Formalism

Although the original Press-Schechter model is foundedroimgoortant physical
insight, it turns out to be profitable to rephrase the probieisn entirely different
way. This provides two benefits: first, it yields a much morés$gng derivation

of the factor of two correction that is necessary, and secimulovides a number
of new insights into the spatial distribution and histoiéslark matter halos.

In particular, the Press-Schechter formalism makes nongttéo deal with the
correlations among halos or between different mass scéhés.means that, while
it can generate a distribution of halos at two different d@md says nothing about
how particular halos in one epoch are related to those ingbersl. We therefore
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Figure 3.4 Top: The mass fraction incorporated into halos per logarithniicd halo mass

(M?dn/dM)/pm, as afunction ob/ at different redshifts. Herep,, = Qup.

is the present-day matter density, ar(d\/)dM is the comoving density of halos
with masses betweeW andM +dM. The halo mass distribution was calculated
based on an improved version of the Press-Schechter famdtir ellipsoidal
collapse [Sheth, R. K., & Tormen, Glon. Not. R. Astron. Soc329 61
(2002)] that fits better numerical simulatiorBottom: Number density of halos
per logarithmic bin of halo massddn/dM (in units of comoving Mpc?), at
various redshifts.
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would like some method to predict, at least statisticatig growth of individual
halos via accretion and mergers. Even restricting ourseleespherical collapse,
such a model must utilize the full spherically-averagedsitgmprofile around a par-
ticular point. The potential correlations between the maardensities at different
radii make the statistical description substantially mdifcult.

The excursion set formalism seeks to describe the statisticalos by consider-
ing the statistical properties éf,,, the average overdensity within some spherical
window of characteristic mas¥/, as a function of\/ (or equivalentlyR). While
the Press-Schechter model depends only on the Gaussighutieh of ¢ for one
particularM, the excursion set considers alf as a set. Again the connection be-
tween a value of the linear reginag; and the final state is made via the spherical
collapse solution so that there is a critical valiyg;(z) of d5; which is required
for collapse at a redshift.

The basic idea is to view the density field around a given pamoothed on
different scales, as a diffusion process. Smoothed oveffigisatly large mass,
oy — 0. As we zoom in to smaller scales, we naturally expagtto deviate from
zero, with a variance that must equ&l(M/). It is most natural to view this process
in Fourier space: as we approach smaller scales, more anel Iroarrier modes
become important, adding fluctuations to the density fieltie Particular set of
modes at our point will determine the “trajectory” &f; as a function of smoothed
mass. The key insight of the excursion set approach is thatameconsider this
trajectory as a diffusion process (because efachode is independent from all
others) and thereby calculate its statistics. Conceptuedich set of Fourier modes
that one adds a3/ decreases provides a step in the random walk of the density
field, so the key is in generating the distribution of theselam walks.

The subtlety in this approach lies in defining the smoothetsitie field; recall
that it is the full (linearized) density field convolve withvandow functionW (R).

For most choices of window function, the functiofig are correlated from one

M to another such that it is prohibitively difficult to calctéathe desired statistics
directly. However, for one particular choice of a window &tilon, the correlations
between differenfi/ greatly simplify and many interesting quantities may be cal
culated!® We take advantage of the fact that, in linear theory, eachi€omode
evolves independently, with no correlations between difiescaleg, and we use
ak-space top-hat window function, namélij;, = 1 for all £ less than some critical

k. andW, = 0 for k > k.. In that case, each step in the random walk corresponds
to increasingc.. For this filter,

>k
On :/ UL (3.41)
M ke<ko (M) (27)3 g

meaning that the overdensity on a particular scale is sitf@ysum of the random
variables (each Gaussian distributég)interior to the chosek.. Because the fil-
ter is sharp, we simply add new Fourier modes to change sd@éesause these are
independent of the larger-wavelength modes already irikielélter, the difference
betweeniy; on one mass scale and that on another mass scale is sthyistica
dependent from the value on the larger mass scale: i.e.,"stagi in the walk is
uncorrelated with previous steps, and the difference betvibed,, on two mass
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scales is just the sum of thig in the sphericak-shell between the twhk,, which is
independent of the sum of tlag interior to the smallek.. We thus have a simple
random walk, albeit one where the step-size varies With

Meanwhile, the distribution ofy; (given no prior information about the random
walk at largerM) is still a Gaussian of zero mean and a varianceqf\/) (see
equation 2.20).

Unfortunately, this filter is fundamentally inconsistenittwthe threshold.,s.
The k-space top-hat filter hasspatialform W (r) o ji(ker)/ker, wherej ()
is the first spherical Bessel function (see equation 2.2Rus, in real space, this
set of modes exhibits a (decaying) sinusoidal oscillatather than the sharp real-
space top-hat used to deriyg;;. Thus, at least in principle, we cannot hope to
have the simultaneous advantages of real-space top-Ipatsifisally, the simple
spherical collapse criterion) arkdspace top-hats (uncorrelated steps in the random
walk). Nevertheless, we may brush this inconsistency essdeaming that the two
different filters are close enough to be compatible. The quification for such
an approach is its eventual success and its simplicityoath more self-consistent
approaches are possible, they fare no better in the end.

Itis now easy to re-derive the Press-Schechter mass funaticduding the previ-
ously unexplained factor of two. The fraction of mass eletsércluded in halos of
mass less thai/ is just the probability that a random walk remains betw (z)
for all k. less thank ., the filter cutoff appropriate td/. This probability must be
the complement of the sum of the probabilities tf@tdy; > d..i¢(z) and that(b)

O < Oerit(z) butdpsr > deit(2) for someM’ > M. The first is immediately
obvious: since the distribution @, is simply Gaussian with varianeg (M), the
fraction of random walks falling into clags) is simply
1 > 2 2
Da Noro ~/6C,;t(z) dé exp{—06</20°(M)}. (3.42)

The second class can also be easily computed. In fact, teseases have an
equal probability: any random walk belonging to cléassmay be reflected around
its first upcrossing of..i(z) to produce a walk of clag®), and vice versa. Hence,
the fraction of mass elements included in halos of mass ess\ at redshiftz is
simply

feonn(< M) =1—2p,, (3.43)
which may be differentiated to yield the Press-Schechtessnfanction, equa-
tion 3.40. This approach better shows the physical origithefextra factor of
2: many of the mass elements magpearto be in local underdensities but have
actually already been incorporated into larger collapsads

3.5.2 The Extended Press-Schechter Formalism: Conditioh&lass Functions
and Accretion Histories

The other advantage of the excursion set approach is thidwsaus to examine
how halos relate to each other. First, consider how halosaredshift are related

VThis implies a comoving volumér?2 /k2 or massém?py, /k2. The characteristic radius of the
filter is ~ k21, as expected.
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to those at another. Suppose that a halo of midssexists at redshift,. Then
we know that the random functian, for each mass element within the halo first
Crossed.it(z2) at k.o corresponding td/s.

Given this constraint, we may study the distributionkgfwhere the function
oy crosses other thresholds (keep in mind thay is a function of redshift, so
these other thresholds tell us about either the progenitotdescendants” of the
given halo). Itis particularly easy to construct the probsidistribution for when
trajectories first cross somkg,it(z1) > derit(22) (implying z; > 2o, or the halo
progenitors); clearly this must occur at sokg > k.o or My < Ms.

Fortunately, this problem reduces to the previous one if wiply translate the
origin of the random walks front., d57) = (0, 0) to (kc2, derit[22]). We therefore
compute the distribution of halo masskg that a mass element finds itself in at
redshiftz1, given that it is part of a larger halo of maas, at a later redshift,:

dP
d—M(MhZﬂMz,Zz) =
\/? Ocrit (21) — Oerit(22) | do(My) o [Ocrit(21) — Oerit (22)]?
7 [02(My) — 2(Mo)P2 | bty | P\ 2[02(My) — o2 (Ma)] |
(3.44)
This may be rewritten as saying that the quantity
1~) _ 5crit(zl) - 5c1’it (ZQ) (345)

Vo2 (M) — o2(M>)
is distributed as the positive half of a Gaussian with unitarece; equation (3.45)
may be inverted to find/; (v).

We can interpret the statistics of these random walks asetbbsnerging and
accreting halos. For a single halo, we may imagine that asoNgagk in time, the
object breaks into ever smaller pieces, similar to the bnargcof a tree. Equation
(3.44) provides the distribution of the sizes of these bhasat some given earlier
time. One can then imagine using this description of the reb$e distribution to
generate random realizations of the merger histories @fisihalos — or “merger
trees.” One recursively steps back in time, at each stefkiomgéhe final object into
two pieces, choosing a value from the distribution of equra8.44 to determine the
mass ratio of the two branches.

Unfortunately, this has proven to be difficult in practiceartof the problem is
conceptual: one might want to define “merger rates” by takivglimit of equa-
tion (3.44) aszo — z;. However, one immediately finds that the resulting rate is
not symmetric in the Press-Schechter theory: the rate atwdibjects of mass/
merge with objects of mask/’ is not equal to the rate at which objects of mass
M’ merge with objects of mas®/! The root of the problem is that, even with the
excursion set approach, the Press-Schechter formalisswdualivide dark matter
particles into discrete objects; rather it simply compuitesstatistical properties of
the ensemble. Unfortunately, quantities like the mergeer iraplicitly assume that
the objects do sit in discrete objects and ignore smoottetioerof diffuse matter.
N-body simulations are the most reliable tool for followithge merger statistics.

Nevertheless, we may use the distribution of the ensembietive some ap-
proximate analytic results that at least provide a helptutlg. A useful example
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is the distribution of the epoch at which an object that hasané, at redshiftzo
has accumulated half of its mass. The probability that thea&tion time is earlier
thanz; can be defined as the probability that at redshith progenitor whose mass
exceeds\/, /2 exists:
MMy, dP

P(zp > 21) = \ia2 M 40 (M, 21| M3, z2)dM, (3.46)
wheredP/dM is given in equation (3.44). The factor df; /M corrects the count-
ing from mass-weighted to number-weighting; each halo afsn#, can have only
one progenitor of mass greater th&h, /2. Differentiating equation (3.46) with re-
spect to time gives the distribution of formation times. €ale the excursion set
formalism provides a reasonable approximation to more texamerical simula-
tions of halo assembly and merging histories.

3.5.3 Improvements to the Press-Schechter Formalism

The above simple ansatz was refined over the years to proviiddter match to
numerical simulation. In particular, the Press-Scheaitess function substantially
underestimates the abundance of the rare massive halesi@épat high redshift)
and overestimates the abundance of low-mass halos.

There are two key areas in which the Press-Schechter agpoaacclearly be
improved. The first is the mismatch in filter choice betweenrimdom walks and
the spherical collapse model. However, more self-consistb initio approaches
do not significantly improve the results, even at the cosigiiicantly increased
complexity.

The second approach is to refine the spherical collapse nitsdHl as we will
see in the next chapter, dark matter structures rarelygsdigdymmetrically, and so
it is possible to improve the threshold density:.(z) by including a more accurate
physical description. The best motivated such approaahasiow ellipsoidal col-
lapse, in which the three axes of the object collapse atréifttimes. The torques
driving this collapse are set by the halo’s environment,chitdepends on the halo
mass itself (as will be shown #8.6). This means that the collapse threshij{§
is a function of not only redshift but also halo mass, and satisorbing barrier in
the diffusion problem is no longer a constant. In particulae threshold increases
as halos get smaller: this increases the abundance of redssivs and decreases
the abundance of small halos, just as needed.

However, the match to numerical simulations is still nofeet; so it is now most
common to simply use a fit to these results; fortunately,ietaimulations show
that the resulting function can stilearlybe phrased as a function af. Fits of the
form

dn 2a’' pym —d(Ino) 1 2
o A/ = m Ty, a'v:/2

dM x M dM (@v2)e | © :
which is closely motivated by ellipsoidal collapse, penforeasonably well. The
best fit to simulations of this form i’ = 0.75 and¢’ = 0.3, and where proper
normalization is ensured by adoptiaj = 0.322. Refined numerical simulations

(3.47)
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Figure 3.5 The collapse fraction of dark matter halos at higshifts. The solid curves
show f.oin computed from the mass function of eq. (3.47), which is nadé&d by
ellipsoidal collapse with parameters determined by a fittmarical simulations.
From top to bottom the three curves show the fraction of madsaios with
Tvir > 103, 10%, and10® K. The dotted curves use the original Press-Schechter
formin eq. (3.39).

show that even more complex fits, in which the universal ddpeoe on/, breaks
slightly, are necessary, with the fitting parameters dejmgndn redshif® Re-
sults for the associated comoving density of halos of diffiémasses at different
redshifts are shown in Figure 3.4.

Figure 3.5 also showg..11, or the fraction of mass above a given threshold (here
shown as a function dfy;,). The solid curves take the improved mass function
in equation (3.47), while the dotted curves take the simfiet less accurate)
form of equation (3.39). The three sets of curves show thetifma in halos with
T > 103, 104, and10° K. We will see later that the middle value here corre-
sponds to the threshold for efficient star formation bef@ienization, while the
last is approximately the threshold for star formation afegonization. Note that,
in all cases,f.. increases extremely rapidly at high redshifts, since (astlat
z > 10) all of these halos are far on the exponential tail of the nfiasstion. Also
note that the simple Press-Schechter prescription tendsderestimate the abun-
dance of high-mass halos — and thus drastically underetgtifng when halos are
rare — but slightly overestimates the abundance of low-rhagss (visible in the
Tic > 102 K curves neag ~ 5).
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3.6 HALO CLUSTERING IN LINEAR THEORY

To this point, we have computed tlawerageabundance of halos throughout the
universe. But of course the universe is not perfectly smaoaotharger scales, and
we naturally expect that large-scale overdensities havavarabundance of halos
relative to the average, and that large-scale underdessir voids) have a deficit.
This clustering is an extremely important aspect of halos in the real unajezs-
pecially at high redshift.

The excursion set formalism allows us to describe this ehirgg in detail, at
least to linear order. A large-scale overdensity corresjgdnd > 0 across a large
but finite mass\/,. We then imagine our halos forming out of the material within
this mass (similarly to a region carved out from a universtai higher value of
Q). We can solve the related diffusion problem just as for theditional mass
function, simply by changing the origin of our random walksrh § = 0 which is
appropriate fol/ — oo to § within our region. The small head start these modified
initial conditions provide to halos in overdense regions lsa extremely important:
recall that the density distribution itself is Gaussiang ao the abundance of rare
halos is exponentially sensitive to the underlying den$ig now wish to describe
this dependence, often called the “peak-background spli&ntitatively.

First, we should keep in mind that the Press-Schechter appm@ives theomov-
ing number density of halos or the number density of halos penuass rather than
the more observationally relevant number per volumeAn overdense region with
densityd, = (p/p — 1) > 0 fills a smaller volume, by a factdd — ;). Thus, we
expect the halo density tappearlarger even if the total number of halos remained

constant:
on %
- = 1= 3.48
( n )halo V(]' - 51)) ’ ( )

This is the same factor by which the dark matter densityfitdehnges, so if this
were the only effect the halos would be @nbiasedracer of mass.

Next, we solve the usual diffusion problem with our modifiadial conditions;
for simplicity we will assume thaf\7, is sufficiently large to have?(M;) <
o?(M). As with the conditional mass function, the solution is itiesl to the usual
form except that

5crit - 5c1’it - 51} or Ve — (d:rit - 51})/U(M) (349)

We can therefore immediately write down the abundance inmg¢g®n. However,
it is most useful to consider a small overdensity < d..;; and Taylor expand
about the average result. Note that we have takgnto be a function of redshift
and used densities linearly extrapolated to the presentWlaymust therefore also
extrapolatel) = &,(z)D(z). Expanding in a Taylor series:

dn .. dn dn dv, 5

anr % )”WJ’deuchg bt
Using the original Press-Schechter mass function for soitplthe halo abundance
changes by a factor

(3.50)

B 2
AL P i 1 (3.51)
n |pg oV,
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Canceling the growth factors that appear in batlandsy, we obtain
on 2 —1
—| = =——8&(2). 3.52
m |pg 5o(z =0) v(2) ( )

Combining this effect with the change in volume (equatict8}, we get

S 5) = [+ bm)ay) (3.53)
where
bps(M) =1+ Q (3.54)
0c(2=0)

Obviously, because,. depends on mass implicitly through(1/), the bias also
depends on the halo mass. Recalling thas a decreasing function of mass, we
see thab will increasewith halo mass: the abundance of larger halos fluctuates
more than the abundance of small halos. This is becausevadsalios are on
the exponential tail of the density distribution, so that #mall boost provided by
the overdense region has a large effect. Similarlyis an increasing function of
redshift, so halos of a given mass become more biased e@rlggarsmic history,
when they are rarer. As a result, it is not simply th&al abundance of halos that
changes with background density: thleapeof the mass function also changes,
leaning more heavily toward massive halos in dense enviesrsn

We have evaluated the bias for the Press-Schechter mag®fyrane can per-
form a similar exercise with the more accurate mass funstescribed ir§3.5.3.
For example, the mass function of equation (3.47) yields,

2
_ qui —1
bst(M) =1+ 750(2 — 0). (3.55)

This result has the same qualitative trends as the earlgression, although mas-
sive halos tend to be somewhat less clustered and small batoswhat more.
Figure 3.6 shows the bias for this model over the same masseaistiift ranges
as Figure 3.4. Note that galaxy-mass haldg ¢ 102M) can be quite highly
biased during the era of the first galaxies, while very smalb are “anti-biased
(bsT < 1) at late times. These halos tend to form in underdense regimtause
those in overdense regions have already been swallowedd®r laalos.

3.7 THE NONLINEAR POWER SPECTRA OF DARK MATTER AND GALAX-
IES

3.7.1 The Halo Model

We have now assembled several powerful ingredients in i#sgrthe distribution

of matter in the Universeg(i) the mean abundance of halos as a function of mass and
redshift; (i) the clustering of these halos; afiii) the radial structure of these halos
(the NFW or Einasto profiles). The first two of these ingretbeare constructed
from linear theory; the third is taken from numerical sintidas but is remarkably
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Figure 3.6 The linear bias of halos as a function\éfat different redshifts.

simple. We can now assemble these ingredients into a filstatteomputing the
statistical distribution of matter even in tm®nlinearregime through a powerful
approach known as thealo model

The idea is to describe the power spectrum (or, alterngtivte correlation
funciton) or dark matter by conceptually dividing all the ttea in the Universe
into halos of some — often very small — m&s&ecause the NFW profile describes
the structure oéachof these halos, and the excursion set formalism descrileds th
abundance and statistical distribution, we can use thisi@d¢o compute the cor-
relations between any two dark matter particles.

Before proceeding, we first write the NFW profile for a halo ofal massM in
the simplified form

Ps
rim) = , 3.56
for » < ry; and zero otherwise, where labels the mass of the appropriate halo
andrs; = ryi/cy. We define a normalized density profie= p/M, so that the
integral over all space is unity. To compute the power spattwe will work in

ViThis follows naturally in the excursion set formalism, whany trajectory mustventuallyexceed
an arbitrary threshold,.; if 2 — oo for M — 0 in an arbitrarily-cold dark matter.
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Fourier space; the Fourier transformwfr|m) is

T 7"3
w(k|m) = % {sin(kry) [Si([1 + Jkry) — Si(kry)]

sin(krg ) '
_ﬁ + cos(krs)[Ci([1 + c]krs) — Cl(krs)]} , (3.57)
where
Si(z) = /0 ’ %dt, (3.58)
Ci(z) =~ / N %Stdt. (3.59)

This is a rather unwieldy expression but can easily be coatpntimerically. To
gain further insight, it is useful to consider halos with Gsian density profiles and
width r,; then

ug(k|m) = expl—(kry)2/2). (3.60)

This is near unity fok: < 1/r before falling off at larger wavenumbers; the shape
of any realistic density profile is qualitatively similar.

Given our assumption that every dark matter particle liegthiwia halo, we can
construct the total density field by simply adding up the pesfof all the halos:

p(x) = plx = xilmi) (3.61)
=Zmiu(x—xi|mi) (3.62)
= Z / dm / d3z'6(m —my)d(x' — xi)mu(x — x'|m), (3.63)

wherei labels the different halos. In the last line, the integralsranass and space
simply fix the coordinates and mass of the halain
Now note the useful identity

<Z 5(m — my)d(x" — x1)> = n(m), (3.64)

where we writedn /dm = n(m) for brevity. This happens because the Dirac delta
functions in each volume appear a number of times equal totinger of halos
(at each mass) per unit volume. So the mean density is

p= / dm / d3a’ <Z 5(m —m;)d(x" — xi)> mu(x —x'|lm) (3.65)

:/dm mmn(m). (3.66)
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3.7.2 The Correlation Function

Next, let us use the same approach to calculate the seconeémgame correlation
function, {(x — x’) = (§(x)d(x’)). Here we have two integrals over space; the
spatial average will act on

<Z 5(m1 —mi)é(xl —Xi)é(mg —mj)é(xQ —Xj)> (367)
i,j

Although analogous to the averagepirthis expression is much more complicated,
and to evaluate it we must split it into two components, naigd by our picture of
all particles sitting inside of halos. In that case, the taatigles whose correlation
we seek can have two qualitatively different configuratidfisst, they can sitinside
the same halo (so that the labels are the samej), in which case the halo density
profile determines their correlation. Here we are summinigdvwover the same
halo, so this part of the average is

n(m)d(mi — mo)d(x1 — x3) (3.68)

In the double integral, we therefore have
/dmmzn(m)/d3x1 /d3x2 5(x1 — x2)u(x — x1|m)u(x’ — x3|m)
= /dmen(m)/d3x1u(x—x1|m)u(x' — X1|m)

- /dmen(m)/d3yu(y|m)u(y +x' —x|m) = p*€n(x — x') (3.69)

where in the last line we lgt = x—x; and define thene-halo correlation function
&1n,- We see that this term is the convolution of two density pesfiweighted by
the halo’s mass squared. This is just the integral over alspd particles within
the halos.

The second possibility is that the two particles lie in sepahalos; this case
corresponds to the off-diagonak j part of the double sum. The spatial average
compares the locations of two halos of known separationjtdyetomes

n(my)n(msa)[1 + &n(x1 — Xa2|m1, ms)] (3.70)

where&,, measures the correlations between the halos themselvesin&tely,
we can easily compute this, at least when linear theory appliie know the linear
dark matter power spectrum and hence correlation funcér), and we know
from §3.6 how the halo densities reflect the underlying densiteréfore

Enn(x — X' |m1, ma) = b(m1)b(mz)&in(x — x'). (3.71)

Note, however, that although equation (3.70) is generalaggn (3.71) assumes
that fluctuations in the halo distribution remain linear.isTts not necessarily the

case at high redshifts: even though the dark matter densityutitions are very

small, the halos can be so biased thathh fluctuations are nonlinear (see Fig-
ure 3.6). One must be cautious with using linear theory is teégime.
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In any case, these off-diagonal terms become
/dm1 min(my) [ dms mgn(mg)/d3x1 /d3x2 w(x — x1|mp)u(x’ — xz|ms)

X [1 + fhh(Xl — x2|m1, mg)]

= 7% + Ean(x — X)), (3.72)
where thetwo-halo correlation functiorg,;, describes correlations between parti-
cles in different halos. For some physics insight, suppbat halos are sharply
peaked compared to the separation of interestxor x| > ry;,. Then we can

approximate the profiles as delta functions, and the integrgerx are easy. We
therefore get

Eop(x—x') %f(x—x')/dml %b(ml)n(ml)/dmg %b(mg)n(mg) (3.73)

This is just the normal dark matter correlation functi@nweighted by the bias
squared of all halos.
To compute this average, it is simplest to transform theginramon variable to.:

_ “ Ve — 71/2/2
14 \/; [ dve [7&:’% - 0)} e (3.75)
—1 (3.76)

where in second line we usen(m)dm = p\/2/me""/2dv. In hindsight, this is
obvious: because all dark matter particles are in one hadmother, the net bias of
the halo population relative to the dark matter must be zero!

Finally, combining the diagonal and off-diagonal terms vitain the total non-
linear correlation function:

E(x—x') =&p(x—x) + Eaon(x — X). (3.77)
Again, this form has a simple physical interpretation: tled result is the sum
of correlations of particles within halos, and those betwhalos. The relative
importance of the two terms depends on the separation: Wwhenx'| < r, the
particles sit inside a single halo g, dominates; on much larger scal&s;, is

more important. On sufficiently large scales for linear ttygo apply, the latter is
very easy to compute in terms of the linear-theory dark matterelation function.

3.7.3 The Power Spectrum

To obtain the power spectrum, we must simply take the Fourgrsform of¢.
Because that is a linear operation, we again obtain sepamatéialo and two-halo
terms, with a total power spectrum

P(k) = Pin(k) + Pon(k). (3.78)
The former is straightforward, since it is a simple convimnt

Pyy(k) = /deW(mm)P. (3.79)
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The two-halo term is not as trivial. For simplicity, we wilbéus on the case in
which equation (3.71) applies. First note that it is only adiion of the separation,
so we letx = 0 and write (ignoring the integrals over mass and bias for now)

€an(r) o / d’z, / dP (= |m1)u(r — x2|m2)€in (x) (3.80)
Bk d3k d3k: i
:/ﬁU(kﬂml)/ﬁu(kﬂmﬂ/ﬁplin(k:i)@lkz'(&m)
></d3x1eim(kl+k3)/d3xze*ix2(k2+k3) (3.82)
d3k3 —iks r
= | Gy (Kalmo)u(—ks|ms) Fin (ka)e ™", (3.83)

In the second line, we took the Fourier transform of eachg#ew collected expo-
nentials, and in the last we note that the integrals eVeF are simply Dirac delta
function. Inserting the mass integrals again, we have

2

Pon(k) = Pn (k) [ [ dm Zotmpntmyutitn)| (3.89)

where Pj, (k) is the linear theory power spectrum. Of course, wi§gn cannot
be written simply according to equation (3.71), the expgomss$or Py is more
complex, although the general form of equation (3.78) afilblies.

Let us summarize what we have accomplished. We began withnir the-
ory predictions for halo abundances and clustering. By Biradding the density
profile of each halo (chosen from numerical simulations,ithlo model ansatz al-
lows us to compute theonlinearpower spectrum of dark matter from these linear
theory predictions.

3.7.4 Nonlinear Bias

Figure 3.7 shows the resulting power spectra predictiomsrange of redshifts as
well as a comparison to the underlyidg,, (k). Not surprisingly, on sufficiently
large scales the halo model prediction matcRgs(k) precisely: on scales much
larger than the halo size,(k|m) — 1. The factor in brackets in equation (3.84)
then becomes the mass-averaged bias, which is just unityafg, ~ P;,. Mean-
while, on these scaleB;;, ~ constant, is smalf! At large k, the one-halo term —
which describes the structures within each halo — dominédtbecomes more and
more important as halos grow over time.

Unfortunately, Figure?? also shows that, in comparison to detailed numerical
simulations, the halo model prediction is not terribly aeta on the “crossover”
scales between the one-halo and two-halo terms at highifesdsthis is because
the assumption of linear bias breaks down in this regimen@lgh the dark matter
fluctuations themselves are smalkat- 6 (see Figure 2.1), massive halos are very
highly biased (Figure 3.6). For example, at= 10 the typical (linear theory)

villn some applications of the galaxy power spectrum (see Beliwe constant value aP;;, may
not be small when the objects of interest are not very rare.
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Figure 3.7 Dark matter density power spectrum predictiorer @ range of redshifts. The

solid curves show the halo model prediction including oimgar bias, while the
dashed curves show the corresponding linear theory prendgct For thez: = 6
curves, we also show separately the one-halo and two-hahs tith the dashed
curves; these dominate at large and srhatespectively.
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density fluctuation on a comoving scalef/k ~ 1 Mpc iso ~ 0.3. But halos
with M > 10%M havebsr > 3, so their fluctuations are nonlinear. Although
such halos contain only a small fraction of the mass, theminear clustering is
responsible for most of the structure at moderate to smalesc

One way to account for these nonlinear effects is to conttheeexpansion of
equation (3.50) to higher order if3. However, that is not easily incorporated into
the halo model, because it requires incorporating highdemfluctuations — and
the expansion becomes unwieldy omee~ 1.

A more empirical approach is to allow for an “effective” sealependent bias
besr (k|m), which is most often measured by comparison to numericallgitions.
This function approaches the standard linear bias at gnimit increases monoton-
ically toward largek to reflect the nonlinear clustering of nearby halos.

One way to model this nonlinear bias is through the excursitnformalism.
Recall that the correlation function (and hence power spettrepresent the en-
hanced probability of finding a halo near another (usuallgase they lie in an
overdense region). We can compute this probability withgivenregion of total
massiM,, by assuming that the random walks for particles in the twae halos
in M—o space are completely correlated on scales larger tigand uncorrelated
on smaller scales. This gives the joint probability of firgltwo halos in the region,
which provides ascale-dependertiias. The predictions of this model matthy
from numerical simulations reasonably well.

3.7.5 The Galaxy Power Spectrum

The halo model approach is most often used to compute therppeetrum of
galaxies (or, more specifically, subsets of galaxies thdatiman observable sam-
ple). Here we usually consider each galaxy to be a markergmpsist: we do
not care whether the galaxy is large or small, just that ibbgé to our statistical
sample’

This necessitates just a few simple modifications to the &ism above. For
example, the two-halo term (equation 3.84) has a factomdhside each inte-
gral. This counted the number of dark matter particles msidch halo. Instead of
counting pairs of particles, we only care about pairs of gaks

2
P;ﬁl(/{;) = Pin(k) {/ dm%n(m)beg(ldm)ugal(Mm) , (3.85)
where(N|m) is the mean number of galaxies in a dark matter halo of maasd
we have included the nonlinear bias correctigin. We have also added two other
small adjustments: we normalize to the average numberyesfsjalaxies in the
sample,ng.1, and we include the profile of galaxies within the hailg,, rather
than the dark matter density profile
Similarly, the one-halo term had a factormf reflecting the weighting of pairs

Vil This is not a necessary condition of course: one could eesitypute clustering statistics weighted
by galaxy luminosity, for example. But that is rarely donemactice.
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of particles within that halo,

PEw - [ dmn(m)\ Y DI ) (3.86)

=2
gal
where(N (N — 1)|m) counts pairs of galaxies.

Clearly, to compute the properties of a given sample we neediditional func-
tion which relates galaxies to dark matter halos. T occupation distribution
can involve a great deal of the physics of galaxy formatiohicl we will discuss
in later chapters. However, the basic principles are redgtisimple; it is the appli-
cation to real surveys that involves the subtleties. Hestjs assume that each halo
can have two types of galaxies: a “central” galaxy and stasll The former typi-
cally exists if the halo exceeds some minimum mass threshigld, (for example,
the Jeans mass that we have already discussed, or the cowdisgythat we will
consider later); we can think of it as the halo’s “initial”lgay, tracing its history
along the largest branch at each merger.

Satellites constitute the remaining population: they liveide “subhalos” that
have not yet merged completely with the primary halo. Nuo@rsimulations at
low redshifts show that subhalos typically appear abovessotimer minimum mass
Moy > My, and their numbel; increases roughly proportionally to the halo
mass.

However, at high redshifts satellites are much less comnhatos simply are
not big enough to contain a substantial number of sub-gedaxind halos are suf-
ficiently small that even those with two merging galaxies rappear as a single
irregular source in a real survey. Thus, for most purposestake(N|m) = 1 if
m > Mpmin and zero otherwise.

It is somewhat more difficult to compute the one-halo termloat redshifts, the
number of satellites is found to be roughly a Poisson vagi@vhich is reasonable,
since merging is a somewhat stochastic process), sqMdtV, — 1)) = (N,)2.
This implies thatt N (N — 1)) = (N)? — 1, which is sub-Poisson at the low-mass
end. In the high-redshift limit, where satellites are unartpnt, the one-halo term
disappears because there is only one galaxy.

In addition to these terms, which arise because galaxies ttee density field,
we must also add in stochastic “shot-noise” fluctuationsiragi from the discrete
nature of galaxies: any such measurement is fundamentaiuating exercise,
S0 we expect Poisson errors in the galaxy number counts tadaan additional
source of fluctuations. In a volunié, the variance in the galaxy number counts is
therefore~ nV, so the fractional density fluctuation in a mode with wavebem
k will be A2 . ~ 1/nV ~ k3/n. A more precise derivation show3y,. (k) =
1/n,2tor

k3
2m2n’
This noise term contains no interesting physics and musetmved from an ob-
served power spectrum in order to study the interestingiphl/somponent tracing

the underlying density field. Fortunately, that is usualgy so long as one has a
reasonable estimate for the sample’s true number denstyr(Viurvey > 1).

Al = (3.87)
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3.8 NUMERICAL SIMULATIONS OF STRUCTURE FORMATION

Although the models we have discussed in this chapter afelusigey inevitably
fall short of a complete description of the structure andaiyits of dark matter and
baryons in an expanding Universe. Each dark matter partésiponds to the gravi-
tational force from every other particle within its causatizon, and the dynamics
of baryons is also affected by their gas pressure gradiedtigeraction with pho-
tons). A comprehensive description of this problem is fardrel the capabilities
of any analytic model.

Fortunately, the rapid increase in computing power oveptst several decades
has enabled numerical calculations to address this clygle@omputers are par-
ticularly well-suited to this endeavor, because they cagilyaalculate the simple
physical interactions between many particles. Althoudlo¥ang the behavior of
individual dark matter particles is still not feasible, nemcal simulations can now
(as of 2011) follow the dynamics of 10'° particles over long periods of cos-
mic history. The fundamental idea behind cosmological mizaksimulations is
to discretize the density field(x) into a large number of particles or grid cells
and follow their evolution, incorporating as many physipabcesses (preferably
from first principles) as possible. This allows detailed pamsons of theoretical
predictions with observations as well as the study of “eraetgphenomena” that
depend upon the interaction of many physical inputs and saataeasily be pre-
dicted from analytic models. Nevertheless, one must alvigags in mind that a
numerical simulation is ultimately no better than the pbgsinderlying its compo-
nent algorithms, and it is crucial to understand those imjpubrder to assess the
the reliability of linking simulation results to observallin the sky.

Numerical simulations have been instrumental to undedétgriarge scale struc-
ture, the Lymanx forest, the formation of the first stars, and a number of other
topics that we will discuss. In the remainder of this sectige will briefly discuss
their most important features and limitations. We will, reaxgr, defer discussion of
computational radiative transfer to chap®Yand focus here on gravitational and
gas dynamics.

3.8.1 Gravitational Dynamics: N-Body Codes

The simplest problemis to follow the gravitational intetrans of cold collisionless
particles in an expanding Universe. If we have a collectibvgarticles with par-
ticle massn, each labeled by indexand a comoving position and peculiar velocity
(xi, u;), this amounts to solving the equations of motion (c.f., ¢igna 2.2-2.3)

dxi
= 3.88
U (3.88)
d;i +2H(t)u; = —a" 2V, (3.89)

where the gravitational potential is determined by the Swisequation (2.4). To
solve this problem, we discretize time into a sequencand assume that we know
the initial valuegx; (¢1), u;(¢1)] for all particles. Then the future configuration can
be solved by numerically integrating the above system.
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The key point is to determine the force on each particle; tieial element in-
volves choosing an integration scheme that is both stalder@sistant to secular
numerical errors. The simplest such scheme is knownlaagrogapproach, be-
cause it uses two different sets of discretized times fodtfierent input quantities.
For example, suppose we know the position at a tijmand wish to know it after
a single timestep, at,+1 = t, + At. As an intermediate step, we compute the
position and accelerationy of particles att,/, = t, + At/2:

Xi(tn + At/2) =% (tn) + Wi(tn) AL/2, (3.90)
a(ty + At)2) =alx;(t, + At/2),t, + At/2)], (3.91)

where the acceleration at the intermediate time dependsthygpredicted location
of the particle then as well as the locations of all the othatiples. We can then
compute the new position and velocity at the final titge; using the acceleration
at the intermediate time,

u; (tn,+1) =Uu; (tn) + a; (tn, + At/2)At, (392)
xi(tn+1) :xi(tn) + [ui(tn) + ui(thrl)]At/Q' (393)

This is superior to Eulerian integration schemes becauseyéaluating the accel-
eration at the midpoint of the timestep, it improves timeersibility and better
preserves the phase space properties of the particle .orbits

This scheme requires computing

~Vo(x;) = szlxz—le?’ (3.94)

for each particle. However, the computational time reglibe calculate all these
forces scales a&2 and is prohibitive even for modest size systems. Modernsode
use one or more tricks to simplify the calculation. The mastightforward is a
tree algorithm, which groups distant particles into sets (with the grouge gjener-
ally increasing for more distant particles). The graviaatl force from each group
can then be estimated using a multipole expansion. Growggggithms can speed
up the calculation to scale with particle numbeMasg N.

A second trick is to use a Fast Fourier Transform (FFT) atharito compute
the force on a grid, a technique known gsaaticle-mesh (PM) algorithm. In this
approach, the particle mass distribution is smoothed angpedonto a uniform
mesh. Poisson’s equation can then be solved rapidly via angtbvided that the
computational box is assumed to have periodic boundaryitionsd. The force at
each grid point follows via an inverse Fourier transfornrmdiiy, the force at each
particle location is computed via interpolation. This agaarh scales linearly with
particle number, but the practical limit is often dictatgddomputer memory, since
the mesh resolution ultimately determines the force aayur@his approach does
not, however, deal with highly clustered particles verylwalcompromise, called
P3M, adopts direct summation at small separations and a sdragaptive grids,
is often used instead.

There are three effective resolution limits 8itbody codes. The first is the par-
ticle massn, which obviously determines the smallest object that carebelved.
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Typically, > 103 particles are required to determine the density profile ofialv
ized halo reliably, and many orders of magnitude more tolvesits substructure
in detail.

A second limit emerges from the discretization of the dgniéld: the point
mass force calculation in equation (3.94) causes largécaitideflections when
particles pass very close to each other. This is unphysieediise the particles
should actually be distributed over larger volumes. Tovédl this problem, codes
introduce dorce-softeningarameter such that the force scales@s$ + £2). This
limits the maximum resolvable density contrast(tjc)?, where/ is the mean
particle spacing. For most modern codes, this lies in thgegan203-503. For PM
codes, the force limit is roughly twice the grid spacing, dese it depends on the
gradient of the potential across that grid.

The final limit comes form the requirement that the numerigtdgration time
remain stable. Crudely, this requires that the timestepsulfeciently close so that
the first-order approximations intrinsic to the integraticonverge. Equivalently,
the series

X(tion) = x(t:) + u(t:) At + %a(ti +AH2)AL + .. (3.95)

must converge rapidly. Here the force per unit mass is tyjgievaluated at the
midpoint of the particle’s trajectory in order to improvebtlity and convergence.
The ratio of these terms suggests

At=kZ, (3.96)
al
wherek < 1 is an imposed tolerance parameter anis the typical velocity dis-
persion of the particles in the simulation. This is knowntesQourant-Friedrichs-
Lewy conditior(often referred to as the Courant condition).

3.8.2 Hydrodynamics: Grid-Based Approaches

Extending the calculation beyond dark matter increasesfgigntly its complexity,
because the trajectories of baryons are shaped by hydrodgharces in addition
to gravity. In particular, converging gas flows can lead @ development of sharp
discontinuities (shock fronts) whose accurate treatmegptires high spatial reso-
lution. The complete fluid equations can be written (in praqmordinates) as

ap B

ov 1

E + (V : V)V— -V — ;Vp, (398)
%+V.V€Z_BV.V+M, (3.99)
ot p P

These represent the conservation of mass, momentum, aciflspaergy (per unit
mass)e, respectively. In the last equatiof, and(@ are the radiative heating and
cooling rates per unit volume, respectively, and we haveiigd any other internal
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heating mechanism. Alternatively, the energy equation lmameplaced with an
equation for the entropy per unit mass

pT (% +v- Vs) =(H — Q). (3.100)

We have written these equations in Balerianform, in which the spatial coordi-
nate system is fixed. An alternative id.agrangianapproach, in which the coor-
dinates move with the fluid elements. In this case, the apjatgpderivative is the
convective derivative

D 0
i = 5 +v-V, (3.101)
so that, for example, equation (3.98) simplifies to
Dv 1
— =-V& - -Vp. 3.102
D1 \% pr ( )

There are two common approaches to solving this system @items. The first
is to divide space into a uniform grid and to solve the hydraiyic equations
for cell-averaged quantities at each grid point. This Hatescheme is attractive
because the mass, momentum, and energy components of thedlutions can
all be cast as flux conservation laws

9q
ot +V-F=0, (3.103)
wheregq is the (cell-averaged) density momentum densityu, ,, ., Or total energy
densityp(s + u?/2) andF represents the flux of this conserved density across the
cell boundaries. This formulation lends itself naturallygrid-based methods: it
means that to track the evolution gfat a particular location we need only keep
track of the fluxF through each of the cell boundaries. Labeling cells by aexnd
k and assuming they ar®/ across, we have
At &
gi(t+ A = gi(t) + ;[FM@ ~ Fr(t)], (3.104)
where the indiceg label the three axes of the cells ahi, represents the flux
along thei direction between the cell of interest and the next cell im plositive
fth direction (andF,_ the flux in the negativéth direction). Formulating the fluid
equations in this way has one important advantage over tned dgferential forms
mentioned earlier: when fluids develop sharp discontiagjtike shocks, the latter
break down. Instead, the fluid must be followed with intedoains like equa-
tion (3.103), which in the case of shocks are known as the iRarttugoniot jump
conditions.
The subtlety in grid-based methods lay in ensuring numksiility for the
solutions. For example, the most naive approach to estiméted variable@ at
a cell interface is to simply take an average with the cedlraged quantities in the
neighboring cell (€.9.Qr+ = [Qkr+1 + Qk]/2). However, this simple approach
is in fact unstable, and more sophisticated algorithms egeired. One common
strategy is to approximate the calculation aRiamann problenfalso known as
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a shock tube), in which a fluid quantity is constant over twgioas with a dis-
continuity in between them. Provided that the system obeyservation laws of
the form in equation (3.103), Riemann problems can be saxedtly in terms of
characteristicshat propagate at known speeds in either direction; thistes@u-
tion can then be leveraged to efficiently calculate the dimtuin more realistic
circumstances. (For example, an initially uniform gas veittharp edge adjacent to
vacuum would flows into the vacuum at the sound speed, whieedaction wave
would travel in the opposite direction through the gas, alsiive sound speed.)

One popular technique for leveraging the Riemann probleikn@vn as Go-
dunov’s scheme. One approximates each cell by its averdge &ad then solves
the Riemann problem at each of its interfaces. The resultiages can then be
propagated into the cell and its new properties calculatedlater time. In order
to avoid the waves colliding and interacting with each otttee timestep must be
limited by

At = Eguia (Az/ 2) (3.105)

S

wherec, is the sound speed aitg,iq is a dimensionless constant.

Another example is thpiecewise parabolic method (PPMyhich uses a parabolic
function to interpolate a fluid variable across a cell andhitsediate neighbors (it
is thus a third-order extension of the basic Godunov methddie algorithm is
constructed so as to mimic the propagation of nonlinear wavéhe fluid system
and to accurately capture shocks. Unfortunately, intexfiarh can also induce spu-
rious oscillations when the fluid quantities change rap{dlthey do, for example,
in shocks). These too can make the solutions unstable. On@éegefore introduce
a numerical dissipation scheme to damp these fluctuatiodtesnatively enforce
aflux (or slope) limiterthat forces spatial derivatives to remain within reasoeaabl
bounds.

The disadvantage of grid-based approaches is that the eg@ution must be
uniform, whereas thelesiredresolution may vary across the simulation volume
— for example, the relevant spatial scales are much smadiar & collapsed dark
matter halo than in a large void. Thus, one “wastes” compariat resources in
some regions. A common solution to this problenagaptive mesh refinement
(AMR), in which finer grids are introduced as necessary to submekiof the
computation.

The fundamental idea of AMR is to demand that the local griacspy adjust
“on-the-fly” to the physical conditions within the fluid. Fexample, if a dark
matter halo collapses to high density and accretes barylomphysical resolution
must increase in order to follow the flow. Meanwhile, the titeg required with
a smaller grid will shrink dramatically according to equeti(3.105). AMR codes
spawn smaller meshes that are stepped at higher rates, thileackground grid
continues its slow evolution in low-density regions. WHAIBIR does allow a dra-
matic increase in the dynamic range of grid-based calanatithe spawning of
grids is an imperfect process that leads to some subtle ncah@roblems when
the resolution increases discontinuously, especiallyojpuybating the initial condi-
tions of small-scale modes originally absent from the paged.
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While AMR solves the most glaring problem with grid-basegm@aches in as-
trophysics, these codes suffer from some other importaottabmings. Foremost
amongst them is the lack of Galilean invariance inherentuithsmethods: be-
cause the advection terms in equations (3.97)—(3.99) atelad explicitly, they
inevitably contain numerical errors that depend upon thgmitade of the bulk ve-
locity relative to the velocity dispersion (which can begar for example, galax-
ies merge at velocities comparable to or greater than their welocity disper-
sions). This creates numerical viscosity and diffusiort thalate Galilean invari-
ance. Without large physical transport coefficients, thregeerical artifacts are in
fact the leading order terms, so even the qualitative smhstimay be questionable
under some circumstances. In general some amount of dissipa helpful, but
limited resolution or high bulk velocities will cause overixing. Similar artifacts
also appear whenever the bulk velocity is much larger thartliermal velocities;
these can be remedied with a careful choice of the refereaossf but not entirely
removed.

3.8.3 Hydrodynamics: Particle-Based Methods

The alternative to grid-based approactsespothed particle hydrodynamics (SPH)
discretizes the fluid field and implicitly adapts the resiointo the local fluid prop-
erties. Itis more naturally suited to problems with a higinamic range of density,
but it also faces its own set of challenges.

SPH methods formally aim to recover a smoothed vergjgmof a fluid fieldQ,

Qs(r) = /dgr'Q(r)W(r -1’ h), (3.106)

whereW (r, h) is a smoothing kernel, witth describing its characteristic width.
Most commonly, this kernel has a cubic spline form witi(r, ) = w(r/2h) and
1—-62%2+62%, 0<x<1/2,

w(r) = —=¢ 2(1—2)3, 1/2<2<1, (3.107)
0, 1<

Note that each particle therefore has a finite “wid2#’in this scheme.

Now suppose that we know the fluid properties at a set of pojnid/e associate
particles with each of these points, assighing masso as to conserve the total
mass in the field and densitigs such that the volume between the particles is
~ m;/p;. We can then estimate the smoothed fi@ldby a summation over these
particles, so that equation (3.106) becomes

Qs(r) = 3 ZEQIW (r =i, ). (3.108)
k
This sum is accurate so long as the kernel wititexceeds the (local) particle
spacing. More precisely, one can set the density of partiat¥

pi = Z miW (r; — ri, hyi), (3.109)

X Note that we choose one scheme here for concreteness, bt atie sometimes used as well.
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whereh; is set so as to ensure that each particle has a fixed “ma$™=constant.

This ensures that the number of neighbdfg,;, within its kernel is also nearly
constant. This is the key advantage of SPH approaches: @éuwamatically adjust
the degree of smoothing to the density of particles, foqutie “high-resolution”

part of the calculation in volumes where it is most needed.

Equation (3.108) is generally taken as the SPH estimatenfpflaid field. The
derivatives of such a field can then easily be calculatedh@g tequire only the
derivatives of the kerndll’), and from them one can construct discretized versions
of the fluid equations. For example, equation (3.97) becomes

Nughb

Dv; Di Pk
=—-Vo¢ - mg (——i——) ViW(r; —rg,h), (3.110)
Dt ; "\p? (re = xx, )

whereV; is the gradient with respect to the coordinates. Unfortunately, this
straightforward approach contains a number of subtletigtsipractical applica-
tion regarding bookkeeping between particles, smootténgths, etc. Here that is
reflected in the loose notatidi (r; —ry, k), which does not specify the smoothing
length to be used in the derivative (namely whether it agplieparticlei or k).

The most popular astrophysical codes therefore take atlsfigifferent approach
by noting that the fluid equations (3.97)—(3.99) follow fr¢ime Lagrangian

L= /d3rp (g - 5) : (3.111)

which itself can be easily discretized,

v |2
Lspu =) (W';"' - mm> , (3.112)

%

where the thermal energy of a given particle is assumed tertpnly on its en-
tropy. For now we will assume that entropy to be constant, (e will neglect
shocks and other dissipative processes).

The advantage of this Lagrangian formulation is that it caaightforwardly
incorporate the constraipth? =constant to define the smoothing length, as in any
system of particles in elementary mechanics. Followingstamdard Lagrangian
procedure, the equation of motion for this system is

Nngb
DVZ‘ 7
- = Vo-— Z my <f7p—2V7W(I'z — 1, hi) + fk:p—];ViW(I‘i - I'lmhk)) )
Dt — P; Jops
(3.113)
where
hi 9pi\
=1 3.114
d ( * 3p; 8hi> ( )

arise from the constraint. Note the similarity to equati@nl(0); this slightly
more complicated form implicitly includes the particle aonting without much
increased complexity, and the direct derivation from amiszed Lagrangian man-
ifestly conserves linear momentum, angular momentum, aecyg.
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Although elegant, this approach has one key weakness: gabyehssuming a
constant entropy it does not allow shocks or other forms sdigation. The above
equation must then be supplemented withadificial viscosity that re-introduces
these features. Perhaps surprisingly, it is relatively éagormulate this viscosity
in such a way that it generates the proper additional entedgmhocks, so long
as the prescribed viscosity conserves momentum and ergrgyfollows because
the shock jump conditions (and hence macroscopic fluid bk are independent
of the transport coefficients such as the viscosity. Howe8&H codes cannot
resolve the structure of the shock itself unless the visgqgsrameter reflects the
microphysics of the gas; typically, shocks are much broad8PH treatments than
in grid-based codes. Another challenge is to ensure thagttificial viscosity does
not affect the dynamics in regions outside of shocks.

The SPH approach requires a time integrator; because tlieHas been dis-
cretized into particles, the same leapfrog methods desgiitg3.8.1 work equally
well here (though note that the irreversibility of most hgdynamics process ac-
tually means that other methods work as well). The time stapst respect the
Courant condition of equation (3.96), but because the hydramics equations
also involve spatial derivatives an additional limit apglas well, witHjvAt|/Ar <
1. This is usually written as
h;

)
S,1

At; = kspu (3.115)
wherec;, ; is the sound speed at the location of itteparticle. In practice, because
the particle sizes and sound speeds can vary dramaticallg@smological system,
most codes allow for different particles to have differemesteps. This too allows
the calculation to spend the bulk of its resources where #neynost needed.

In addition to the difficulties with resolving shocks, SPHles also have some
problems following certain important fluid instabilitidge the Kelvin-Helmholtz
instability in shear flows. Particle-based schemes inbljiteontain “noise” in their
realizations of the density and velocity fields, which intaer regimes can cause
unphysical effects such as preventing the Kelvin-Helnthiolstability from grow-
ing. The noise can be suppressed by introducing an artifisabsity that smooths
the fluid fields, but that viscosity itself affects the inglities as well. Clearly,
one must pay careful attention to matching the ideal contjmutal method for any
particular physical problem.

It is also worth noting that, although SPH simulations daimsically adapt to
high-density environments, they cannot “zoom” indefiniteDnce the timestep
of equation (3.115) is too short — say in runaway gravitalasollapse — it be-
comes impractical to continue the integration. The probdam be circumventing
by creating asink particlethat accretes mass (and possibly exerts feedback in some
prescribed manner) but whose internal structure is notivedo This technique is
used in simulations of star formation and is an exampkubigrid modelshat rep-
resent physical processes unresolved by the simulatieli (&ee§3.8.4 for more
discussion of these approaches).

Finally, SPH is ill-suited to problems in which the mixing dfferent fluids is
important (such as diffusion), because the particles anergdly not allowed to
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exchange mass. This has more important ramifications thaplgifollowing mass
around, however: entropy generation through gas mixingnigossible to follow
reliably with standard SPH codes.

Although SPH is by far the most popular particle-based spives not the only
approach; the kernel is fundamentally used only to partitive fluid field into
mass elements, and other schemes to accomplish the sanws@ugn also be
used. For example, one can computeaonoi tesselatiorior the volume. This
assigns a volume to each particle that includes all regidosec to its location
than to any other particle, without any overlap between tagigles. The same
Lagrangian technique described above works with this medifonstraint to write
the equations of motion for each particle.

A step beyond that is to combine the advantages of partidegad-based ap-
proaches by constructing a “moving mesh” of grid cells uding Voronoi tes-
sellation technique to build the cells. Because the celhidates are well-defined
(unlike in SPH), grid-based numerical algorithms can beltseompute the fluxes
of integral fluid properties across the Voronoi mesh celled€s exploiting these
techniques (such as AREPO) are just now becoming available.

3.8.4 The Limits of Numerical Simulations

Computational astrophysics has risen dramatically in irtgyee over the last sev-
eral decades, and the continuing increase in computing ppreenises to make
these methods even more useful in the future. They have hefamental in shap-
ing our understanding of many aspects of astrophysicajdiag) the high-redshift
Universe. Nevertheless, one should keep in mind that thegsent one tool in our
arsenal for addressing challenging problems, and theyyrarevide a complete
physical understanding of such problems. It is therefongartant to identify their
limitations for any particular set up and to calibrate thgn#ficance of their results
in that context.

We have already discussed some of the specific computatibatienges that
the different codes face: for example, grid-basd codesaflyiviolate Galilean in-
variance and have difficulty with supersonic flows, while Séttdes do not resolve
shocks properly and do not follow shear instabilities wille have also discussed
how the finite grid size or particle number limits the spatédolution that any par-
ticular simulation can probe (though in a predictable mannBut astrophysical
applications present deeper problems as well.

Foremost amongst them is the enormous dynamic range relquairsimulate
cosmological volumes from “first principles.” Ideally, weowid like a simulation
that resolves star formation inside dwarf galaxies but aésoples a representative
volume of the intergalactic structures. We will see in cleatthat, during cosmo-
logical reionization, this requires sampling a volume(100 Mpc)?. Meanwhile,
star formation occurs down a scale R, = 2.3 x 10~!* Mpc. Covering both at
once requires a spatial dynamic rangel0', far beyond the capabilities of even
the largest computer clusters today or in the foreseeablegu

Cosmological simulations must therefore inevitably inmoatesubgrid models
to approximate physics unresolved by the simulation. Theoitance of these
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prescriptions depends on the dynamic range and goals ofitihdagion. Most
commonly, they parameterize processes inside galaxidsdimg:

e Star formation:Cosmological simulations, and even simulations of individ
ual galaxies, are far from being able to resolve star foramati and, as dis-
cussed in later chapters, we are still far from understamtiiat process even
after zooming to very small scales. Simulations must tlweee€onstruct a
subgrid model for star formation, usually calibrating itan empirical re-
lation such as the Kennicutt-Schmidt law ($£e5.4). The computed star
formation rates are therefore no more reliable than the gogbior semi-
analytic model underlying the simulation.

¢ Black hole growth:An equally difficult problem is the accretion of gas onto

black holes, which typically occurs on solar system scaisisle the complex
environments of galactic nuclei. Without resolving theailetd gas dynamics
at the center of galaxies (which is possible in specializetikations, but
not in their cosmological scale counterparts), it is imjlalesto determine
the accretion rates onto these objects from first principliéds therefore
necessary to impose a subgrid model in order to track the throfvblack
holes and quasar activity.

e Galactic winds and feedbackiVe will see in chapter 6 (anf9.5.6) that
feedback is likely ubiquitous in star-forming galaxies amdcial for regu-
lating their star formation rates. The energy and momentjected from
supernovae and radiation likely prevents much of the gas frooling into
stars and removes material from the galaxy, likely enrighire intergalactic
medium (IGM) with metals. However, these processes areditfio model
even in very high-resolution simulations, and simple pripsions are usu-
ally implemented in cosmological simulations. The freeqoaeters are then
calibrated to local observations of feedback on galactdesc

Even more difficult to model is feedback from supermassiaiblholes,
which can be very important energetically but has very Edibbservational
constraints. Because it occurs most often at the centei@afigs, the trans-
port of the energy and momentum through the galaxy is crdiciahodel it
effectively. For example, nearby radio galaxies launch gxdut jets into the
IGM, but it is not clear that these jets couple strongly tdrthest galaxies.
With only a crude physical understanding of these processagrid mod-
els that make strong assumptions about the underlying cauplechanisms
(in the form of relativistic and non-relativistic outflowsadiative heating,
radiation pressure, or cosmic rays) are necessary.

e Clumping: We will see in chapter 8 that small-scale gas clumping isiafuc
to understanding reionization, but many cosmological $&thons do not re-
solve the relevant physical scales (especially beforeniedion, when the
Jeans mass is small). Moreover, this small-scale strugtilrevolve as the
IGM temperature and pressure change. Often a subgrid medeseérted
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to describe this clumping: it can include the clumping fronrasolved fil-
aments and sheets in the cosmic web (see ch&@}eas well as the photo-
evaporation of collapse “minihalos” that are unable to fastars because
their low virial temperature does not allow the gas to coatlar. Some
reionization simulations ignore hydrodynamics entirefyglamposeall gas
clumping through a simplified prescription.

¢ Radiative heating and coolingzor most of the baryons in the universe, ra-

diative processes — either photoheating from ionizatioocaming from line
transitions — are amongst the most important mechanisrisgéteir ther-
mal properties. These in turn depend not only upon the migetiaradi-
ation field (which must be imposed externally, unless ragiatransfer is
included), but also on unresolved physics of the gas, inetuids metal con-
tent and any multiphase medium. Although coarse resollitiety suffices
in the IGM, gas near or inside galaxies is subject to majoeuamties from
these effects.

The importance of these subgrid models cannot be undedstagarly all of the
observablgredictions of cosmological simulations rely on their paederizations.
Indeed, it is no coincidence that the most influential cosigichl simulations have
often not been those with the most computing power; instiy, have made the
most important advances in implementing physically magdasubgrid models.

Another problem, particularly at high redshifts is ensgrithat the simulation
samples a representative volume of the Universe. Typiddily is ensured by de-
manding that the largest density modes in the simulatioranenvell in the linear
regime at the time the simulation is ended. For technicaloes (in order to make
a Fast Fourier Transform easy, and so that the density fialtsite” of the box
can be represented by the box itself), most cosmologicallsitions implement
periodic boundary conditionsn which opposite faces of the box are identified
with each other. This forces the mean density of the box te takthe average
cosmological value, which at first blush automatically egpeo make the box a
“representative” volume of the Universe. However, for Hjgblustered objects
(which includes galaxies at very high redshifts), this mayntisleading, because
even a small density boost in a long-wavelength mode canatieatly affect the
halo abundance. For sufficiently rare objects, most suckotdmay actually lie in-
side large-scale overdensities; a periodic box at the measity can therefore not
contain a fair sample of these halos. Fortunately, thisetfan easily be quantified
using the conditional mass function in the excursion sehédism.

For similar reasons, rare objects (like extremely massaled) are very difficult
to simulate, although they are the most interesting beddneseextreme properties
often make them the easiest to observe. Typically, oneesiglich an object with
an adaptive technique, although SPH and AMR on their ownanedyr up to the
task. Instead, an object of interest is identified (but nebheed sufficiently) in a
large-scale simulation, and then another higher-resmiidimulation is performed
using the object’s large-scale environment as boundarglitions.

Computer simulations are no more intelligent than theiatwes, and they rely
on the proper input physics in order to produce reliable amswr heir construction
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and proper use therefore requires as broad and deep a physiggistanding as any
other area of theoretical astrophysics. Computers follmatigorithms with which
they are programmed, and they are limited by the approxirsaltegrid physics
that was implemented into them. They are therefore mosttffe at identify-
ing and understanding so-callethergent phenomepa which complex systems
grow from the interactions of simple systems whose physigsindividually be
accurately described, or in making high-precision predits for well-understood
phenomena. However, if the input physics is incorrect —éf ¢bde uses incorrect
initial conditions, or excludes any important physical gges — the simulation is
no better than an analytic model with similar flaws. A recetraple is the recog-
nition of baryonic acoustic oscillations — nominally a sedmrder effect and so
ignored in cosmological simulations of structure formatioas potentially provid-
ing a crucial modulation of the collapsed matter field ($&8).

In many astrophysical problems, these inputs are so poordierstood that a
computer simulation is no better than a simple toy model (amabt likely, much
less flexible). We urge the reader to combat the natural huerashency to con-
flate accuracy with precision: a computer is capable of bjifilowing incorrect
physical assumptions toward an incorrect — but highly @eei solution (often ac-
companied by beautiful pictures and animations). It is inguat for both observers
and theorists to appreciate the strengths and limitatidasp theoretical calcula-
tion in detail before comparing its predictions to otheicc#htions or observations.






Chapter Four

The Intergalactic Medium

4.1 THE COSMIC WEB

Although much of astronomy focuses on the luminous matar&die galaxies, the
majority of matter today — and the vast majorityzat>- 6 — actually lies outside
of these structures, in thiatergalactic mediun{IGM). This material ultimately
provides the fuel for galaxy and cluster formation, and —duse it is much less
affected by the complex physics of galaxies — offers a clewiegv of the underly-
ing physical processes and fundamental cosmology. It retbee of great interest
to study the properties of the IGM, especially during the @réhe first galaxies
(when the IGM undergoes major changes).

One of the great triumphs of modern numerical simulationis @escribing the
distribution of the intergalactic matter distribution iarins of acosmic webof
sheets and filaments separating large voids that are neagyyeof matter (see
Figure 4.1). However, the formation of these structuresiaally remarkably sim-
ple, and it can be understood with a simple extension of tipegurbation theory
called theZel'dovich approximatiof?.

Let us begin by considering the distribution of matter at ayvearly timet,.
We defineq as the initial comoving position of each particle. If theverse were
homogeneous, we could then write its later positiom@s = a(t)q.

Now suppose we allow perturbations in the density field. Waktlof these
perturbations as small displacements in the initial positf each particle, and we
can express these displacements as a function of the drigoation, p(q). At
later times, gravity will cause these displacements to ghatcording to the local
potential. As a simple approximation, let us assume thatekolution is driven
entirely by thenitial potential®;. Then we can write

r(t) = a(t)[q + b(t)p(aq)], (4.1)

whereb(t) is a new temporal function that describes the growth of tlilisglace-
ments with time. Note that because we assume that the désptat field is driven
by the potential at a fixed time, thdirection of the perturbation does not change
with time, only its amplitude does. This approximation igemthe later evolution
in the potential driven by these perturbations, so it repmésa limited extension of
perturbation theory.

The coordinateg are known ad agrangian coordinates, because they label
individual mass parcels; the Lagrangian coordinates ofpireels do not evolve
with time. They are not the same as comoving coordinateshich are defined
by r(t) = a(t)x(t). Comoving coordinates are &ulerian system, meaning they
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Figure 4.1 Slice through thilillennium Simulationa massive computer simulation of cos-
mological structure formation. The colorscale shows thek daatter density;
note how matter is organized into dense filaments (in mangs;dhese are ac-
tually slices through sheets of matter) separating nearlptg voids. Massive
galaxies and galaxy clusters form at the intersections edetfilaments. Figure
credit: V. Springel et al. (2005).
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refer to a fixed spatial grid rather than labeling particl&se comoving position
can evolve as a particle moves, whereas the Lagrangiangrogidoes not.

Let us now consider the evolution of the density field in thglaamgian frame-
work. Conservation of mass demangs, t)d*r = pd>q, where in the Lagrangian
system the density perturbations are contained entirelyinvthe spacings of the
coordinate gridy. Thus, the Jacobian gives

p(r,t) = pdet(dq’ /) (4.2)
_ p(t)
det[d;; + b(t)(Ip;/0q:)]’
or to first order inb(¢)p(q), the density perturbatioh= p/p — 1 is
§=—b(t)Vq-P, (4.4)

(4.3)

whereV is the gradient with respect to the Lagrangian coordinaséesy.
Itis convenientto Fourier transform the density field, asdoation (2.8), except
we separate the time dependence of the growing mode:

d3k .
§=D(t) | ——50ke > 4.5
() [ gmmteiex @5)
wheredy ; is the Fourier transform of(¢;). Fourier transforming equation (4.4)
and comparing to this expression, we see first that in ordeh#otime dependence
to match we must havgt) = D(t), the normal growth factor, and then

p(q) = —i%f(. (4.6)

Not surprisingly, this has the same form as the peculiaroisia in equation (2.10):
the displacement field is simply the linear-order peculigogity of each particle
integrated over time.

By dottingk into equation (4.6), it is clear thai(q) is the gradient of a func-
tion. This implies that the matrigp; /0q; is a real, symmetric matrix that can be
diagonalized to obtain three real eigenvalugs> X\ > A3 and their associated
principal axes. As a result, the determinant in equatiod)(fhay be written as,

p(1)
A0 = T han @Il b @l b 7

This has a straightforward physical interpretation. Cdesian infinitesimal cube
surrounding each point in space and containing a set of beigig particles. The
peculiar velocities of these particles deform the cube Gwse. The principal axes

of the transformatiop(q) define the principal axes by which this cube is deformed,
and the eigenvalues are proportional to the growth rate of the deformation along
these axes.

When D(t)A\; = 1, the collection of particles has collapsed into a sheet per-
pendicular to the first principal axis. This approximatidrertefore predicts that
two-dimensional “sheets” or “pancakes” will be the first finaar structures to
form. Once collapse occurs along a second axis, a one-diareigilament will
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form, and once the third axis collapses, a halo forms.

This qualitative picture matches up nicely with the cosméabvgeen in numeri-
cal simulations, and indeed the Zel'dovich approximati@rkeg surprisingly well
even into the nonlinear regime. There are two ways to unaedgsthis impressive
success. First, the Zel'dovich approximation only requiifeats(t)p < q. That
is less restrictive than requiring< 1, because is a function of derivatives o,
which can get large well before the displacement field itde#fs. Second, it is easy
to see that the Zel'dovich approximation is exact in one dish@n. In that case, the
gravitational dynamics just following sheets of matter #ime acceleration toward
a sheet is independent of distance. Thus, in one dimengiemdt acceleration
experienced at a point only depends on the number of masssatreeither side
of it, which remains constant until “shell-crossing” at lepise. One can therefore
extrapolate positions from the initial displacement fielidhwihe constant velocity
field b(¢)p exactly, at least until shell-crossing. To the extent thalapse along
the A; axis is much faster than that along the other two axes, wefbkr expect
the Zel'dovich approximation to describe the initial cplte very well.

4.2 LYMAN- o ABSORPTION IN THE INTERGALACTIC MEDIUM

Although dark matter dominates the mass budget of the IGN4 the baryons
which most concern us, since they provide the fuel for gafaxsnation, interact
with the radiation from galaxies, and — most importantly eypde observables that
allow us to trace the structure of the cosmic web.

Hydrogen is the most abundant element in the Universe, rgakine 93% of
the atoms in the Universe (the remainder is almost all helidris is now a well-
understood result of the hot Big Bang model, in which nugjatisesis (completed
within the first few minutes after the Big Bang) efficientlyrmbined all the re-
maining neutrons into helium atoms but then got bottlenddkethe lack of stable
isotopes with 5 or 8 nucleons. As a result, all of the heaviements (ormetals
in astronomers’ parlance) were formed in the interiors afstvithin galaxies. We
expect (and observations confirm) that the IGM is even momidated by hydro-
gen and helium than the Milky Way. We therefore focus on thegeelements —
and especially hydrogen — in our study of the IGM.

Since the lifetime of energy levels with principal quantuombern > 1 is far
shorter than the typical time it takes to excite them in threfrad environments
of the Universe, hydrogen is nearly always found to be in itaugd state (lowest
energy level) withn = 1. This implies that the transitions we should focus on
are those that involve the = 1 state. Below we describe two such transitions,
depicted in Figure 4.2.

IStrictly speaking, this complete collapse does not occthérZel'dovich approximation, because
the particles continue to travel in their original directiof motion. Thus, shortly after collapse to
a sheet, the particles cross each other and the sheet exagaiis Obviously, the problem lies in
assuming a constant peculiar velocity set by the initiakeptél; once collapse occurs the potential
has changed significantly. The so-calledhesionmodef® improves the Zel'dovich approximation to
account for this effect.
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HYDROGEN

Lyman - a
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Figure 4.2 Two important transitions of the Hydrogen atonte 21-cm transition of hy-
drogen is between two slightly separated (hyperfine) statdse ground energy
level (principal quantum number = 1). In the higher energy state, the spin
of the electron (e) is aligned with that of the proton (p), &mthe lower energy
state the two are anti-aligned. A spin flip of the electromltssn the emission of
a photon with a wavelength of 21-cm (or a frequency of 1420 MHhe second
transition is between the = 2 and then = 1 levels, resulting in the emission
of a Lymanex photon of wavelength., = 1.216 x 1075 cm (or a frequency of
2.468 x 10'° Hz).

The most widely discussed transition of hydrogen in cosigple the Lymane
spectral line, in which an electron moves betweensthes 1 andn = 2 elec-
tronic states and which was discovered experimentally B618y Harvard physi-
cist Theodore Lyman. This line has been traditionally usegrobe the ionization
state of the IGM in the spectra of quasars, galaxies, and ganagnbursts. Back in
1965, Peter Scheudrand, independently, Jim Gunn & Bruce PetefSaralized
that the cross-section for Lyman-absorption is so large that the IGM should be
opaque to it even if its neutral (non-ionized) fraction issasall as~ 10~5.

Imagine a photon emitted at a wavelengthc A\, where), = 1216 A isthe
wavelength of the Lymauetransition. As the photon travels through the IGM, it
redshifts along with the expanding Universe. Eventualywavelength stretches
near the Lymanx resonance, where it can be absorbed by a hydrogen atom and re-
emitted in a different direction. We therefore compute th&aal depth intercepted
by the photon by integrating all the way across the resonkmeeWe will let Aopg
(vobs) be the observed wavelength (frequency).

The full cross section of a single atom is

2 A2 4
o (1/) — 3)‘04‘/\04 (V/Va) ,
81  Am2(v —va)? + (A2 /4)(v/vy)8
whereA, = (8722 f,/3mec)\2) = 6.25 x 108 s~! is the Lymane (2p — 1s)
decay rate,f, = 0.4162 is the oscillator strength, ank, = 1216A and Vo =
(¢/Xa) = 2.47 x 10*° Hz are the wavelength and frequency of the Lymatine.
The term in the numerator is responsible for the classicaldigh scattering.

In practice, the IGM atoms have a finite spread in their thérrabocities — as

well as peculiar velocities and (possibly) turbulence -oawhich move the line

(4.8)
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center around in velocity space. These mechanisms areatiypimodeled with
a Gaussian line profiler oc exp[—(v — v4)?/2b%], with the Doppler parameter
b. The total absorption therefore follows the convolutiortlus Gaussian and the
intrinsic Lorentzian profile, known as\igt profile; this is Gaussian in its core,
but with much more extended Lorentzian wings.

For the moment, we will assume that the photon begins itspuwith a wave-
length A much farther from resonance than the line width ($22for a discussion
of the more general case). We can then approximate the linarasw,

2
oa(v) = 3/8\7;\(1 (v — Va)- (4.9

Then, ifr is the photon’s proper distance from us and the neutral lyehaensity
isnui(z) = zuinu (z) with zy; the neutral fraction andy the number density of
hydrogen nuclei,

Taz/dra(r)nH(r) (4.10)
_¢ [da Qn /a® + Qp] /2 4.11
- / 0 (obs /@) (@) [Rm /0 + Q] (4.11)
- 32;:34 Lgl(z)(z) (4.12)

3/2
~1.6 x 10°zy;(1 4 6) <1+Z) : (4.13)

where we have usedl- = cdt = cda/a = c¢(da/aH) with the Hubble parameter
H = (a/a) evaluated in the matter-dominated era. We have alsa jgt) =
i (z)(1+ 9) in the last line.

Obviously, the IGM optical depth can be enormous even if thetral fraction
is small. Anytransmission across these wavelengths is therefore esedéat the
diffuse IGM is highly ionized.

In practice, the IGM absorption is observed by against a haoms background
source (either a bright quasar or bright gamma-ray burstgittiw). In either case,
the source emits photons over an extended continuum, angpeetfeatures in the
spectrum where this Lyman-forest begins. If the source resides at a redshift
this transition will occur at an observed wavelength(1 + z,). Photons redward
of this point begin their journeys at > A, and redshift as they travel, so they
never resonate with the Lymamline in the IGM (though they may be absorbed by
other species; sé@.5 below).

On the other hand, photons blueward of this point will evatiyuredshift into
resonance and (if the gas is not too highly ionized) be atesbrbNe therefore
expect a break in the spectrumdat(1 + z,), with a depth depending on the ionized
fraction of the IGM andz, (which affects the proper density of hydrogen). At
moderate and high redshifts (> 3), this “Lyman-break” is substantial enough
to be useful as a redshift estimator. In fact, one of the peer@chniques for
identifying high= galaxies is by photometrically identifying extended s@sraith
strong flux redward of the wavelength corresponding to treksd-afterz, and
little or no flux blueward of that wavelength. Note that by~ 3 this break has
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redshifted into the optical range and is easy to observe fhenground; by: ~ 6
it has redshifted into the near-infrared, where obserwatiere more challenging.

Naively, how would one expect the optical depth to evolve® fiddshift factor
(1 + 2)3/2 reflects the evolution of the column density of hydrogen atoamd im-
plies a slow increase far, as redshift increases. But more important is the factor
xur, which will evolve both with the background density and thaizing back-
ground. As redshift increases, one might naturally expeetumber of ionizing
sources to decrease, because structure formation is leas@ll. In that case we
would expect the optical depth to increase even faster, thighlGM eventually
becoming opaque once the ionizing background falls far gho(in practice, the
ionizing background appears to be roughly constant witshétat3 < z < 6, but
it must eventually decrease at higher redshifts during toree'reionization.”)

If a source were to be observed when the atomic fraction ofdgyeh were sub-
stantial, therall photons with wavelengths just short of the Lymanvavelength
at the source (observed 816(1 + zs),&, wherez;, is the source redshift) would
redshift into resonance, be absorbed by the IGM, and theregemitted in other
directions. Eventually, this would result in an obsereedpleteabsorption trough
shortward of\,, in the source spectrum, known as the “Gunn-Peterson trough.

Figure 4.3 shows spectra of 19 quasars at 6; note how indeed the fraction of
transmitted flux blueward of the Lymamiine of each quasar decreases toward the
higher redshifts in this range. The spectra of the highedshift quasars at < 6.4
show hints of a Gunn-Peterson effect. Unfortunately, thidifficult to interpret
because only a very small neutral fraction is required tarsé¢ the Gunn-Peterson
trough (see equation 4.13). We cannot yet determine whétlediGM is slightly
ionized or nearly neutral at this time.

Figure 4.3 also shows that as the forest becomes clearebfuepion is also
highly non-uniform. This becomes even more pronounced ateraie redshifts,
as shown by the example in Figu?& We now understand this “forest” of features
to originate from the cosmic web: as a line-of-sight pastesugh the sheets,
filaments, and voids of the cosmic web, the optical depthdlatets, creating the so-
called “Lyman« forest” of absorption features. Because each observederayth
corresponds td, at a specific distance from us, each of the absorption featae
be associated with a single feature in the density field: giedthat hit the Lymarax
resonance at precisely that point may get absorbed, butsglss through without
interacting. It is this forest that provides most of our kieslge about the IGM at
moderate and low redshifts, and we will next study the pls/s&hind it.

4.3 THEORETICAL MODELS OF THE LYMAN- o FOREST

To compute the optical depth distribution of the IGM, it istbfore necessary
to know how the neutral fractiomy; varies through space. To a very good ap-
proximation, almost all regions are ianization equilibriumwhere the number of
ionizations per second balances the number of recombirsgtio

nenpa(T) = nurl (4.14)
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Figure 4.3 Observed spectra (flux per unit wavelength) of d&sqrs with redshifts.74 <

z < 6.42 from the Sloan Digital Sky Survey. For some of the highesistgft
guasars, the spectrum shows no transmitted flux shortwahedfymane wave-
length at the quasar redshift, providing a possible hinhefgo-called “ Gunn-
Peterson trough” and indicating a slightly increased ratitaction of the IGM.
Itis evident from these spectra that broad-band photonietiglequate for infer-
ring the redshift of sources during the epoch of reionizatiBigure credit: Fan,
X., et al. Astron. J.128 515 (2004).
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wherea(T') is the (temperature-dependent) recombination coeffigiedtthe ion-
ization rate (per atom) is

F:/oo gy I W)om(v) (4.15)

L hv

with J(v) being the specific intensity of the background field (in urgitg cnm2? s=! Hz=! sr 1)
andoy is the cross section for ionization. This integral counesitlamber of pho-

tons per second striking an atom, weighted by the ionizatioss section. As we

will see below, typical values for the ionization rate &rez 10~'2 s~!, and so we

will normalizeI’ = I'15 x 102 s~1 for convenience.

The photo-ionization cross-section applies to wavelengthorter tham\, =
912A, at which hydrogen or helium are ionized. The bound-fresoaption cross-
section from the ground state of a hydrogenic ion with nuctdeargeZ and an
ionization thresholdiy is given by,

4—(4tan"te) /e

6.30 x 10718 em? (1/0)4 e

O'bf(V) = 72 W for v 2 Vo, (416)

v

e=, /< -1 (4.17)
12

For neutral hydroger?, = 1 anduvyy,o = (¢/.) = 3.29 x 1015 HZ (hyg,0 = 13.60
eV); for singly-ionized heliumZ = 2 andvye 11,0 = 1.31 x 10'° Hz (hvge 11,0 =
54.42 eV).

A simpler fitting formula for these cross-sections commaued in numerical
calculations is

where

—4.02
L,

1)2 ,
) (1+ \/E,/32.88)2:963

whereE, = E/E,. HereE, = 0.4298 eV andoy, = 5.475 x 10~1* cm? for
hydrogen andz, = 1.720 eV andoy, = 1.369 x 10~* cm? for singly-ionized
helium. Although hardly obvious, this followsy; o« »~2 near the ionization
threshold.

The cross-section for neutral helium is more complicatedemvaveraged over
its narrow resonances it can be fitted to an accuracy of a fegepeup tohr = 50
keV by the fitting functior?®,

obfe 1(V) =9.492 x 1071% em? x [(z — 1)® 4 4.158] x
—3.188
y~1:953 (1 + 0.825y1/4) : (4.19)

ourHen (V) = oo(Ex — (4.18)

wherezr = [(v/3.286 x 10° Hz) — 0.4434], y = 22 + 4.563, and the threshold for
ionization isvie 1,0 = 5.938 x 10 Hz (hvpe 1,0 = 24.59 eV).

The recombination coefficient(T") describes the rate at which electrons and
protons recombine (while emitting a photon). Of course, rd@mbination can
occur to any of the hydrogen atom'’s energy levels; of paldicinterest is recom-
bination to the ground state, which generates a new iongirajon. Provided that
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photon is absorbed by the gas, such a recombination doesatbtd a net increase
in the neutral fraction. The same is true for resonant ptgteach as Lymamw,
which through repeated emission and absorption eventstdeambto net recombi-
nations in a gas thatis optically-thick to them. Itis therefoften useful to consider
the “case-B” recombination coefficientz, which excludes recombinations to the
ground state. For hydrogen,

ap(T) ~2.6 x 107837, cmP 571, (4.20)

whereT, = T'/10* K. The contrasting case, where such photons escape th@regio
of interest, is referred to as “case-A" and has a rate coeffici

aa(T) =~ 4.2 x 107 37,07 cm? =1 (4.21)

Note that both rates are fairly slow in the IGM, except at higgishifts. Atthe mean
density of the IGM, the ratio of the case-B recombinatiorgtinf . = 1/nya, to

the age of the Universe is
B 3/2
bee 8 ( 8 ) . (4.22)

ty 1+2

In other words, once an atom is ionizedzat 7, it may remain ionized forever at
the mean cosmic density.

The appropriate coefficient to use depends on the physicat®in at hand. If
one is concerned with the average absorption in a uniform |GAde-B is clearly
the best choice, because photons from recombinations tgrthend state will be
absorbed somewhere in the IGM. If, on the other hand, the I&Mery clumpy
so that most of the recombination photons will be absorbsilendense neutral
blobs, case-A is a better choice. Similarly, if one consdenization equilibrium
in a single dense cloud, case-A may be more appropriate ifdbembinations
occur preferentially on the “skin” of the cloud, so that tlesulting photons can
easily escape to the external medium.

In the highly ionized limit of equation (4.14), we can equageo the total proton
density; in that case, using the case-B recombination rate,

3
1
z1 = nea(T)I ™1 ~ 4 x 1075(1 + ) ( Z Z) 7071 (4.23)

Note that, for detailed calculations we should include tleeteons from ionized
helium, but that makes only a minor difference at the level-af0%.

Clearly the gas is indeed highly ionized, at least at modesat! low redshifts.
Conveniently, substituting this value into equation (4,1Be optical depth for gas
at the mean density (and~ 3) is of order unity, just in the range in which we can
accurately measure the absorption. The Lyméirest therefore allows us to map
the cosmic web in exquisite detail, even though the gad iselt extremely low
densities.

4.3.1 The Temperature-Density Relation

To proceed farther and evaluatg as a function of density, we must determine the
temperature of the IGM gas. Thermal equilibrium is typigattablished by three
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competing effects. First, the adiabatic expansion of thevéfee cools the gas, as
does Compton cooling (which is importantat- 6; at lower redshifts it becomes
unimportant relative to the expansion cooling). Other naei$ms — such as line
cooling — are much less efficient.

On the other hand, heat input is provided by photoionizati@rtypical ioniz-
ing photon has more energy than the ionization thresholdhedree electron is
left with residual kinetic energy. The electron then saattbrough the IGM and
deposits its energy as heat. The heating rate for HI (in erg’csn') is

d e hv — hy;
d—cf ) = nHI‘/u dv (47TJV)O'H1(V) <7l/ ho Y > .

(Note that it is often important to include helium here, aseihains in its singly-
ionized state untit ~ 3 and efficiently absorbs high-energy photons, but for peda-
gogical simplicity we will ignore it.)

Clearly, the photoheating rate depends sensitively onahizéd fraction of the
gas. If we imagine that a gas parcel is initially neutral amehtis rapidly exposed
to a strong ionizing background, all of the gas will quickly ibnized. Theotal
energy input is therefore simply the average excess enezgyopization(E;),
yielding

(4.24)

npg

kp AT = ; (E;) . (4.25)

Ntot

This deceptively simple expression actually hides a faioant of physics in the
factor(E;), which depends on how the spectrum of incident radiaticerauts with
the gas parcel. Two limits are illuminating. First, if therpal is optically thin, then
the weighting by in equation (4.24) reduces the impact of high-energy ptston
In this case,

M) . (4.26)

(E; thin) = % /VOO dv (4nJ,)our(v) ( o

On the other hand, if the element is optically thick up to son@ximum frequency
(becausery; o« v~3), then all photons below this frequency are absorbed and the
weighting byoy; disappears.

The latter case can make a significant difference to the tetaperature in-
crease: for a specific luminositl, o« v~ it yields (E; thin) = Eur/(a + 2),
where Ey; = 13.6 eV is the HI ionization potential. In the particular case of
L, « v=2 appropriate for a low-metallicity galaxyE; tnin) /Enr ~ 1/4. In the
optically thick limit, we have insteadF; thick) = Eni/(a — 1). ForL, oc v=2,
this yields (E; tnick) /Emr = 3/5. The net temperature change is thafl" ~
0.5(2/3kp) (E) ~ 30,000 K for the optically-thick case, significantly above the
value of~ 12, 500 K for the optically-thin case.

Because this energy input is identical for each particledut@the optical depth
of its environment), the temperature of a parcel shouléhdependentf its den-
sity immediately after ionizatioh. However, after this initial phase of ionization,

iiwe will see later, however, that there é& averagea non-trivial temperature-density relation
during reionization, because thesmic timeat which elements are ionized depends on the density.
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dQ/dt decreases dramatically, becausg becomes very small. Thus, the cooling
term begins to dominate. Expanding regions that are iorézely, cool initially to
lower temperatures than similar regions that are ioniztat.la
The resulting equilibriundoesdepend on density, because the adiabatic cooling

rate depends on the expansion rate, which in turn dependseolodal density —
underdense voids can be considered (locally) to have aartigj], and so they ex-
pand faster. Thus, the low-density regions cool fasteseénEally, an equilibrium
is reached in which

T~ To(1+6)771, (4.27)
with Ty being a normalization constant and~ 1.6 long after reionization. The
normalization of thigemperature-density relatidnis entirely determined by the
spectral shapef the ionizing background and is independent of its amgétu
because the heating rate per neutral atom is proportiongl fequation 4.24), but
the neutral fraction is proportional to/ J,, (throughI" in equation 4.23).

4.3.2 The Fluctuating Gunn-Peterson Approximation

A simple model for the absorption pattern of the inhomogeisdGM simply as-
sociates each gas element with its “local” Gunn-Petersditalpdepth in equa-
tion (4.13). This is an oversimplification for two reasonsstfi it ignores the
frequency structure of the line (so that the totglis distributed amongst many
neighboring gas elements), and second, it ignores theitgekitucture of the IGM
which moves gas elements around in frequency space. NelesH) it provides a
simple description and a reasonable approximation to thenpeter dependencies
of the real Lymane forest.

With the assumption of ionization equilibrium (equatior23). and using the
approximate power-law form of the temperature-densitgtieh (equation 4.27),
equation (4.13) becomes

~ (1 4 5)270.76(771) T —0.76 1+ 2 9/2
a(8,T) ~ 13 = e . . (429

The (1 + 0) exponent ranges from 2 (for isothermal gas)td..5 (at the thermal
asymptote); it is greater than unity because of the recoatioinrate scaling (which
also induces the temperature dependence).

Equation (4.28) shows that at~ 6 only the most underdense regions will be
visible (with 7, < 1); gas at the mean density will be extremely opaque even if
the ionizing background is substantial. This explains teepdabsorption troughs
in Figure 4.3. However, at ~ 3 the same gas parcel at the mean density has
To ~ 1: this is why the Lymanx forest is such a powerful tool at moderate and
low redshifts.

Because, depends only on fundamental cosmological parameters (kmea+
sonably well), the density and temperature of the IGM (wliah be modeled rel-
atively well), and the unknownh, the transmission in the Lymanforest provides

i This relation is sometimes referred to as the “IGM equatifrstate,” but that is a misnomer
because the relation describes the relation averaged dferedt gas parcels, rather than the evolution
of a single one.
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a good estimate df. Measurements show thBR{, ~ 1 over the range ~ 2-5,
with uncertainties between different methods and samglae more than a factor
of ~ 2.

There is one other important property of the intergalactis.dor a fixed average
H | density, the transmission through an inhomogeneousuned smallerthan
through a homogeneous one. To see this, let us dgfifeas the volume-averaged
probability distribution of the IGM density. Then the netrismission is

7.~ [ dsp(6) expl-7a(6) (4.29)
= exp(—Teff,a ), (4.30)

where we have defined tredfective optical depthin the line asreg,,. This ef-
fective value must be smaller than the corresponding GueterBon absorption
T« (6 = 0) because of the well-known triangle inequality,

(exp(—Ta)) > exp(— (Ta))- (4.31)

Essentially, because the absorption saturates in densmse@n inhomogeneous
medium hadessoverall absorption than a uniform medium. Most of the traissm
sion arises in the low-density voids, which can remain fpansnt even if the gas
at the mean density is optically thick.

4.3.3 The Column Density Distribution

The fluctuating Gunn-Peterson approximation is a usefulehpdrtly because it
suggests that the IGM optical depth varies continuouslyggtbe line-of-sight, just
as the density field of the cosmic web does. However, in prattie Lymans for-
est appears as a set of discrete absorbers, because |IGNyqeradis (intercepted
sheets and filaments) are rather sharp. Thus, it is ofteruuteitonsider such
systems as discrete absorbers.

We begin by assuming that the absorption by a given regionb@idominated
by its densest portion (with peak fractional overdengjtyin order to compute the
optical depth, we must assign this region a length scale. mst natural size is
thelocal Jeans length which is simply the length scale over which the pressure
force balances gravity (s€8.2), Ly ~ csteon ~ ¢s(Gp)~/2: a smaller cloud (at
the same density) will be smoothed out by pressure whereas a larger cloud will
collapse gravitationally. If we assume that the gas maistphotoionization equi-
librium, the corresponding column density through the di®iNy; = zging Ly,
or

—0.26 9/2
Nur = 3.3 x 10" em™2(1 4 6)%/2 <1oTTOK> Iy <1+TZ) . (4.32)
As described above, the properties of these regions areureshom their op-
tical depth for Lymana absorption,r, (v) = Nuio.(v). Thus,in principle the
column density is an observable in the forest. In practiég; can be difficult to
extract from the total amount of absorption because of attur. Theequiva-
lent width parameterizes the amount of absorption as the wavelentgtivah over
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which light would be absent if the line profile were a step fiio,
W= /[1 — e TW]aA, (4.33)

Whenr is small, W « [ dA7(\) o« Nui. Whenr >> 1, the line center is strongly
saturated but the Lorentzian wings have substantial dutegath and dominate the
total absorption; in that casl; « Nﬁf. Unfortunately, in the intermediate regime
where the line center is saturated but the wings remain widakg In Nyp, and it

is very difficult to measure the true column density of a fh&his intermediate
range approximately spans HI column densities@f—10'" cm~2.

Nevertheless, the physical importance/gf; makes it the preferred parameter
for describing the Lymarr forest. Because there is a one-to-one correspondence
betweenVy; and the local IGM density (at least in this local Jeans leagibroxi-
mation), it is convenient to describe the Lymarferest via the number density of
absorbers in a column density intery iy, Ngi+dNyp) and in a redshift interval
(2,2 +dz), d?N/dNp1dz.V

If this distribution function is known, one can estimate tbéal optical depth
Teff,o IN the forest by integrating over all the lines,

(1+z)/ d*N
eff,a = N Nui). 4.34
Teft, o d HIdNHIde( 1) (4.34)

Note thatr.g o is not simply the average of the optical depths of all the lines, be-
cause the observed transmission depends exponentiatly.oimportantly, how-
ever, 7., does notequirea measurement @fN/dNpdz: as the total absorption,
it can be estimated even from low-resolution measuremenigen the forest is
so thick that Lymanx absorbers cannot be separated.

Observations show that at< 5.5,

1 4z 4.3+0.3
Teft.o = (0.85 & 0.06) <T> . (4.35)

At z > 5.5 the optical depth appears to increase even more rapidlysandarly
saturated at ~ 6; we discuss this regime i4.6.

4.3.4 Mapping the Cosmic Web

As described previously, the forest is the premier tool f@asuring the properties
of the IGM atz < 5, because it provides such a detailed view of the structures.
The only drawback is the relative dearth of background sesiegainst which ab-
sorption can be measured: “bright” quasars or GRB afterglare rare, so to date
almost all of the information has come from studying a smafthber of individual
one-dimensional skewers of the cosmic web.

This leads to an important caveat for Lymarforest studies of the high-Uni-
verse: although detailed structures are visible along itte-df-sight, inverting

VThe problem is ameliorated somewhat for higher Lyman sdines, which have smaller optical
depths, but these lines face other challenges.

VNote that in practice the column density distribution iseafteported in the literature relative to
the coordinateX, whered X /dz = Ho(1 + 2)?/H(z).
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these to obtain the three-dimensional structure is diffisetause ofliasing. This
refers to the possibility of random arrangements of smadlesoscillations inclined
to the line-of-sight mimicking large-scale oscillationisrag the line-of-sight; for
example, if the crests of twé-modes are aligned with the plane of the sky (but
at a wide radial separation) and intersect the Lymaforest skewer, they would
appear to an observer as two crests of a single, large-wagtbl@scillation along
the line-of-sight.

To quantify the importance of aliasing, we begin with theretation function:
statistical isotropy guarantees that it is identical inrgwdirection and so can be
measured with data along only the line-of-sight. Itis redkto the three-dimensional
power spectrunPsp through a Fourier transformation (equation 2.15). Howgver
if we use the Lymanx forest data itself to measure a power spectrum, we obtain
only a one-dimensional power spectrui,p. This isnot the same a$’sp, as
the following argument illustrates. Lé andx be the wavenumber and distance
coordinate along the line-of-sight. Then

Pio(k)= [ dog(o)et= (4.36)

e L (ke ke (4.37)
B (2m)3 %P ' '

Note that, because is along the line-of-sight, the and z coordinates vanish in
the second exponential. Now, integrating oweyields a factoxé(k — k1), and

implies that
dk,dk,
Puo(h) = [ TS Pan /i + 15 + 12 (4.38)

* dk
— [ p (k). 4.39
/M% o (k) (4.39)

where we have simplified the integral by transforming to peolzordinates. This
form shows the difficulty in measuring long-wavelength maidée observed one-
dimensional power at a scalg picks up contributions fromall wavenumbers
greater than this value — and weighted toward the Higtontribution: if Psp o
k=", then the observef!p o k2.

Thus, the Lymanx forest is best at constraining cosmological information on
small physical scales. Of course, it is precisely theseesdhilat are most difficult
to model, so numerical simulations are necessary for guadint constraints. This
procedure also helps to constrain astrophysical paramiat affect the forest —
most importantly, the ionizing background (which sets therall normalization)
and the temperature (which sets the maximum wavenumbenefeist through
thermal broadening and Jeans smoothing of the IGM featufiesylate, the con-
straints on the ionizing background are comparable witleothethods, as are the
temperature measurements (although the latter have ugygy darors in practice).

With the advent of large-scale, deep surveys, there are namspo observe
a dense array of skewers associated with a large number shtgiand map the
related large-scale structure in three dimensions. Thiting prospect will pro-
vide much better constraints on the sought-after baryonstaoscillations which
appear on very large scales.
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4.4 THE METAGALACTIC IONIZING BACKGROUND

Presuming that one can model the structure of the IGM reljdbé primary physi-
cal input determining the opacity of the Lymanforest is the ionization rat€,
which in turn depends on the angle-averaged specific intens$ithe radiation
backgroundJ(v) (equation 4.15). We assume a constant emissiyity (in units

of erg s~ ecm™3), defined at a frequenayand redshift.. The optical depth expe-
rienced by an ionizing photon is proportional to its pathgign- through the IGM,
7(v,z) = r/A(v, z), whereA(v, z) is the mean-free-path or attenuation length of
photons with a frequenay at a redshift:. Then we have

e(v, 2)
)2

° 1
J(v, z) = /0 drridr e /A2 — EG(V’ 2)A\(v, 2), (4.40)

(4mr

Here we have assumed thais much smaller than the Hubble length, so that evo-
lution in the source density and redshifting of the phot@sdgligible. This is a
reasonable approximation at high redshifts, except fohigkest energy photons.
When that is not true, one must be sure to evaluate the eritysaid optical depth
at the appropriate redshift.

The emissivity clearly depends only on the sources — gadaaied quasars —
and understanding this coefficient will be a key goal of théofeing chapters. In
brief, stellar sources typically have relatively soft sppachot stars with a surface
temperature~ 30,000 K, for example, have their blackbody peakiat~ 7eV
with their emission luminosity declining sharply at highgroton energies. The
spectrum of solar-mass stars cuts off well before the Lyfivait-and does not
contribute significantly to the ionizing photon budget. $hbhecause hot massive
stars have such short lifetimes, only actively star-forgrialaxies contribute to the
metagalactic background. However, even their photons esestpe absorption by
the gas and dust inside their interstellar medium; this appt® be a difficult step
in most known galaxy populations where the so-callsdape fractionis only a
few percent. It is therefore difficult to estimate the net siity from galaxies.

Quasars, the second important class of sources, are sormeagiar to model
partly because they are brighter and hence easier to ckaesct Their intense,
high-energy radiation fields — with typically power-law spra extending to X-ray
energies — produce many more ionizing photons per unit grastput and proba-
bly allow a much larger fraction of these photons to escapleddGM. In practice,
both kinds of sources appear to be important at moderatéifesisHowever, be-
yondz ~ 4 the bright quasar population begins to decline precipljowhile the
comoving star formation rate remains similar in magnitudae natural expecta-
tion is therefore that galaxies become increasingly imgrdrat high redshifts.

The mean-free-path is determined by absorption in the IGM — and hence the
Lyman- forest. We next consider how to estimate this factor.
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4.4.1 The Mean Free Path of lonizing Photons

The total opacity per unit redshift of the IGM at a frequemndg just the sum of the
opacity of all the individual absorbers,

drur(v) d2N
— = N 1-— N 4.41
dz /d HI dNHIdZ[ exp (v, Ny, ( )

where the optical depth of an absorber to ionizing photon&isNyi) = Nujou: (v).
To estimate the mean-free-path, we simply convert this tonaaving path length:

dr/dz
A 2) = @
wheredr/dz is the comoving line element.

Given the distribution function of Lyman-absorbers, this is a well-posed cal-
culation, so the mean-free-path might appear to be stifaigherd to predict from
first principles. However, recall that, is itself a function ofl’, which in turn de-
pends upon the mean-free-path. Self-consistently piedithe attenuation — and
with it the ionizing background — is therefore a rather coexgbroblem.

To understand better the nature of the absorbing systeimsgseful to consider
the opacity as a function of column density. At the ionizatibreshold;y; = 1
for Ng1 = 1/omi(var) = 1.6 x 107 cm™2. Systems above this column density
limit are opaque to ionizing photons; we refer to this regimsself-shieldingand
these opaque systemslagnan-limit systems (LLSs). The former suggests that
gas on the outskirts of the system absorbs a large fractidimeoihcident ionizing
background, shielding the interior from ionizing photons.

Does most of the opacity originate from these opaque systefinem the accu-
mulated opacity of lower column density systems? Let us gs@for simplicity
thatd2N/dNH1dZ = A[NHIO'HI(I/HI)]fﬁ 5] ATﬁﬁ(I//I/HI)isﬁ, wherer is defined
at the ionization threshold; a single power law witlx 3 /2 provides a reasonable,
though not perfect, approximation to the observed distigou(see below). The
mean-free-path is then (far< g < 2)

A(v) = [ﬁ]l (VLHI) e UOOO drr=P1 —eT) - (4.43)

) ~3(1-9)
~—— s [ . 4.44
e T (HI) (4.44)

Herel's is the Gamma function (not to be confused with the ionizataie) and
we have assumed that the absorbers span the rangerfram to = > 1 (with a
single power law), andy,s is the mean-free-path at the ionization edge including
absorption only from systems with > 1 (we normalize to this value because it is
relatively easy to measure). F@r= 1.5, which provides a reasonable match to the
Lyman- forest,A\(vur) ~ 0.56ArLs. Thus~ 56% of the absorption comes from
the opaque systems, although this fraction is reasonallsitee to the precise
shape of the column density distribution. The evolution digdribution of these
LLSs is therefore crucial to understanding the ionizingkzaiound.

Clearly, the mean-free-path is much longer for high-engrggtons: with the
canonical valug? = 3/2 we have) « */2. Note, however, that this is much

(4.42)
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weaker dependence than thex v® dependence expected in a uniform IGM; the
clumps are very important for high-energy photons.

Although the self-shielded absorbers are opaque to phabiise ionization
edge, the strong frequency dependence of the ionizati@s<gection implies that
they are transparent to higher-energy photons. Typictilg, implies that LLSs
are themselves highly-ionized. If we assume that a systetm ealumn density
Ny is opaque to all photons with < vy, and thate(v) « v~%, we have
I' o [Nurowr (van)] (- 38-6)/3, so according to equation (4.23) the residual neu-
tral fraction is

THr ~ 2.2 X 1074T4_0'59F1_21/3[NHIO'HI(VHI)](7Q+3676)/3. (445)
Here, we have set our fiducial value ®fo match that of a LLS (at the ionization
edge) at ~ 3 using the relation

14+2\7°
1+ 611 = 320 T 1T2° ( ; ) : (4.46)

4.4.2 Observations of Lyman-Limit Systems

We have already described the important role of LLSs inrsgttie mean-free path
of ionizing photons and hence regulating the ionizing backgd. Conveniently,
these systems are relatively easy to identify even at highhiéts, because their
optical thickness to ionizing photons causes a continuupnedsion in the back-
ground source’s flux blueward of 912 in the rest frame of the absorber. Thus,
these systems constitute the one family of hydrogen absoviieose abundance at
z > 5 has been measured.

Recent surveys have established the LLS abundance redgomdat 0 < z <
6; the additional assumption that N/dNgrdz o« Ny with § ~ 1.1-1.5 (and
constant with redshift) yields a mean-free-path at the Lymdge of

1 +2 —4.4440.3
Avmr) = (50 £ 10) (4—5> proper Mpc (4.47)

Interestingly, extrapolation te ~ 6 (10) yields a mean-free-path ef 7 (1) proper
Mpc — clearly, during the era of the first galaxies, ionizingopns suffemuch
more attenuation than at later times. This obviously leadgrbng fluctuations in
the ionizing background itself and substantially affebts process of reionization.
We will consider the importance of LLS in more detail latar.d@ssence, they reg-
ulate the end of reionization and provide the “matching ¢’ from the epoch
of reionization to later times.

Despite the relative ease fiidingLLSs, their physical nature remains obscure.
Equation (4.45) shows that, at moderate redshifts, thejgetsthave overdensities
comparable to those inside virialized halos. As such, theydficult to model, re-
quiring high-resolution numerical simulations of the sture of gas around galax-
ies, coupled with a large enough cosmic volume to represyuately the cosmic

visongaila & Cowie
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radiation field. Explanations for their origin range fronwdanass dark matter ha-
los without substantial star formation to cold gas accretinto galactic halos from
filaments in the cosmic web.

To complicate matters further, the very nature of these Lih&g evolve at higher
redshifts. Even assuming optimistically that the ioniZiragkground remains con-
stant, equation (4.45) shows thag.s ~ 20 atz ~ 10.

Absorbers with extremely high column densitieSy; > 1023 cm~2) have
prominent damping wings from natural line broadening aredkarown aslamped
Lyman-« absorbers(DLAS). Such large columns are opaque to photons Witk
150 eV, and so the gas within them is highly neutral. These systaithough rare,
are extraordinarily rich in information. They have mulgplelocity components, a
wide range of metal lines (with a wide range of ionizatiortesty and sometimes
even molecular hydrogen.

DLAs are now understood to be absorption from the intelstethedium of
galaxies. The lines therefore provide an alternate seleaf galaxies: one that
is weighted bygeometric cross-sectiorather than stellar luminosity. They are
therefore typically low-surface brightness galaxies wifatively low star forma-
tion rates, requiring exceptionally deep observationglemtify their emission in
conventional galaxy surveys. DLAs therefore provide aniasdd census of the
neutral gas in the Universe. Moreover, based on the obseslechn density dis-
tribution of H | absorbers, most of the neutral hydrogenragénization resides in
DLAs. Interestingly, the fraction of gas that remains naug&ippears to vary little
with redshift fromz ~ 5 to the present day, although of course that must change
at higher redshifts when the IGM itself becomes predomigargutral. For our
purposes, DLAs are crucial as the primary reservoir of redgtas after the end of
reionization.

4.4.3 Fluctuations in the lonizing Background

Because ionizing photons can only travel finite distancelsaa@ generated by dis-
crete sources, one naturally expects fluctuations in thelimde (and possibly
shape) of the ionizing background. In practice, these arg small atz < 5,
because) is relatively large (se€4.4.2) and the ionizing sources are relatively
common (particularly galaxies, provided that their esdapetion of ionizing pho-
tons is non-zero). But these fluctuations inevitably comiegtdmportant at higher
redshifts (especially toward the epoch of reionizatiomi @o it is important to
understand their implications.

These fluctuations are sourced by both large-scale dengityfitions and stochas-
tic variations in the number counts of the sources; ther@tamost important when
the number of sources within A3 is small. A simple estimate of the effects of the
density field is to compute the variance of the source pojuatver one attenua-
tion lengthbo (R = \), whereb is the average bias of the sourceszAt 3, taking
b ~ 3 and\ ~ 300 comoving Mpc yields fractional fluctuations ef 2%, which
is indeed close to more precise numerical estimates andstiymegligible. How-
ever, atz ~ 6, taking the same average bias but- 50 Mpc implies fluctuations
of ~ 10%.
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4.4.4 Helium-lonizing Photons

About 7% by number of atoms or 24% by mass of the IGM gas is caegpof
helium atoms. Helium’s first ionization potential is 24.6 ald second is 54.4 eV.
Photons above these threshold can therefore also interthctivese species. The
former is sufficiently close to the HI threshold that everllatesources can ionize
the first electron, provided that they can do the same to Hiéder, normal stars
do not produce significant numbers of photons above 54.4 @bdhiae Hell; that
requires black holes.

The ionization cross-section for Hell follows the same f@srin equation (4.16)
(or the approximation in eq. 4.18). Likeyr, this cross-section also scales.as’
near threshold. Note that far > vyerr, nHeOHerr/nuom > 1, SO despite its
lower abundance more high-energy photons ionize Hell tharewen when their
ionization fractions are equal.

Hell is also more difficult to keep ionized because it recambifaster than hy-
drogen; its case-B recombination coefficienbis = 1.53 x 107!2 cm?® s7! at
T = 20,000 K. The recombination timescale for gas at the mean denstetare
remains smaller than the age of the Universe down<o2. Thus, Hell atoms may
recombine many times over the age of the Universe.

Because of the large ionization cross section and rapidwmbatation time, the
Universe remains optically thick to Hell-ionizing photoustil relatively late (or,
in other words, the mean-free-path of these photons is niamgstshorter than that
of photons below the Hell ionization threshold). As a restliere is typically a
substantial break in the ionizing background at the Helidation edge. Moreover,
the Hell-ionizing background has much stronger fluctuatittran the Hl-ionizing
background, both because of the short attenuation lengthbanause only rare
guasars contribute to it.

For the most part, the properties of this high-energy bamkgd have little effect
on the HI Lymane forest; however, the photo-heating that occurs as the tneliu
is ionized affects the hydrogen as well. The process is idanb that described
above for HI reionization in equation (4.25) (except with — ny.). Moreover,
the hard spectra of quasars quite efficiently inject enengry the helium gas, so
(despite the relative rarity of He atoms in the IGM) the ta&hperature increase
can be comparable to that during hydrogen ionization. Ordiern is reionized at
z ~ 3, any influence of hydrogen reionization on the gas is largedged.

4.5 METAL LINE SYSTEMS

So far we have focused exclusively on absorption by neuyrdtdgen in the IGM.
Can other elements be used to probe the IGM? Helium is an obwandidate,
but its Lymane line resides in the far-ultraviolet (with a rest wavelengtl‘804/3\)
and is difficult to probe (although it has proved useful tadgtthe Hell-ionizing
background). These two are, of course, the primary elenmotiuced in the Big
Bang, but heavier elements do exist in the IGM owing to ejecand stripping
from galaxies where they are produced through star formatio
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The typical abundance of heavy elements in the IGM is smalith svmedian
value(Z) ~ 1073 Z, — but the absorption is still substantial. If we make the semp
assumption that the metals are uniformly distributed, werepeat the fluctuating
Gunn-Peterson approximation and find that the optical dep#m IGM patch to a
given transition is

X fosc )\z 1+=2 3/2
7x; = 0.097/i(1+9) (3.6 x 10—7) <0.191> <1548 A) ( 7 > ’
(4.48)

where f; is the fraction of the element in the appropriate ionizastate, X is the
abundance by number of the element relative to hydroggg,is the oscillator
strength of the transition, any is its rest wavelength. The fiducial choices cor-
respond to the stronger line in the CIM 548, 1551 doublet withZ = 1073 Z;
Table 4.1 lists several other important transitions for mwd highs work. As we
will see later, the assumption of a constant metallicitptighout the IGM is most
certainly wrong, but it may be reasonable on the scale ofgesgibsorbing system.

Clearly the optical depth can be substantial, even in kadBtilow density gas,
provided that the gas is in the appropriate ionization statethe diffuse IGM at
low and moderate redshifts, these are highly-ionized statehe most common
heavy elements, especially carbon, silicon and oxygen. énid Si IV have ion-
ization potentials of 47.888 and 45.142 eV, respectivdigse two species should
therefore evolve similarlyunlesshigher-energy photons are able to further ionize
one but not the other. In fact, C IV and Si V require 64.492 a66.17 eV to get
ionized. The latter energy is relatively large, but once He lonized to He 11l the
universe becomes transparent to photons that can ionizewhleh are still rela-
tively common. We might therefore expect C IV and Si IV to blatigely abundant
absorbers, at least until He Il reionization completes &t 3.

Both of these species are also very useful from an obsenadtigerspective,
because they have doublet transitions redward of HI Lymar transition wth
Ai > A is unaffected by HI absorption in the intervali, < z < z,, wherez, is
the redshift of the background source and

(14 2min) = (1 +2) 52 (4.49)
Absorbers in this range produce isolated absorption featagainst the red con-
tinuum of the source. Doublet transitions are particulartgresting because they
make the species causing the absorption easy to identdy, ievsome cases with-
out knowing anything about the HI absorption.

An exception to this rule is provided by oxygen, whose fifthimation state is
an important observational tracer despite the fact thatiteary absorption feature
is blueward of HI Lyman= at 1032, 1038 A. This transition therefore suffers from
contamination by the HI forest, but because it is a doubleait sometimes still
be measured. It is particularly useful for constraining gneperties of hot gas,
because the ionization potential of O V is 77.413 eV.

In a neutral gas, the relevant ions are different. For exan®l has an ionization
potential of 11.26 eV, so provided that there is a source ofphdtons — even if
the ionizing photons are attenuated — carbon atmos wilkpeettially turn into C I
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(which has an ionization potential of 24.383 eV and so caibeoibnized in gas
that is optically thick to hydrogen-ionizing photons). tir@nother common heavy
element, and silicon, occupy their first ionization statesimilar reasons.

A patrticularly interesting case is oxygen, whose first iatizn potential is 13.618
eV — nearly equal to HI. As a result, these two species shoaillddked in charge
exchange equilibrium through the interaction

0’ +Ht -0t +H° (4.50)

whose equilibration timescale is 1/kconmr ~ 2 x 10%zar(1 + 8)(1 + 2/7)3 yr,
much shorter than the Hubble time (whétg is the collisional rate coefficient).
Thus dual observations of Ol and HI provide an estimate oflegallicity (or, if
that can be guessed, of the neutral fraction of HI) even whanline is highly
saturated.

Note that all of these transitions relevant to neutral gassarglets, so they are
more difficult to identify than the C IV and Si IV lines in an imed gas. This means
that the transitions must be identified in combination wilteother (or H I); with
the complication that the different elements may have difieabundances

At moderate redshifts, C IV absorbers are the most commauadied (primarily
because they are the easiest to find), with metal absorpisdriezin most individ-
ual systems withVy; > 10 cm~2 at a metallicityZ ~ 1072Z. They can also
be detected statistically in much less dense systems, ingply median metallic-
ity in forest absorbers of ~ 1073Z;. Many other transitions are detectable in
higher column density systems, especially in the DLA rangeefe the neutral gas
makes transitions like Cll and Ol useful, although theséesgs usually have many
different absorption components, some of which are alsblhignized); these are
well-understood as being due to internal metal enrichméiglataxies. OVI has
also received intense attention as a possible proxy forohecbllisionally-ionized
gas in galactic winds.

Despite the relative wealth of observations of metal akismmpthe physics be-
hind metals in the IGM remains mysterious. The forest abmsrthemselves corre-
spond to gas near or above the mean cosmic density, and seets simd filaments
only fill a relatively small fraction of the volume. Thus, @rsations currently re-
quire only> 10% of space to be enriched with metals. The key question is haw an
when did this enrichment occur: many models appeal to wirata the first galax-
ies but more powerful winds from star-forming galaxies atdo redshift are also a
plausible explanation. More precise measurements of thigesplistribution of the
metals (especially in comparison to samples of galaxibs); abundance patterns,
and the evolution toward higher redshift, may help to caistor eliminate some
of these models.

4.6 THE LYMAN- o FOREST AT Z > 5

We now turn to the Lymarr forest at very high redshifts, approaching the time
of reionization and the first galaxies. As equation (4.3%veh the absorption is
quite thick byz ~ 5.5 whenreg o ~ 2.6 with only ~ 7% of the light transmitted.



THE INTERGALACTIC MEDIUM 99

Past that point, the forest thickens even more rapidly, sb wery little light is
transmitted.

Of course, this low-level of transmission is not uniform@ss the entire spec-
trum due to the density fluctuations in the cosmic web. Thdlgmakets of resid-
ual transmission correspond to underdense regions in the & z ~ 56, these
pockets are sufficiently common that the forest can still beduto measure the
properties of the IGM, and in particular the ionizing baakgnd — which appears
to be only a factor of two or so smaller than at lower redsliftgh I';5 ~ 0.5).

Unfortunately, beyond that point the Lymanforest itself becomes too thick to
model robustly; in fact it is so thick that one can no longekput individual ab-
sorbers, and it is better to simply use the fluctuating Guateion approximation.
If one then has a model for the volume-weighted probabilistribution of the
IGM densityp(4), the effective optical depth is simply given by equatior2®.
The functionp(0) is easy to describe qualitatively: it must peak néar 0, with
a long tail toward high densities (describing collapseddtires) and another tail
toward underdense voids which is truncated below a vélae —1 (correspond-
ing to space with no matter). Equation (4.28) shows thath Wit ~ 0.5 at
z ~ 6, T, ~ 26(1 4+ 6)? (ignoring the weak temperature dependence), requir-
ing —1 < § < —0.8 for substantial transmission. Thus, the crucial piece ef th
integral involves the far-end of the low-density tail (nthat these voids are actu-
ally in the nonlinear regime), which is very difficult to mddebustly without large
numerical simulations. Even then, to measure the meanaidtéction of the en-
tire IGM one must extrapolate to significantly higher deiesit which constitutes
a highly uncertain operation. Conservatively, the obsgtvansmission requires
only a very small neutral fractiony; < 10~* at the mean density. Thus, the
increasing optical depth of the forest with redshifnist necessarily a flag of the
tail end of reionization; careful modeling of the forest éxjuired to reach such a
conclusion.

Table 4.1 Important IGM Metal-Line Transitions

Element| nx/ny (x10% for Z5) | lonization State] ) (A) Sosc
Cll 1334.5| 0.128
Carbon 3.58 Clv 1548.2 | 0.191
clv 1550.8 | 0.095
Ol 1302.2 | 0.049
Oxygen 8.49 oVvi 1031.9 | 0.133
o Vi 1037.6 | 0.066
Sill 1304.4 | 0.094
Silicon 0.33 SilvV 1393.8 | 0.514
SilvV 1402.8 | 0.255
Fell 1608.5 | 0.058
Iron 0.30 Fell 2344.2 | 0.114
Fell 2382.8 | 0.300

* Member of doublet
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A few options can help to improve this measurement and extemdsefulness
of the Lymane forest to higher redshifts. The first is to use a differentems$p
of the forest: one probe that appears promising is to use{acgle variations in
the optical depth of the forest, which may be modulated bycthrast between
neutral and ionized regions in the IGM. For example, somesliof sight at > 6
show completely saturated absorption even in deep sp&diiie, others show clear
transmission. Unfortunately, as described4h3.4, fluctuations in the absorption
are dominated by the aliasing of small-scale modes in theityefireld, which tend
to mask the underlying large-scale fluctuations. Morecthes,extremely under-
dense voids that allow transmission tend to lie in largdesgaderdensities, which
exaggerates their variance (i.e., they cluster just like,nmassive halos). Thus itis
so far difficult to use these variations to constrain the raditaction.

A second optionis to use a higher Lyman-series line: so fandng (with A\g =
1026 A and 73 /7, = 0.16 at a fixed density) and Lyman<{with A, = 972 A and
7y/Ta = 0.0558 at a fixed density) have been used. With their smaller osoilla
strengths, these lines can have considerably more trasismiand so sample gas
closer to the mean density; however, the primary difficudtyhiat they are visible
only at Aobs < Ag~(1 + z5), Which is inside the Lymare forest of the same
source (albeitat < Ag /Ao (14 2,), where the transmission is larger). One must
therefore account for this unknown foreground absorptighich does introduce
extra errors. Nevertheless, the higher Lyman-series ld@sppear to be more
sensitive than Lymai, and they indicate a steepening in the effective absorption
of the IGM and hence possible stronger evidence for an isargareutral fraction
atz > 6.

One complication regarding these lines is that, becaugeptabe slightly dif-
ferent densities than Lymamn; they may also sample different temperatures if the
gas is no longer isothermaj ¢ 1). Indeed, as discussed§n.3.1, the IGM is ex-
pected to have such a density-temperature relation onggatheelaxes after being
heated during reionization. Because the temperature fsttsthe optical depth,
this makes inferences abdutnore difficult (see equation 4.28). On the other hand,
it also offers a route toneasurehis temperature-density relation and constrain the
time of reionization that way (with the complication thathder regions may have
reionized earlier than underdense regions).

Finally, instead of choosing weaker Lyman-series lines aarestudy rarer ele-
ments — the metal lines. With the forest saturated, it is mgéw possible to asso-
ciate these lines with HI features; however, they can stiltbtected individually
as long as they appear redward)af(1 + z,) (see equation 4.49). Of course, one
must then determine which species causes the observedlindyy detecting mul-
tiple absorbers from the same redshift. Although this wangth range pushes into
near-infrared wavelengths far > 6, searches for both Ol lines and CIV doublets
have been conducted. The results are intriguing but, salifficult to interpret:
from z ~ 6 to z ~ 5, there is a rapid decrease in the density of Ol lines, at least
along some lines of sight, and a rapid increase in the deoS@yV lines. Whether
this represents evolution in the enrichment of the IGM, trvézing background, or
something else, remains unknown.

Two other probes of the ionization state of the IGM are usa&imore direct
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measurements of the reionization process: the so-cadttdamping wing (which
refers to the Lymanx absorption profile far to the red of line center, where the
optical depth is of order unity even in a completely neutrabimm) and therox-
imity effect (which refers to the highly-ionized zone surrounding indial bright
sources). We discuss these probes in chapter 10.






Chapter Five

Primordial Stars

The formation of the first stars hundreds of millions of yeafter the Big Bang
marks a crucial transition in the early Universe. Befores thoint, the Universe
was elegantly described by a small number of parametersagsbon as the first
stars formed, complex chemical and radiative processeseshthe scene. Today,
13.7 billion years later, we find very complex structuresusuw us. Even though
the present conditions in galaxies are a direct consequehttee simple initial
conditions, the relationship between them was irrevey$hlrred by complex pro-
cesses over many decades of scales that cannot be fullyaggdwbith present-day
computers. Complexity reached its peak with the emergehb@mtogy out of as-
trophysics.

The development of large scale cosmic structures occursée stages, as origi-
nally recognized by the Soviet physicist Yakov Zel'doviétirst, a region collapses
along one axis, making a two-dimensional sheet. Then thetsto#lapses along
the second axis, making a one-dimensional filament. Firtakyfilament collapses
along the third axis into a virialized halo. A snapshot of thstribution of dark
matter at a given cosmic time should show a mix of these getaaét different re-
gions that reached different evolutionary stages (owintpédr different densities).
The sheets define the boundary of voids from where their nahtegas assembled;
the intersection of sheets define filaments, and the intioseof filaments de-
fine halos — into which the material is ultimately drainedeTasulting network of
structures, shown in Figure 4.1, delineates the so-catledric web.” Gas tends to
follow the dark matter except within shallow potential vediito which it does not
assemble, owing to its finite pressure. Computer simulatf@mve provided highly
accurate maps of how the dark matter is expected to be digtdtsince its dynam-
ics is dictated only by gravity, but unfortunately, this teais invisible. As soon as
ordinary matter is added, complexity arises because obitdirng, chemistry, and
fragmentation into stars and black holes. Although thésiisve a difficult time
modeling the dynamics of visible matter reliably, obsesvesin monitor its distri-
bution through telescopes. The art of cosmological studigglaxies involves a
delicate dance between what we observe but do not fully wtaied and what we
fully understand but cannot observe. The next several ensyptill describe this
methodology.

When a dark matter halo collapses, the associated gasrfaltsi speed compa-
rable toV, in equation (3.32). When multiple gas streams collide arttiesto a
static configuration, the gas shocks to the virial tempeesfiy, in equation (3.33)
— at which it is supported against gravity by its thermal ptgs. At this tempera-
ture, the Jeans mass equals the total mass of the galaxydénfor fragmentation
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Figure 5.1 Cooling rates as a function of temperature forimmqmial gas composed of
atomic hydrogen and helium, as well as molecular hydrogerthé absence
of any external radiation. We assume a hydrogen number tgengi =
0.045 cm ™3, corresponding to the mean density of virialized halos at 10.
The plotted quantityA /n3; is roughly independent of density (unlesg >
10 em™3), whereA is the volume cooling rate (in erg/sec/&n The solid line
shows the cooling curve for an atomic gas, with the charetiepeaks due to
collisional excitation of hydrogen and helium. The dashied shows the addi-

tional contribution of molecular cooling, assuming a malec abundance equal
to 1% of np.

to occur and stars to form, the collapsed gas has to cool andegeser until its
Jeans mass drops to the mass scale of individual stars.
Cooling of the gas in the Milky Way galaxy (the so-called &rdtellar medium”)
is controlled by abundant heavy elements, such as carbgmeox or nitrogen,
which were produced in the interiors of stars. However, betbe first stars formed
there were no such heavy elements around and the gas was abtd obnly through
radiative transitions of atomic and molecular hydrogergué 5.1 illustrates the
cooling rate of the primordial gas as a function of its tenapere. Below a temper-
ature of~ 10K, atomic transitions are not effective because collisiam®ng the
atoms do not carry sufficient energy to excite the atoms andecthem to emit ra-
diation through the decay of the excited states. Since thtegiirs clouds around the
Jeans mass had a virial temperature well bel®#K, cooling and fragmentation
of the gas had to rely on an alternative coolant with suffityelow energy levels



PRIMORDIAL STARS 105

and a correspondingly low excitation temperature, nameliegular hydrogen, H
Hydrogen molecules could have formed through a rare chémgaation involving
the negative hydrogen (H ion in which free electrons (€ act as catalysts. After
cosmological recombination, thesHabundance was negligible. However, inside
the first gas clouds, there was a sufficient abundance of festrens to catalyze
H and cool the gas to temperatures as low as hundreds of dég(sisilar to the
temperature range presently on Earth).

The hydrogen molecule is fragile and can easily be brokenWyphbtons (with
energies in the range of 11.26-13.6 eV), to which the cosrag ig transparent
even before it is ionized’ The first population of stars was therefore suicidal. As
soon as the very early stars formed and produced a backgafud¥ light, this
background light dissociated molecular hydrogen and sgsed the prospects for
the formation of similar stars inside distant halos with hawal temperatured;,.
However, illumination by X-rays could produce free eleaisdhat would catalyse
the formation of additional molecular hydrogen.

In order to understand how structures proceed from the figss $0 subsequent
generations, we must therefore understéeetiback processesin this case, UV
and X-ray radiative feedback. We will therefore examineame detail the growth
of these radiation backgrounds and how they may affect sthgalaxy formation.
In particular, we will discuss how the chemistry of coolinganiges dramatically
when halos withl,;, > 10K formed. In such objects, atomic hydrogen was able
to cool the gas in them and allow fragmentation even in themdss of H — such
halos are thus immune to the radiation background.

The youngest stars in the Milky Way galaxy, with the highdstredance of ele-
ments heavier than helium (referred to by astronomers atalsip- like the Sun,
were historically categorized as Population | stars. Oklars, with much lower
metallicity, were called Population Il stars, and the firgttat-free stars are referred
to as Population III.

Of course, because these same stars also produce heavynelembkich af-
fect the chemistry and cooling of the gas, we must also tr&eimical feedback:
how these elements were generated inside dark matter hadolsav mechanical
processes, most likely from supernovae or AGN, distribikede heavy elements
within their parent halos and throughout the intergalactedium (and hence the
halos that assemble from it).

When these feedback mechanisms are included, the firstustesdo form stars
likely cannot continue to do so, at least for a time: only lamossibly when
atomic cooling becomes possible, will larger halos devélaphich self-sustaining
“galaxies” can form. These long-lived objects will be muasier to observe than
their predecessors and hence provide an important marlarunture formation,
especially for observers.

Unlike the previous chapters, in which much of the physicdaarly understood
with reference to observations at low or moderate redslifesfirst stars and galax-
ies — and their immediate descendants — have yet to be ols&®eswill therefore
focus in this section on the fundamental physical procebsgisshaped early star
formation, but only sketch a preliminary picture of how tbgsocesses fit together
in producing the first galaxies in the real Universe.
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5.1 THE FIRST STARS: FROM VIRIALIZED HALOS TO PROTOSTARS

We have already seen that gravity drives the bottom-up fukyeof structure for-
mation characteristic of CDM cosmologies; however, at lomasses, gas pressure
delays the collapse. The first objects to collapse are thiss@bove the mass scale
that allows cooling. Such objects reach virial temperatufeseveral hundred de-
grees and can fragment into stars only through cooling byemagér hydrogen. If
this occurs faster than the dynamical time, the halo gaseilapse rapidly to form
stars. In other words, there are two independent minimunsrtassholds for star
formation: the filter mass (related to accretion and dised$3§3.2) and the cool-
ing mass (related to the ability of the gas to cool over a dyinahtime). For the
very first objects, the cooling threshold is somewhat higiret sets a lower limit
on the halo mass of 5 x 10 M, atz ~ 20. We will next examine this process in
detail.

5.1.1 Chemistry of the Primordial Gas

The primordial gas out of which the first stars were made h&d 86its mass in
hydrogen and 24% in helium and did not contain elements bedlvan lithium.
This is because during Big-Bang nucleosynthesis, the aoerpansion rate was
too fast to allow the synthesis of heavier elements througthaar fusion reactions.

Before elements heavier than helium (denoted by astrormasemetals’) were
produced in stellar interiors, the primary molecule to reagfficient abundance to
affect the thermal state of the pristine cosmic gas was mtdebydrogen, H. The
dominant H formation process is

H + e — H + hy, (5.1)
H + H — Hy + e, (5.2)

where free electrons act as catalysts. We let the ionizedidraof hydrogen be
zun = nui/n, wheren = nyp + nyy; is the total abundance of hydrogen nu-
clei, and write the molecular fraction g%, = ny,/n. Then, we can write our
simplified reaction network as

j:HII = —OZBTLLL'I%IH (53)

fu, =kn(1 — xun — 2 fu, ) 2w, (5.4)
where the first equation follows recombinations (and hehediee electron frac-
tion) and the second includes the steps of molecular hydrégenation, which
occurs at a netrate This net rate coefficient actually includes both equattaf),
whose rate we shall catk, (for consistency with the literature) and equation (5.2),
whose rate we shall call;. However, H is fragile and can be destroyed by CMB
photons; we must therefore include a second channel in whielH~ doesnot
lead to molecular hydrogen. This occurs at a rate

kg ~ 0.114T2 " exp(—8650 K /T,) s (5.5)

Thus, the net rate of Hformation is

. ks

k~ lﬁg k3 n k4/[(1 — xHH)n] y (56)
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where the second factor is the fraction of khat eventually forms K

In reality, there are other channels to produce (and destnmjecules. The set
of important chemical reactions leading to the formatiorHgfis summarized in
Table 5.1, along with the associated rate coefficiemstailed calculations require
numerical integration of this network, but equations (8Y (5.4) provide some
useful insight.

First, note that the ionized fraction is independentfgf, since the electrons
only act as catalysts. Then, becatisgr o z%;;, recombination will be very slow.
This means that the reservoir of catalyzing electrons ramaiibstantial for long
periods of time (much larger than the recombination timkcahe solution with
constant” andn (i.e., the inefficient cooling limit) is

Gt
an(t) = ——— 5.7
:LHH() 1+t/t§ec’ ( )
wherezi;; is the initial ionized fraction (taken from cosmological@aations, as
in Fig. 2.2) and

: , 1+2\ 2/ AN\t xl -1
ti = (zhapn) ™t ~ 2.2 x 108 ( ;;) > (2—00> (ﬁ) yT
(5.8)

is the recombination time at the initial ionized fractiom the second part, we
have assumed the gas sits at an overdensity 260, typical of virialized objects,
used the residual ionized fraction following recombinat{ig. 2.2), and adopted
a temperaturel ~ 102 K.

We can now substitute this expression into equation (5.4¢.factor(1 — xp —
2 fu,) remains near unity for the initial conditions and timesesal&interest. More-

over,k is roughly constant; in that case, the equation is integrabd yields

fHQ ~ fﬁlz +— hl(l + t/t;ec)v (59)
ap

whereff;12 ~ is the molecular fraction when the cloud forms (typicallg tGM
value after recombinationy 6 x 10~7, provided that there is not yet a radiation
background from luminous sources). The molecular fractimrefore increases
linearly with time whent/¢¢_. < 1, but it slows to logarithmic growth past that
point: the transition occurs when the electrons are inc@afea into hydrogen
atoms, removing the population of catalysts and hence dieatig slowing down

Hs formation. It occurs at a critical molecular fraction

k
fH,s = P 3.5 x 10~4(T/1000 K)*-*2, (5.10)

where the “s” indicates saturation (though in actuafity does continue to increase
slowly). In practice, the nominal recombination time irsithese objects is rather
close to the Hubble time, so the electrons are used up ratheklg in the denser
centers of the halos, where molecule formation is also $asténus most virialized
objects reach this “saturation” limit.

iTable 5.2 ing5.3.2 shows the same for deuterium mediated reactions €®iesild be included in
detailed calculations but have only minor effects on thefstanation picture described in this section.
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Figure 5.2 Gas properties during dense cloud collapse inreenigal simulation of first star
formation. (a) Free electron abundance; note the rapid decline-at10® cm~3,
thanks to efficient recombinationgb) Molecular fraction fu,. The fraction
increases rapidly during cloud collapse until the satoratralue (eq. 5.10) is
reached, when recombinations remove the free electrotystta(c) Gas tem-
perature as a function of number density. Note the strongglat? ~ 500 K
andn ~ n.r, when radiative cooling becomes inefficient so the evolusitalls.
(d) The Jeans mass for this gas; note that ~ 10 Mg, for gas in the afore-
mentioned stalling stage. Figure credit: Bromm et al. 2@Q2], 564, 23.

The upper two panels of Figure 5.2 illustrate this procesa mumerical sim-
ulation of the formation of the first stars. Parfa) shows the free electron frac-
tion in a collapsing gas cloud: it remains near the initialuea(shown by the
horizontal dashed line) for a while as the density incredsfore falling rapidly
atn > 103 cm—3, where recombinations become efficient. Paii¢lshows the
molecular fraction, which increases steadily at low déesi{and therefore early
times in the collapse process) before reaching a limitingevaear fy, s in the
densest part of the clump.

5.1.2 Cooling and Collapse of Primordial Gas

The next question is how muchyHs required to allow the gas to cool and form
stars. Cooling proceeds when an hholecule is rotationally or vibrationally ex-
cited through a collision with another particle. If the sefsent de-excitation is
radiative (and the cloud is optically thin), the cloud witlske energy and cool; if
it is collisional, the cloud retains the energy, so no caplatcurs. In low den-
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Table 5.1 Important reaction rates for Hydrogen speciesiaations of temperatur® in K
[with Tz = (T/10°K)]. For a comprehensive list of additional relevant reaction
see Haiman, Z., Rees, M. J., & Loeb, Astrophys. J467, 522 (1996); Haiman,
Z.,Thoul, A. A., & Loeb, A. Astrophys. J464, 523 (1996); and Abel, T. Anninos,
P., Zhang, Y., & Norman, M. LAstrophys. J508 518 (1997).

Reaction Rate Coefficient
(cmPs™1)
(1) H+e —Ht+2e  5.85x 10~ 11T/ 2exp(—157,809.1/T) (1 + Ta' %)~}
(2) H +em —H+h 8.40 x 10~ 1T =127 02(1 4 Q7)1
(3) H+e- — H +hy 1.65 x 10_18Tf.76+0.1510g10 T4—0.033 logfo Ty
(4) H+H —Hy+e 1.30 x 1079
(5) H +HT —2H 7.00 x 10777 ~1/2
(6) Ho+e  —H+H" 2.70 x 10787~3/2exp(—43,000/T")
(7) Ho+Ht —Hj +H 2.40 x 10~%exp(—21,200/T)
(8) Ho+e  —2H+e~ 4.38 x 10~ %exp(—102,000/T)1°-3°
(9) H +e” —H+2e 4.00 x 107127 exp(—8750/T)
(10) H +H—2H+e™ 5.30 x 107207 exp(—8750/7)

sity gas, collisions are sufficiently rare that the first am@ndominates, and the
cooling rate is proportional ta? because all of the molecules occupy low excita-
tion states. Once collisions become important, the levpujadions shift to local
thermodynamic equilibrium (LTE), and the cooling rate b@es proportional to
n because the emergent intensity approaches the blackbbgy. vBhe transition
occurs at thecritical density which is only a function of temperature; it corre-
sponds ton., ~ 10* cm~3 for the temperatures of interest to primordial star for-
mation. Figure 5.3 shows how the cooling rates depend oritglermsl temperature:
note how the higher density rates approach the Local Theymaodic Equilibrium
(LTE) value neam,.,. The initial stages of cloud formation therefore lie in the
low-density regime where cooling is efficient.

A halo can collapse from the overdensities characteri$tirlization to those
characteristic of stars only if cooling can occur much fagtan the timescale over
which the halo grows (and therefore accumulates more tHegnexgy). The lat-
ter is comparable to the Hubble time. The cooling time depemdthe reaction
networks discussed in the previous section. But the chetiatic temperature to
which H, radiation can drive gas is hundreds of K, because the twodbrata-
tional energy levels in llhave an energy spacing 6/ kg ~ 512 K. A reasonable
approximation to the cooling time in a virialized halo is

—1
1+2\° [/ A 1077/?
teool 5 X 101 f, (W) <2—00) <1 + 5 +3T§1 exp(512 K/T) yr,
(5.11)

whereT; = T'/(10% K) and the temperature factors result from quantum mechani-
cal calculations of the Hcollisional excitation rates.
The relevant comparison to determine whether a gas clodad@libpse rapidly
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Figure 5.3 Cooling rate fronil> per molecule. The solid lines shaw= 107!, 10*, 103,
and10® cm~3, from bottom to top. The diamonds show the cooling rate in LTE
note how the cooling function approaches this limit when> n.. due to the
transition to LTE. Figure credit: Bromm et al. 2002, ApJ, 583.

to form stars is the dynamical time of the system,, ~ 1/1/Gp (with p ~ mgn),
which describes how rapidly gravity can adjust the configareof the system. If
teool > tayn, the cloud can adjust to the (slow) cooling quasi-statycédiwill con-
tract slowly, maintaining a constant Jeans mass, sdlthatp!/3. If, on the other
hand,tceo1 < tayn, the gas cloud will lose all its thermal energy much fastanth
gravity can adjust the configuration. As the pressure supgmishes, the cloud
will collapse to much higher densities in roughly the fredlfime. We note as well
that this argument is much broader than this particulariegpbn: it provides a
useful minimal criterion for galaxy formation in a wide raagf contexts.

In the present case, the relevant dynamical time is the Huirhk, ¢, because
the cooling begins as soon as the cloud reaches high den@tiever a virializa-
tion time). Even after the halo forms, it will continue to apt gas (and thermal
energy) and grow over roughly the same timescale. Usingtequé.11), the
critical molecular fraction for rapid cooling to occur is

. —1
f ex10- (122 (AN [ + Loz (512 K/T)
e~ 1. — — e .
Ha, 20 200 6o+1s) P

(5.12)
If a halo is able to form enoughdso thatfy, > fu, ., it will cool rapidly and
form dense, highly molecular clouds. If not, it will remaidanse, virialized clump
until it can surpass that threshold. We term such clumpshalos
Figure 5.4 shows that detailed numerical simulations otdudy stages of struc-
ture formation confirm this picture. Each circle represensingle virialized object
in the simulation; the filled circles contain dense cloudkjlevthe open ones do
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Figure 5.4 Molecular hydrogen fraction as a function of aliiemperature for virialized
halos inside a cosmological simulation at= 17. The circles show results
for individual halos; the filled circles contain dense (prasbly star-forming)
clouds, while the open circles do not. The dashed line shbevsaturation limit
fu,,c of eq. (5.10), while the solid line shows the critical molkeeuraction for
cooling to be rapid (see Eq. 5.12). The vertical dotted limasthe critical virial
temperature to host star-forming clouds. Figure credishida et al. 2003, ApJ,
592, 645.
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not. The dashed line shows the saturation limit for the mdedraction: clearly
the simulated halos lie remarkably close to this estimatt, thie scatter likely due
to variations in the accretion history of halos. The solilshows the critical cool-
ing threshold required at each virial temperature. It pdegia remarkably accurate
criterion to determine which halos can host dense, stamifay clouds.

However, these simulations find that30% of halos lying above the threshold
still do not host star-forming clouds (the open circles ia tipper right of Fig. 5.4),
while some that lie below the nominal curve do have such douithese can be
understood in terms of the accretion histories of the halesall that the cooling
must balance the thermal energy gained throughout (onybimlg growth. Those
halos accreting gas very rapidly may not be able to form delwels even if they
are massive.

5.1.3 The Collapse of Dense Clouds

Cloud collapse continues until cooling becomes inefficiemd thermal pressure
significant. The minimum temperature achievable byddoling is7 ~ 200 K,
because the energy spacing of the first two rotational lestthat molecule is
~ 512 K (the limitis somewhat smaller than that value becauseehtgh-velocity
tail of the Maxwell-Boltzmann distribution). The charagstic density when cool-
ing becomes inefficient is the critical density, ~ 10* cm3 defined in the pre-
vious section, where collisions become frequent enoughaimtain local thermo-
dynamic equilibrium. At yet higher densities, the radiatimtensity must follow
the blackbody law, so the cooling rate is only linearly prammal to density (see
Fig. 5.3).

With the decrease in the cooling rate, the gas cloud staflkiters” at or near
ne- This stageis illustrated in pan@l) of Figure 5.2, which shows a phase diagram
of the gas in a numerical simulation of these stages in thedtion of the first stars.
In the early stages (i.e., gas at low density in this diagraodling is inefficient
(with a rate proportional ta:?), so the temperature roughly obeys the adiabatic
relationT ~ n?/3 (shown by the dotted line here). Once the density increases
enough for H cooling to become efficient, the temperature fallsito~ 200 K,
where it stalls as LTE is reached near the critical density.

Further collapse requires enough mass to accumulate feitgta overcome the
roughly constant pressure of this growing clump — in otherdspuntil the mass
of the clump exceeds the local Jeans magg,~ csteon (S€€53.2). For gas in this
clump, that is

T 3/2 n —-1/2

M 700 (200 K) (104 cm—3) Mo. (5.13)
Once the clump grows beyond this point, gravity drives fartlapid collapse on
the dynamical timescalg,; of the cloud.

To this point in the collapse, “first star formation” posesta/gics problem with
well specified initial conditions that can be solved on a catap Starting with a
simulation box in which primordial density fluctuations aealized (based on the
initial power spectrum of density perturbations), one caiably simulate the col-
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(A) cosmological halo (B) star—forming cloud
» .

300 parsec 5 parsec

(D) new-born protostar (C) fully molecular part

. -

25 solar—radii 10 astronomical unit

Figure 5.5 Projected gas distribution around a primordratgstar from a numerical sim-
ulation. Shown is the gas density (shaded so that dark gnegtele the highest
density) of a single object on different spatial scal@dthe large-scale gas distri-
bution around the cosmological mini-halgs) the self-gravitating, star-forming
cloud; (c) the central part of the fully molecular core; afd) the final proto-
star. Figure credit: Yoshida, N., Omukai, K., & Hernquist,3cience321, 669
(2008).

lapse by including the chemistry, gravitational dynamarsg thermodynamics of
the gas. The top two panels in Figure 5.5 show these stagediapse in a typical
cosmological minihalo with~ 10°M, in such a numerical simulation. Generi-
cally, the collapsing region makes a central massive clurtip avtypical mass of
hundreds of solar masses, where the clump lingers becaulig @ooling time is
longer than its collapse time.

5.2 THE FIRST STARS: FROM PROTOSTARS TO STARS

Although the journey that led to humanity’s existence wagjland complicated,
one fact s clear: our origins are traced to the productiaimeffirst heavy elements
in the interiors of the first stars. Their formation is thenef a crucial milestone
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in the Universe’s history. The last section has put us on thep ©f understand-
ing these objects — but, unfortunately, the evolution fréiat {point is much more
difficult to understand and still has many uncertainties.

Numerical simulations show that the protostellar corehwit ~ 200 K, grad-
ually contracts at roughly constant temperature (owing tocbloling) untiln >
108 cm™3. When the density becomes large enough for three-body pseseo
form H, through the reactions,

H+H+H-H, +H, (5.14)

The rate for the first of these reactionskig, = 5.5 x 10729 cm® s~!; the second
is 1/8 as large. The timescale for this reaction equals e fall time at a critical
density

1/3

fI%Q Gmy
TLC’3 ~ <T§b s (516)

which is ~ 108 cm™3 for fy, ~ fu,,s- The molecular fraction then increases
rapidly until it is near unity by the time ~ 10'2 cm~3, which one can estimate by
settingfu, ~ 0.5in equation (5.16). This stage is also shown in parielFig. 5.5.

At this point, the large molecular fraction rapidly increaghe cooling rate, al-
lowing dynamical collapse. Numerical simulations showt thaydrostatic core of
mass< 10~2M,, forms when the gas becomes optically thick to its own cooling
radiation. This core forms the seed for a Population Il ,sbart its subsequent
evolution has proven much more difficult to track in numergianulations. Not
only is the dynamical time within the core very short, but thdiative feedback
from the protostar couples to the gas, making the coolinggsses more complex.
Thus, the final products of even the well-posed problem ofuRxdn Il star for-
mation still have a fair amount of uncertainty. Here we wihtent ourselves with
identifying the key issues in these final stages of formation

5.2.1 A Single Protostar: No Feedback

We begin by considering the simplest case, in which the clisapsumed to form a
single protostar. Theorists have made a good deal of pregremderstanding how
such a protostar would grow using a combination of numerétamalytic tools.
Star formation typically proceeds from the inside out, tigh the accretion of

gas onto a central hydrostatic core. Whereas the initiabrofithe hydrostatic core
is very similar for primordial and present-day star fornoatithe accretion process
— ultimately responsible for setting the final stellar mass expected to be rather
different. It is common to parameterize the accretion rate a

i = he, (5.17)

e

whereg, is a parameter that depends upon the properties of the meatidm
is the mass of the protostar. For a self-gravitating clurhp,rhassn, ~ My ~
c2/+/G3p, the Jeans mass, so

1y ~ ¢ /G o T3/ (5.18)
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A simple comparison of the temperatures in present-dayfstaring regions, in
which heavy elements cool the gas to a temperature as ldiv as 10 K, with
those in primordial cloudsi( ~ 200 — 300 K) already indicates a difference in the
accretion rate of more than two orders of magnitude. Thigyeats that the first
stars were probably much more massive than their presgnéud@ogs. The key
questions are to determine the accretion rate itself arichat the duration over
which it persists before radiative feedback from the ceémiratostar (or star) shuts
it off.

In order to estimate the accretion rate quantitatively, eedto determing. The
simplest solution is spherically symmetric accretion inrdfarm medium onto a
point mass, so-calleBondi accretion A simple way to estimate how the accretion
rate scales is to note that the protostar’s gravity will @eane the pressure of the
medium if the free-fall timeg ~ 1/+/Gp is smaller than the sound-crossing time
tsc ~ 1/cs. This condition implies that infall will occur within a raaié

Gm,
Race ~ CTZ . (519)

S

The accretion rate will then be the surface area of a sphehesatadius, times the
density of the medium, times the infall speed, which will Heoder the sound
speed. Thus

N G?*M?p

> (5.20)

My
We therefore haveé ~ (m../pr?)(ts./tg)® ~ 1, as expected.

Population Il star formation is of course considerably meomplicated than
this simplest limit, as collapse proceeds in a virializeghtp and is regulated by
H-> cooling. Nevertheless, it is possible to estimate the rhtekapse by using the
numerical simulations to calibrate the models. We taleel&similar solution, in
which all relevant physical quantities are power laws, liseghere is no character-
istic length scale in the problem. We assume that the defsithfollows p oc —*»
and that the pressure followsx »—*». It follows that the solution is a polytrope,
with p o< pj).

The simulations show that the accretion process occurosidaly and nearly
isentropically, with an adiabatic index ~ 1.1 set by K cooling. In hydro-
static equilibrium, the configuration therefore assumeslgtppic solution, with
P(r) ~ Kp(r)'!, and we immediately see that = 1.1 as well. Moreover,
hydrostatic equilibrium

ldp Gmy,
pdr 12
demands that, = 2/(2 — v,) =~ 20/9 (i.e. the density structure is fairly close to
an isothermal sphere) aitg = v, k,.
The constanf is set by the thermodynamics of the dense cloud during iis “lo
tering” phase, with a fiducial valuk = 1.88 x 10'2K34 in cgs units, where

T 104 cm=3\ "
Kga = . 22
fid (300 K) ( n ) (-22)

, (5.21)
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This initial entropy, together with the initial density file, ultimately determines
the accretion rate onto the protostar. The hydrostaticlieguim condition also
requires that

(3 _ kl )k3K3 1/(473]‘;#)
0)Vp
P= s ; (5.23)
A7 G3m?2
Substituting into equation (5.17), we have
1/2(4=37p)
L 80 (3 B kﬁ)kgKg ’ ME (5 24)
T | 220y e GBIl ’ '
_ m —3/7
~0.026K,7" (M* ) Mg yr=t, (5.25)
©

where in the second line we have usgd= 1.1 and evaluateg, using the closest
known self-similar solution to the early stages of accreiio simulations. Note,
however, that the mass dependence is actually very semsitiy,, varying from
—0.37 to —0.49 for v, = 1.09-1.1. Nevertheless the solution clearly shows an
important fact — and a key difference from low-mass star fation — that the ac-
cretion rate actually tapers off with time. The time reqdite build up a given
stellar mass is

s 10/7
t~ 27K (M®> yr, (5.26)
which matches detailed numerical simulations to withinadaof two or so in the
early stages of protostar formation. Given that very mas$iepulation 11l stars
live for only a few Myr, this provides anaximalupper limit to the mass of the final
star of~ 103 M, the accumulated mass over that lifetime, which depend®tn b
the main sequence lifetime and the initial entropy of the gas

In detail, provided that the core has some initial rotatithe, gas falls onto an
accretion disk rather than the star itself, and the resyiti;ometry may drive winds
or other outflows, so the accretion rate estimated abovelysamcurate to a factor
of order unity.

5.2.2 A Single Protostar: Radiative Feedback

The maximal mass estimate given above assumes that thesigltso(and stellar)
radiation field does not affect the accretion. In the presesfcahis feedbacksan
a Population Il star ever reach this asymptotic mass limithe answer to this
guestion is not yet known with any certainty, and it depend$iow accretion is
eventually curtailed by feedback from the star.

Before the onset of hydrogen fusion, the protostar mustatadiway the grav-
itational energy accumulated by accretidn,.. ~ Gm.m. /R, whereR, is the
radius of the protostar. The outward radiation pressurehengas can itself halt
accretion if it balances the inward gravitational force.isTis theEddington lumi-
nosity L g, representing the maximal luminosity of an accreting objassuming
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for simplicity a fully ionized medium, force balance reqesr
Gm,.my Lg
2 dmricl
whereor = 0.677 x 10~2* cm? is the Thomson cross-section for scattering a
photon off an electron. Settink,.. ~ L yields a critical accretion rate,

Lol o 19-3 ( B ) Mg yr, (5.28)
* 5R®

where we have scalefd, to a value typical of a very massive Population Il star on

the main sequence. Comparison of equations (5.28) and)(&uBgests that radia-

tive feedback can be crucial in halting accretion onto tleggstar as it approaches

the main sequence.

However, radiative feedback is likely to be unimportant atcim earlier stages,
because the protostar is much larger in size. For examptbeinery early stages,
when the opacity is dominated by Hbound-free processes, the photosphere tem-
perature is fixed af ~ 6000 K because: ;- o 7'*>. Assuming that the protostar
radiates as a blackbody, we then have

r (5.27)

m*,E ~

Gmy iy,
R,

whereogg is the Stefan-Boltzmann constant. This yieRls~ 50(m,/My)/? R
for 1, ~ 0.005 My yr—!. Thus, we naively expect that radiative feedback will
kick in only relatively late in the star formation process.

There are four distinct aspects of feedback exerted by astas gaseous envi-
ronment:

= 47 R%04pT*, (5.29)

e Photodissociation of 5t As the protostar heats up it produces far-ultraviolet
radiation that photodissociates see§?? below for a detailed discussion).
Once molecular cooling turns off, the adiabatic index of ¢fas increases
toy = 5/3 (i.e., monatomic gas). This decreases the accretion rate (b
cause the pressure increases more rapidly as the gas getsessed), but
numerical estimates and semi-analytic models show thatebkne is rather
modest. (This is not surprising given that the simple Bowdration problem
described above also permits steady accretion wherb/3.)

e Lyman« radiation pressure:As we will discuss in detail ir§10.1.1, the
radiative transfer of Lymaim photons is typically a very complex process
when the optical depth is very large, as is true for a collaggrotostar
surrounded by large quatities of neutral gas. The Lymahotons provide
a substantial pressure, because they are trapped by trealgpthick gas
(and, on average, scattering off infalling gas blueshifesphoton, reducing
the infall velocity of the gas). Indeed, they do not even psday scattering
through the gas column — rather, they escape when theiréreguwvanders
so far from line center that the gas becomes effectivelysrarent. Because
of these frequency shifts, the geometry of the flow plays guoirant role —
as soon as a low-column density channel opens up in oneidingephotons
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can easily escape along that channel. Provided that amemtcurs through
a disk, escape is most likely to occur along the polar dioectivhere the
accretion rate is already quite small. Analytic estimatesisthat Lymane
scattering can begin to slow the accretion when the corelthas 20 M),
but that the overall effect is small.

e lonization: Once the protostar begins to produce ionizing photons, ity
carve out an H Il region in which the temperature is much lathan the
surrounding neutral gas (typically 2 x 10* K; see§8.10 for a detailed dis-
cussion). This dramatically increases the pressure ofdbgwghich can cause
the H 1l region to expand and drive off the gas that would otlige accrete
onto the protostar. The dynamics of the region depend upa®expansion
velocity of the ionization front. If the front moves fastéain about twice the
ambient sound speed (of the neutral gas), then it has ealbent dynamical
effect on the gas. This is known as an “R type” (or rarefiedptfradNear a
Population Il protostar, the H Il region begins in this meg, because it is
expanding through gas falling in at the free-fall veloaity, which is highly
supersonic.

Eventually, the front reaches the radius whege~ 2c¢,, where the gas can
respond to the ionization front, and a shock forms (this idatype,” or
dense front). Typically, the shock leads the ionizatiomfrareating a dense
shell of neutral gas into which the front propagates, withukk lkinetic en-
ergy density comparable to the pressure inside the iooizétont. A simple
estimate for the point at which this shock halts accretiothiss when the
thermal pressure gradient at the front exceeds the inwandtgtional force.
This is roughly the accretion radiug,.. defined in equation (5.19), with
T ~ 20,000 K. Estimates of the ionizing luminosity of these protostars
indicate that this limit is reached when, ~ 100 Mg.

As before, the disk geometry of the accretion flow will playigportant role
in how this feedback mechanism plays out. The front will @oate fastest
through the lowest column density of gas, which is along thiampaxis, so
accretion will first be suppressed there. In contrast, atbeglirection of the
disk, the extreme column density of the disk “shadows” the,flallowing
accretion to continue. Provided that most of the accretiocucs through
such a disk, the H Il region will therefore not entirely hdietprotostar’s
growth.

e Photoevaporation of the Accretion Disklowever, the same ionizing pho-
tons will heat the disk itself, evaporating gas from it andmwually shutting
off accretion entirely. The rate at which this occurs desamgon the geom-
etry of the disk and the spectrum of the protostar, but sorfoeitlzdions show
that the disk evaporates when, ~ 150 M. As we will see below, this is
very near the mass threshold for direct black hole formatiben such stars
die, so the details of the process may be very important.

Because these radiative feedback processes only beconoetamiplate in the
evolution of the first stars, they must generally be studigtl simplified analytic
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models rather than incorporated directly into ab initio giations of Population Il1
star formation. We therefore only have approximate estisaf their importance,
and observations of these stars may be necessary to setfibykical uncertainties.

5.2.3 Multiple Protostars: Fragmentation

The models described above make one key assumption: thadlithpsing material
accretes onto a single object, the central protostar. Hewewe have argued that
(with angular momentum) the accretion flow will genericadisganize itself into
a disk. Can this disk then fragment into multiple high-density ghsiror multiple
protostars? There are several possible mechanisms for fragmentatiomwvitg-
tional instabilities, turbulence, and thermodynamicadities. All have now been
implicated in numerical simulations showing fragmentatiout it is far from clear
whether these are generic processes, and how severe theefigggion is.

The classic way to gauge the importance of gravitationahlvibty is theToomre
criterion. We sketch its significance here; more detailed derivatiamsbe found in
the references listed in theurther Readingsection below. Consider a small patch
inside a rotating gaseous disk. Let the patch have a raciungl mass\/ = wXr?
(whereX = p/Az is the surface density anflz is the disk thickness). If we
compress the patch by a fact@rsor — r(1 — ¢), the pressure increases by an
amount

Ap ~ E5py ~ §2X(Az) 7L (5.30)
Thus, the excess pressure force per unit mass is

V(Ap) 26
Y(Az)! r

Meanwhile, the increase in the gravitational force per umaiss is—GM§/r? ~
GX). Thus, the outward pressure counteracts gravity if

i _

== Ry (5.32)
This is just the classical Jeans analy§& 2) applied to a two-dimensional system:
small wavelength modes are stabilized by pressure, while lavavelength modes
are unstable to gravitational collapse.

However, in a rotating disk the angular momentum can stabithese long
wavelength modes. Assuming that our perturbation involmedexternal force
(and hence torque), the internal spin angular momentumefgéed by differen-
tial rotation across the patch) must be conservef® i the rotation speed, this is
Js ~ Qr2.

As we compress the patch, conservation of angular momemgneases the
rotation speed and thus creates a centrifugal barrier ttndarcompression. To
gauge how effective this is, we write the centripetal foree gnit mass in terms of
the conserved quantity;:

, (5.31)

r <

V2 022 JS2
2~ ~ 2s

r r r3’

(5.33)
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Figure 5.6 Density evolution in a 120 AU region around thet fin®tostar in a numerical
simulation of Population Il star formation, showing theltdup of the protostel-
lar disk and its eventual fragmentation at the times labil¢ide diagram. Figure
credit: Clark, P. C. et alScience331, 1040 (2011).

Thus, the excess force as we compress the patvis/r3) /dr x dr, which over-
comes gravity and prevents further collapse if
GXg
7 = Reen- (5.34)
We can only have an instability iR.., > Ry, S0 that a range of moderate
wavelength perturbations cannot be stabilized neitherregqure or rotation. A
more exact derivation shows that instability sets on ifThemre criterion

CsKe
Q= S <1 (5.35)

Herek, is the epicycle frequency, or the rotation frequency for bperturbations
around the equilibrium disk. For a Keplerian disk, = Q = \/GM((r)/r, where
M ((r) is the mass enclosed within a radius

Figure 5.6 shows this kind of gravitational fragmentatiorminumerical simula-
tion of the accretion disk around a Population Il star. Thekdery quickly ex-
hibits spiral structure, common in self-gravitating distteveloping non-axisymmetric
features and becoming locally unstable jyst00 yr after the formation of the first
protostellar core and forming a second core separated By AU from the first.
Figure 5.7 shows why: the top two panels show that the sudacsity and tem-
perature of the disk remain roughly constant over time, pkoear its outskirts.
This means the rate at which the disk can transport angularentum (and hence
material) inwards stalls, and the outer disk builds up mow@ore mass, quickly
becoming gravitationally unstabl§(~ 1 atr ~ 20 AU).

To continue fragmentation, the clump must still be able toitself of the ther-
mal energy generated during collapse. At the charactedstnsities of these disks

r >
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Figure 5.7 Radial profile of disk physical properties frone t,tame simulation shown in
Fig. 5.6, centered on the first protostellar core to form. dkl@ise from upper
left, the panels show the surface density, temperaturani®q parameter, and
molecular fraction. Note how the disk parameters do notvevstrongly. The
second core to form in the simulation forms within the regi@arr ~ 20 AU
where@ < 1. Figure credit: Clark, P. C. et alScience331, 1040 (2011).
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(n ~ 10'2-10'* cm~3) a new cooling process dominatesillision-induced emis-
sion (CIE). This occurs when Hinteracts with another species (H, He, of)kh

a collision. The interacting pair briefly forms a “supermalée” with a non-zero

electric dipole, from which photons can be emitted or absdrbfficiently. Be-

cause the collision times are very short, the resultingatiath is emitted nearly in
a continuum. This CIE radiation allows the gas to cool dutimg early stages of
fragmentation, because the cooling time is substantiblbyter than the dynamical
time.

However, the continuum opacity of these same moleculespis\CIE cooling
atn > 10 cm=3. At this point, the gas does begin to heat up. However, at
temperatures much above tifie~ 102 K characteristic of the disk (see the upper
right panel in Fig. 5.7), K begins to dissociate. Each such dissociation removes
4.48 eV from the gas, which keeps it near its original tempeeabecause it is so
highly molecular (see the lower left panel in Fig. 5.7).

Turbulence appears to be a third factor triggering insitidsl and fragmentation.
Such turbulence can be generated by “cold” accretion orethdist minihalo, where
gas is funneled into the halo along filamentary channels simat initially shock
heated to the virial temperature of the halo. Instead, iides with the central gas
clump supersonically, triggering (typically subsonicjdulent motions. Turbu-
lence is known to be important in “normal” star formation alredshifts leading
to fragmentation of giant molecular clouds into protostetlores with a wide range
of initial masses. Some numerical simulations indicatéshmilar processes could
cause fragmentation in the Population Il regime.

5.2.4 The Initial Mass Function

Currently, we have no direct observational constraints@m the first stars formed
at the end of the cosmic dark ages, in contrast to the wealtibeérvational data
we have on star formation in the local Universe. Populatiand Il stars form out
of cold, dense molecular gas that is structured in a compigk)y inhomogeneous
way. The molecular clouds are supported against gravitytiyulent velocity fields
and are pervaded by magnetic fields. Stars tend to form inerlsranging from
a few hundred up te- 10° stars. It appears likely that the clustered nature of star
formation leads to complicated dynamical interactions agihe stars. The initial
mass function (IMF) of Population | stars is observed to rebeoken power-law
form, originally identified by Ed Salpeter, with a number tdrs NV, per logarith-
mic bin of star mass,,

N m, L. (5.36)

dlogm,
Figure 5.8 shows some data in nearby star-forming regitrespnly environment
in which the IMF can be reliably measured, and the effectiveer-law index in
these regions. The data are consistent with a broken power la
I~ { 1.35 for my > 0.5Mg
~ | 0.0 for 0.008Mg < m, < 0.5Mg
We shall take this as our fiducial model in the discussionugfmowe note that
the form of the IMF at low masses is still unsettled. The lowetoff in mass

(5.37)
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corresponds roughly to the minimum fragment mass, set whenate at which
gravitational energy is released during the collapse edcéee rate at which the
gas can cool. Moreover, nuclear fusion reactions do notegnithe cores of proto-
stars below a mass ef 0.08M, so-called “brown dwarfs”. The most important
feature of this IMF is that- 0.5M ¢ characterizes the mass scale of Population |
and Il star formation, in the sense that most of the stellsswmes into stars with
masses close to this value.

The ultimate goal of studies of the formation of Populatitinstars is to de-
termine the analogous mass function for primordial starefodunately, we are
far from converging on any robust predictions. Until redgnmodels of single
protostar formation seemed to suggest that accretion woandinue untilm, ~
100 Mg, with the details determined by the initial entropy of thesd&sq in
eg. 5.25) and by radiative feedback, with a plausible masgedrom~ 20—
300 M. These masses — obviously much larger than the charamteriass of
present day stars — suggested that the first generationreftetight up the Uni-
verse would be truly exotic objects.

However, the more recent studies of fragmenting disks ssigidpat the char-
acteristic masses may be much smaller. Gravitational iigtaleads to several
cores, each competing for the accreting gas. Turbulencdeaahto an even wider
range of initial protostar sizes. These cores themselvesntaract, much as the
stars in nearby open clusters do. In particular, three-togyactions tend to speed
up smaller cores and move them into the outskirts of the cohere there is less
gas to accrete. Meanwhile, the larger cores tend to sinkeaémter of the cloud,
accreting more rapidly. This picture of “competitive adéra” may be important
for high-mass star formation in the nearby Universe; if smay suggest that Pop-
ulation Il star formation may also follow a power-law IMF tia broad range of
stellar masses.

Nevertheless, it seems likely that the characteristic nod¢sgh-redshift stars
mustbe significantly larger than the present-day value-di.5 M. The present-
day value can be understood relatively easily as the minimmass for collapse in
the~ 8 K molecular gas out of which these stars form (the minimunyterature is
set by the cooling physics in molecular clouds). The Jearssmeovides a reason-
able estimate of this value, but a more appropriate choiadves theBonnor-Ebert
mass

(KT/pmyp)?
p(l)/QGB/Q

which is the largest mass that an isothermal gas sphere wimperature” can
have in hydrostatic equilibrium with an external gas presgy. A Bonnor-Ebert
sphere has a finite central density and size as it is confineateynal pressure. Its
maximum mass\/gg is 4.7 times smaller than the Jeans mass, but otherwise has
the same scaling with density and temperature.

The temperature floor is expected to evolve with redshiftgose radiative cool-
ing cannot bring the temperature below the CMB temperataresich all of the
relevant lines couple. At = 30, Tcys = 82 K, many times larger than the
present day value (which note is well above the current CMBpierature). The

Mg = 1.18 : (5.38)
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Figure 5.8 Upper panel:The derived power-law indeX;, of the IMF in nearby star form-
ing regions, clusters and associations of stars within tlileyMVay galaxy, as
a function of sampled stellar mass (points are placed in émec of logm.
range used to derive each index, with the dashed lines imdicthe full range
of masses sampled). The colored solid lines represent tmalytical IMFs.
Bottom panel:The present-day IMF in a sample of young star-forming regjion
open clusters spanning a large age range, and old globulstecs. The dashed
lines represent power-law fits to the data. The arrows shenctiaracteristic
mass of each fit, with the dotted line indicating the mean attaristic mass of
the clusters in each panel, and the shaded region showirggahedard deviation
of the characteristic masses in that panel. The obsengtiom consistent with
a single underlying IMF. Figure credit: Bastian, N., Cov€yR., & Meyer, M.
R.,Ann. Rev. Astr. & Astrophy48 (2010).
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guantitative change in the Bonner-Ebert mass is not triciaéstimate, because
it depends on the temperature-density relation in the dodidr example, if the
density structure is fixed\/gg  7°/2, but if cooling proceeds isobarically, with
nT = constant, thed/gg, < T2. This suggests that the characteristic fragmenta-
tion mass would increase to at leastl6-50 M, atz = 30 (or even10-20 M, at

z = 10), well into the range of “high mass” stars by present-dapdsads.

5.3 THE SECOND GENERATION OF STARS: “POPULATION l111.2”

The picture we have described so far assumes that the staation process begins
with the initial conditions characteristic of the high-stiift IGM: gas that is nearly
neutral, with very little pre-existing H These are, of course, the proper initial con-
ditions for the first star-forming halos. But this picturepgads rather sensitively
on those assumptions, and it is likely that later generatadrstars — still forming
out of primordial gas — will form under different conditions

The key is the initial ionization state of the gas. There lre¢ important ways in
which that can be much higher for these later stars. Firstfitat stars will produce
a copious amount of ionizing photons, generating H Il regiaithin and around
their host dark matter halo. Any clumps that collapse withimionized region will
collapse from fully-ionized gas. Similarly, if these stasplode in supernovae,
their powerful blastwaves will ionize the nearby gas (andgildly even trigger
collapse). Finally, as larger mass halos form, star foromatvill shift to those
larger objects. Above a virial temperature-ofl0* K, the virialization shock itself
will ionize the halo gas, again changing the initial coratis for cloud chemistry
and collapse.

These initial conditions result in a different formation deofor primordial stars,
often referred to aPopulation II1.2, with a distinct initial mass function from the
classic Population I11.1 mode described earlier.

5.3.1 The Freeze-Out of Molecular Hydrogen

We showed ir5.1.1 that H formation is catalyzed by the presence of free elec-
trons. Thus, in gas that cools from a fully ionized state, eoale formation can
proceed rapidly — even though at the initially high tempemes such molecules are
dissociated.

Figure 5.9 shows numerical models of idealized isobaridingan primordial
gas initially at7 ~ 10* K (and hence ionized). As the gas cools, begins to
form through the usual free electron channel, until its alante saturates @, ~
2 x 1073, regardless of the initial conditions. This “freeze-outbpess indicates
that the molecular fraction saturates at a non-equilibnvaiae.

In particular, fi, can no longer evolve once the timescale for fdrmation
(trorm) @nd dissociationt(;ss) become longer than the cooling and recombination
timescales in the system. As§b.1.1, the formation time can be approximated by
trorm = sz/f'H2 ~ sz/(xHHl}n). The dominant K dissociation process is reac-
tion (7) in Table 5.1, whose rate we will denote by, Thentgiss = (krzann) .
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Figure 5.9 H formation in initially ionized gas. The top panel shows theperature evolu-
tion of gas at three different initial densities, assumsapiaric cooling (the three
models are offset in time for clarity of presentation). Tisétbom panel shows the
molecular fraction (solid curves) and the free electrortitn (dashed curves)
for the same three models. Note hgw, approaches a constant limitin all three
cases. Figure credit: Oh, S. P. & Haiman, &ZpJ, 569 558 (2002).
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The ratet ;.. decreases exponentially as the temperature drops, wiileatas for
cooling, recombination, and formation decrease only asegpdaws. This steep
temperature dependence means that very suddenly becomes longer thag.
andi..o1 as the gas cools; the reaction rates demand that the restdtimperature
IS Treeze = 3700 K. Up to this point, the K abundance remains in equilibrium,

and the ratio of the reaction rates yields the value

f ; — k(Tfreeze
Ha, ~ T oA N
2oreene k? (Tfreeze)

At lower temperatures, we know now that molecular hydrogammo longer be
destroyed. Since equilibrium demands that the formatiaitissociation timescales
would be comparable, this further implies that tarmation will also cease so long
as its rate increases less slowly with temperature tharirpahd recombination,
which is readily shown by comparison of the reaction rate3dhle 5.1. Thus,
whenT < Tieeze, the molecular hydrogen abundance remains fixed at its (non-
equilibrium) freeze-out valugy, freeze-

~2x 1073 (5.39)

5.3.2 Deuterium and Cooling

The relatively high abundance of molecular gas already ssiggthat these pre-
ionized systems can also eventually cool and form stars. edew there is an
additional wrinkle that becomes important in these systedeuterium. Unlike
Hs, which is a symmetric molecule, HD has a permanent dipole ermdrwhich
allows strong dipole rotational transitions with/ = +1, of lower energy than the
AJ = £2 quadrupole transitions of Hthe larger reduced mass of HD lowers this
energy even further). Thé = 1 — 0 transition has an equivalent temperature of
~ 130 K, about four times smaller than the lowest energy transitibH,. Thus,
in principle, HD cooling can lower the temperature and hemess scale of star
formation substantially (recall that/; o 7/2 at fixed density, Eq. 5.13).

The most efficient method for HD to form is via the reaction

H, + D — HD + HY. (5.40)

This of course requires the simultaneous presence of mlaleleydrogen and ion-
ized deuterium. In the standard picture, which occurs elytat low temperatures,
the latter is very rare, and very little HD forms. Howeveritie present case, where
all the deuterium begins ionized, the abundance dfrBmains relatively large un-
til very low temperatures. Thus, a substantial abundandé»ican build up, as
illustrated in Figure 5.10. Table 5.2 provides reactiomsdbr the most important
deuterium reactions.

Moreover, HD has several advantages as a coolant oyefirbt, it has a higher
critical density,neyit, qrp ~ 10% cm~3, so rapid cooling continues to higher densi-
ties. Second, its dipole transitions are much more rapith wispontaneous decay
rate A;p ~ 5 x 1078 s71. This allows rapid cooling even at low abundances: at
the levels shown in Figure 5.10, the gas can easily cool tcCi8 temperature
over a relatively short time. To see this, let us assume fopkcity that the gas,
at temperaturd’, is in LTE, so that the level populations in the ground and firs
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Figure 5.10 Molecular abundances in primordial gas codliogh high temperatures, rel-

ative to the total number density of H atoms. The calculatiere simulated
cooling in a 100 km s! shock atz = 20, characteristic of a supernova. Note
the large abundance of HD at low temperatures. Figure créalinson, J. L. &
Bromm, V.,MNRAS 366, 247 (2006).

Table 5.2 Reaction rates for Deuterium species as functbnemperaturel’ in K [with

Te = (T/10°K)].

Reaction Rate Coefficient
(cm’s™)
(1) Dt +e” —=D+hv 840 x 10~ 1T 127,021 + 197)~ 1
(2) D+H" =Dt +H 3.70 x 107 1070-28exp(—43/T)
(8) DF+H—-=D+HT 3.70 x 10~1070-28
(4) DT +Hy; - HT+HD 2.10 x 1079
(5) HD+H'" — H,+D" 1.00 x 10~ %exp(—464/T)
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excited state are

M _ 3¢=To/T (5.41)
ng
where the ratio of statistical weights is 3 afiy = hvip/kp = 130K is the
equivalent temperatures for photons emitted in transitistom the first excited
state to the ground state. (We will take a two-level systensifoplicity, assuming
that the gas has already cooledlto~ Tp so that higher levels are rare.)
The radiative cooling rate of gas at constant density is

3 dTr
hvio(noBo1ly,, — n1Aio — n1Bioly,,) = 5”@;%. (5.42)
Here By; and B are the Einstein coefficients for stimulated emission arsbgi
tion, respectively.n is thetotal number density of particles: this is related to the
density of HD moleculesup = ng + n1 by fup = nup/n. Finally, I,,, is the
CMB intensity at the frequency of the HID= 1 — 0 transition,

2hviy 7 /T Ao 71
IVlO ~ 02 e D CMB _— B_loe D CMB, (543)
where we have used the fact thas > Tovg. In that case the stimulated emission
term can also be neglected, so equation (5.42) may be written

dT
e 9T Ay Xpp (e~ Tp/Tovs _ o=Tp/T) (5.44)

If we assume thaKyp remains constant, we can integrate this equation to find that
the time to cool fronil’ ~ Tp to T = Tcums IS

tHD,cool ~ 1/(XupA10), (5.45)

atz ~ 10-30. Equating this to the Hubble time, we can determine theceditiD
abundance for cooling as

3/2
LT Z) . (5.46)

30

Figure 5.10 (and similar calculations for other scenargs)w that, when cooling
from high temperatures, the gas forms far more HD than tliicalvalue, indicat-
ing very efficient HD cooling. Since the Big Bang nucleosysis expectation is
that the deuterium abundance is orlyl0~° that of hydrogen, these calculations
indicate that nearly all of the deuterium can enter molacidem. On the other
hand, the abundance of HD in the “normal” Population Ill.&rsario is well below
this critical value — because™Dis so rare in cold gas — so it is not an important
coolant for that star formation channel.

XD crit ~ 4 x 1077 <

5.3.3 The Population 111.2 IMF

The previous section showed that the characteristic teatper of star-forming
gas in this channel is much smaller than for Population Btats, withl" ~ Toup.
Such an effective cooling will lead to Bonnor-Ebert masses d0-50 M, de-
pending on the physics of cooling (s#&2.4). This likely limits the masses of these
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Population 111.2 stars to be just a few tens of solar massassiderably below the
upper limits on Population I11.1.

Numerical simulations show that a small protostar (with < 0.5 M) forms
in the Population 111.2 case, just as in the case withoutehawn, and subsequent
stages proceed similarly to that case as well. Howevergdrcthder gas, fragmen-
tation into smaller mass protostars is much more likely, tuedprotostars are very
unlikely to grow to the~ 100 M., scales necessary to make radiative feedback
relevant. Thus it appears plausible that the Populatio IMF is skewed toward
high-mass stars, but stars that still lie within the masgeavbserved in the nearby
Universe.

This second-generation process may therefore produce & ditferent IMF
than the first generation. However, we have seen that turbalechemical pro-
cesses, and gravitational instability may cause even Rapnllll.1 protostellar
systems to fragment into clumps of comparable sizes. It iresrta be seen how
different these two formation channels really are.

5.4 PROPERTIES OF THE FIRST STARS

If fragmentation is inefficient, Population Ill stars appeagrow many times more
massive than the Sun, probably ceasing accretion only waéiative feedback
becomes importangb.2.2). Primordial stars withz, > 100M have an effective
surface temperaturé.; approaching~ 10° K, with only a weak dependence on
their mass. This temperature s 17 times higher than the surface temperature
of the Sun,~ 5800 K. These massive stars are held against their self-grayity b
radiation pressure, having the so-calleddington luminositysee Eq. 5.27 above,
and the discussion i§7.3) which is strictly proportional to their mass,,

Lp=1.3x 10% (107(’;7;4@) ergs™L, (5.47)
and is 6-7 orders of magnitude more luminous than the Buns 4x 1032 erg s~ 1.
Because of these characteristics, the total luminositycatar of a cluster of such
stars simply depends on itetal mass and not on the mass distribution of stars
within it.

The radii of these starB, can be estimated by equating their luminosity to the
emergent blackbody fluxT'%; times their surface aresr R? (wheres = 5.67 x
1075 erg em™2 s~ ! deg—* is the Stefan-Boltzmann constant). This gives

1/2 1/2

Lg 11 My

R, = (W) ~ 4.3 x 10M em x <100M@) , (5.48)
eff

which is only mildly larger than the radius of the Sug,, = 7 x 10'° cm.

The high surface temperature of the first stars makes theafigietories of ion-
izing photons: liberating the electron from hydrogen regsiain energy of 13.6 eV,
while helium requires 24.4 eV for the first electron and 54\6fer the second.
These are coincidentally near the characteristic energypbfoton emitted by these
very massive Population Il stars.
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If indeed they were this massive, the first stars had lifesimea few million
years, independent of their mass, because m,. During its lifetime, a very mas-
sive Population Il star produced 10° ionizing photons per proton incorporated
in it; the precise efficiency depends on mass and the modahpsters of the star,
but only to within a factor ofv 2 in them, = 10?-103 M, range. This means
that only a tiny fraction ¢ 10~5) of all the hydrogen in the Universe needs to be
assembled into Population Il stars in order for there to b#icsent photons to
ionize the rest of the cosmic gas, a fact which may be impodaring the reion-
ization process (see chapter 8). For comparison, PopulHt&ars with a standard
Salpeter IMF (eq??) produce on average 4, 000 ionizing photons per proton in
them.

If fragmentation is permitted, the masses may be consitiesamaller —> 10—
50 M, much larger than the characteristic mass today but stiiiwithe range of
“normal” stars. In this case, the Population Il stars wilt lbe qualitatively differ-
ent from their present-day analogs, although there are wfseosome differences
in detail.

Evolutionary models of Population 1l stars are fairly wepecified, with the
primary uncertainty at the high-mass end being the degreeast loss during the
stellar evolution. Figure 5.11 show some example calauati The solid lines
show main-sequence evolutionary tracks for zero metgllisiars without mass
loss, while the short-dashed lines assume strong mass $sslar evolutionary
tracks are shown for low-metallicity star& (= 0.02 Z) with the dotted lines, and
the zero-age main sequence for solar-metallicity starbigsve with the vertical
solid line. Primordial stars tend to be hotter (or bluer)rthiaeir enriched counter-
parts (as well as slightly smaller). There are two reasonghfis. First, the CNO
cycle is inefficient (only able to use the small amount of carbuilt up during
the pre-main sequence phase). They thus have very hot cbnedack of heavy
elements also reduces the opacity of the outer layers. Meg#tese factor imply
hotter stellar surfaces.

These lower mass stars are therefore somewhat more effatipnbducing ion-
izing photons than Population Il (or I) stars, but the difiece is one of quan-
tity rather than quality, emitting roughly 50% more ionizing photons per unit
mass. The overall efficiency of producing ionizing photorik therefore depend
extremely sensitively on the IMF: only if very massive stare indeed able to
form will Population Il stars be orders of magnitude morgaént than later gen-
erations of stars. Figure 5.12 illustrates this very imaottpoint: it shows the
observed spectrum of two Population Il star clusters, oith purely very mas-
sive stars (solid line; in this case the spectrum is mostigpendent of the mass
distribution of the stars) and a standard Salpeter IMF é&dbline). For the same
total stellar mass, the observable flux is larger by an orflenagnitude for stars
biased towards having massesl00M.

5.4.1 Emission Lines: Signatures of Primordial Stars

The hotter temperatures and increased ionizing efficisnzienassive Population
Il stars imply that galaxies in which massive stars are al@vwt will have some
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Figure 5.11 Main sequence evolutionary tracks for Poportelil stars (solid lines: without
mass loss; short-dashed lines: with strong mass lossyard0.02 Z, stars
(dotted lines). Isochrones at 2 and 4 Myr for the= 0 stars are also shown with
the long-dashed lines. The zero-age main sequence formelallicity stars is
shown by the vertical solid line; note that Popuation llIrstare significantly
hotter (bluer) than their higher-metallicity countergarEigure credit: Schaerer,
D.,A&A, 382 28 (2002).
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Figure 5.12 Comparison of the observed flux per unit frequérem a cluster of Population
Il stars at a redshift; = 10 for a Salpeter IMF dotted ling and an IMF
composed purely of very massive stagsl{d ling). The flux in units of nJy per
10% M, of stars is plotted as a function of observed wavelengthrin The
cutoff below an observed wavelength 6f16 A (1 + z,) = 1.34um is due to
hydrogen Lymanx absorption in the IGM (the so-called Gunn-Peterson effect;
see§10.2). Figure credit: Bromm, V. Kudritzki, R. P. & Loeb, Astrophys. J.
552, 464 (2001); Salpeter curve from Tumlinson, J., & Shull, MAStrophys.
J. 528 L65 (2000).
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interesting observational signatures. As the high-engigytons escape into the
interstellar media of their host galaxies, many of thosetph®will encounter neu-
tral hydrogen or helium and be absorbed. The ionized gastigih recombine,
emitting one or more line photons as the atom returns to thergt state. The rel-
ative numbers of these line photons depend on the incidemtrspand so can be
used as diagnostics of the stellar IMF.

Letus define@w as the rate at which a star of massproduces photons capa-
ble of ionizing a specied Because line emission is the result of absorbing these
photons, we have for a line

Lrn - fnLthrL(l - fesc)Qi,*; (549)

wheref.s. is the fraction of photons that escape the galaxy withoubgtien, the
choice of specie$ depends on the transition, hv,, is the energy of a photon
emitted in transitionn, and f,,, describes how likely a recombination of the ap-
propriate species is to produce a photon in this line. Bex#usse last two factors
depend only on atomic physics, the ratios of different lipesvide the ratios of
ionizing photons and hence a measure of the spectral hardfdise local stellar
population, albeit modulated by the factdr— f.s.), which could in principle also
depend on frequency.

In fact, if all of these ionizing photons are absorbed witthia host galaxy, the
hot, dense nebulae create substantial continuum emissiorlf through free-free
emission from the hot electrons, free-bound emission (byHtell, and He II) from
the recombinations themselves, and the two-photon camtinof H | (generated
when atoms recombine through th& Rvel, which is metastable but eventually
decays to the ground state by emitting two photons;tdde2.2 for more on this
process). This redistributes a large fraction of the enegytained in ionizing
photons to lower energies and can substantially boost thbthess of the galaxies.

Figure 5.13 shows an example spectrum of a zero-age Papul#tstar cluster,
in which the IMF contains high-mass stars but is not excklgimade up of them.
The solid curve shows the spectrum including the reprongssom nebulae and
recombination lines; the long-dashed curve shows theastedintinua themselves.
Because such a large fraction of the energy is originallgted in ionizing pho-
tons, this reprocessing enhances the the rest-opticahcmm by nearly an order
of magnitude, and creates very strong lines. Here H | linessaown with solid
lines, He | with short-dashed lines, and He Il with long-dashines.

The dotted curve shows the spectrum of a Population Il dluwsth Z = 0.02 Z,
and a Salpeter IMF ranging from 150 M (normalized to the same total mass).
The Population Il case is somewhat brighter. More strikthe presence of the
He Il recombination lines at 1640, 3203, and 4888 which appear because the
highest mass stars are so hot and so produce a substantiahtofi@nergy (up to
~ 12%) above the He Il ionization edge. In standard models, highetallicity
(and hence lower mass) stars produce almost no photons #hsvevel, so these
recombination lines are very interesting signatures of veassive Population 111
stars. (Though these line® appear in Wolf-Rayet stars and in some star-forming
galaxies at lower redshifts.)

However, because the highest mass stars live for only a few tigse He Il



PRIMORDIAL STARS 135

Pop III: Salpeter IMF (1-500 M,)

>

o

log F, [1.e+30 erg/s/cm?/&/M,]
] N

o

(@]
[aS)
(@]
Q
(@]

4000 6000
A [4]

Figure 5.13 Spectral energy distribution of a cluster of iafion Il stars with a Salpeter
IMF ranging from1-500 Mg (solid line), all of which have just entered the
main sequence. Nebular reprocessing and recombinatierefirission are in-
cluded assuming thgts. = 0. The pure stellar continuum (neglecting nebular
emission) is shown by the long-dashed line. The contrast&sg of a Popula-
tion Il cluster withZ = 0.02 Z and a Salpeter IMF ranging from 150 M,
is shown by the dotted line. The vertical dashed lines irtdithe ionization
potentials of H I, He I, and He Il (from right to left). Figureedit: Schaerer,
D.,A&A, 382 28 (2002).
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recombination lines do not persist for long after an inibatst of star formation.
They are therefore natecessangignatures of zero-metallicity stars, even if they
are convenient markers.

5.5 THE END STATES OF POPULATION Il STARS

The end state in the evolution of massive Population Illlssti@pends on their mass
and rotation rate. Ignoring rotation, one finds several jpbs$ates, depending on
the initial stellar mass, though modeling supernovae iseextly difficult so the
dividing lines between the different scenarios remain uage. Rotation generally
increases the mass thresholds identified below, but it mepdifficult to quantify
by how much. We describe each of these fates briefly below.

e For masses below 8-10 M, stars end their lives as white dwarfs, just as
present day low-mass stars do. These stars can producelghéents dur-
ing their asymptotic giant branch phases, but that occues mwuch longer
timescales than the 1 Gyr Hubble time at > 6, so it is generally not con-
sidered important in understanding the enrichment hisswf early galaxies.

e For masses- 10-25 M, stars undergo Type Il supernovae, leaving a neu-
tron star behind. Especially at low metallicities, where thpacities are
smaller, the hydrogen envelopes remain intact: these arénibrmal” su-
pernovae that are thought responsible for enrichment of veavy elements
in the nearby Universe.

e For masses- 25—40 M, stars undergo relatively weak Type Il supernovae
because much of théNi falls back onto the black hole remnant. As a result,
these supernovae are likely quite faint and leave littla ivehind.

e For masses- 40—100 M, the stars collapse directly to a black helghout
producing a supernova (and hence without enriching theiosadings).

e For masses betweén0-140 M, the enormous core following helium burn-
ing heats up rapidly, leads to the production of electrosipon pairs as a
result of collisions between atomic nuclei and energetiamga-rays, which
in turn reduces thermal pressure inside the star’s cores ifstability cre-
ates violent mass-ejecting pulsations, which can contaimach energy as
a supernova (though will be much fainter due to the lack ofcactive ele-
ments). The entire hydrogen envelope of the star is likedgteld, relieving
the instability and allowing the remainder of stellar evaa to proceed as
for a lower-mass star, with the iron core eventually collagdirectly to
a black hole. These kinds of “explosions” would not enrichittgalaxies
because only the light envelopes are ejected.

e Forthe mass rangel0-260 M, stars are likely to explode ggir-instability
supernovagA pair-instability supernova is triggered by the sameabdity
described above, when part of the core’s thermal energyésied in the rest
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mass of electron-positron pairs. The pressure drop leadptotial collapse
and then greatly accelerated burning in a runaway thermeauexplosion
which blows the star up without leaving a remnant behind. Hihetic en-
ergy released in the explosion could reach03? ergs, exceeding the kinetic
energy output of typical supernovae by two orders of magiatuAlthough
the characteristics of these powerful explosions wereipted theoretically
several decades ago, there has been no conclusive evidaniteif exis-
tence so far. Because of their exceptional energy outpuatis;instability
supernovae would be prime targets for future surveys of tisé tars with
the next generation of telescopé9.(L.2). Because of their unusual explo-
sion mechanisms, pair instability supernovae have distincleosynthetic
signatures. They produce a near solar distribution of efgsitom oxygen
to nickelexceptwith a large deficit of nuclei with odd charges, because weak
interactions are unimportant throughout most of this masge. They are
also unable to make very heavy elements and eject no eleimesger than
zinc.

e Above 260 Mg, the helium cores instead collapse directly to black holes;
nuclear burning of heavier elements is simply unable to thedtimplosion
triggered by exhaustion of more efficient fuel, and the erdtar is swallowed
up in the black hole, though possibly with a transient adonetlisk and
accompanying electromagnetic signature. Above this nfaggulation 1l
stars therefore dootenrich their surroundings.

5.6 GAMMA-RAY BURSTS: THE BRIGHTEST EXPLOSIONS

Gamma-ray bursts (GRBs) were discovered in the late 196€@sd¥merican Vela
satellites, built to search for flashes of high energy phe{gamma rays”) from
Soviet nuclear weapon tests in space. The United States&esithat the Soviets
might attempt to conduct secret nuclear tests after sigtiiegNuclear Test Ban
Treaty in 1963. On July 2, 1967, the Vela 4 and Vela 3 satsllitetected a flash
of gamma radiation unlike any known nuclear weapons sigeatWncertain of
its meaning but not considering the matter particularlyemtythe team at the Los
Alamos Laboratory, led by Ray Klebesadel, filed the data afwayuture inves-
tigation. As additional Vela satellites were launched watkttter instruments, the
Los Alamos team continued to find unexplained GRBs in theia.dBy analyzing
the different arrival times of the bursts as detected byedé#fit satellites, the team
was able to estimate the sky positions of 16 bursts and deélyitrule out either
a terrestrial or solar origin. The discovery was declassifind published in 1973
(Astrophys. J182, L85) under the title “Observations of Gamma-Ray Bursts of
Cosmic Origin.”

The distance scale and nature of GRBs remained mysteriomsdie than two
decades. Initially, astronomers favored a local origin tfoe bursts, associating
them with sources within the Milky Way. In 1991, the Comptoan@na Ray Ob-
servatory satellite was launched, and its “Burst and Teamistource Explorer”
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instrument started to discover a GRB every day or two, irgirgathe total num-
ber of known GRBs up to a few thousand. The larger statistaaiple of GRBs
made it evident that their distribution on the sky is isotoopSuch a distribution
would be most natural if the bursts originate at cosmoldgigstances since the
Universe is the only system which is truly isotropic aroursd devertheless, the
local origin remained more popular within the GRB commuifitysix years, until
February 1997, when the Italian-Dutch satellite BeppoSA&¥edted a gamma-ray
burst (GRB 970228) and localized it to within minutes of asing its X-ray cam-
era. With this prompt localization, ground-based telessopere able to identify
a fading counterpart in the optical band. Once the GRB dfferdaded, deep
imaging revealed a faint, distant host galaxy at the locadicthe optical afterglow
of the GRB. The association of a host galaxy at a cosmologistance for this
burst and many subsequent ones revised the popular opmfanar of associating
GRBs with cosmological distances. This shift in populamwovides testimony
to how a psychological bias in the scientific community caberturned by hard
scientific evidence.

A GRB afterglow is initially brightest at short photon wagabths and then fades
away at longer wavelengths, starting in the X-ray band (tiweescales of minutes
to hours), shifting to the UV and optical band (over daysyl ending in the infrared
and radio (over weeks and monttis)Among the first detected afterglows, ob-
servers noticed that as the afterglow lightcurve fadedjddaration GRBs showed
evidence for a supernova flare, indicating that they are at¢sociated with core-
collapse supernova events. The associated supernovaehassiied as related
to massive stars which have lost their hydrogen envelopewind. In addition,
long-duration GRBs were found to be associated with stamiiog regions where
massive stars are born and explode only a million yearsvedtiels. These clues
indicated that long-duration GRBs are most likely asseciatith massive stars.
The most popular model for long-duration GRBs became knawth&“collapsar”
model. According to this model, the progenitor of the GRB massive star whose
core eventually consumes its nuclear fuel, loses pressymeost, and collapses. If
the core of the star is too massive to make a neutron star]l&pses to a black
hole. As material is spiraling into the black hole, two jete produced at a speed
close to that of light. So far, there is nothing spectaculana this setting, since
we see scaled-up versions of such jets being formed aroussivezblack holes in
the centers of galaxies, as shown in Figure 7.5. Howeverjéts are generated
in the core of a star, they make their way out by drilling a hialéhe surrounding
dense envelope. As soon as the head of a jet exits, the highilpated stream of
radiation emanating from it would appear as a gamma-ray ftaah observer who
happens to line up with the jet axis. The subsequent aftergdgults from the in-
teraction between the jet and the ambient gas in the vicafithe progenitor star.
As the jet slows down by pushing against the ambient medibemnbn-thermal
radiation from accelerated relativistic electrons in theak wave in front of it gets
shifted to longer wavelengths and fainter luminositiessdilas the jet makes its

i For an extreme example of a GRB afterglow from a redshié 0.94 that was bright enough to
be seen with the naked eye, see Bloom, J., ékgttophys. J691, 723 (2009).
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way out of the star, its piston effect deposits energy in thééag envelope and ex-
plodes the star, supplementing the GRB with a supernoeseliplosion. Because
of their immense luminosities, GRBs can be observed outdetige of the Uni-
verse. These bright signals may be thought of as the cosmiediks signaling the
birth of black holes at the end of the life of their parent nizesstars. If the first
stars produced GRBs (as their descendants do in the monet ldo@erse), then
they would be detectable out to their highest redshifts. ifTbewerful beacons
of light can be used to illuminate the dark ages and probe dBenc gas around
the time when it condensed to make the first galaxies. As thik bvas written,
a gamma-ray burst was discovered by the Swift Satélidea redshif9.4, repre-
senting the most distant source known, originating at time tivhen the Universe
was only~ 0.5 billion years old.

It is unknown whether Population-lll stars produce longadion GRBs. For
that to happen, the angular momentum of the collapsing cassM,. needs to
be larger than~ 10GM?2/c so that a stable disk would form outside the resulting
black hole and collimate the jets. The rotation of the preB3Rogenitor can be
affected by mass exchange with a binary companion or masshosugh a wind.
If the final mass of the black hole from a Population Il progenis larger than
usual, then the duration and total energy output of the #®acGRB is expected
to increase ¢ m,) relative to low redshift GRBs. For additional observatibn
details about GRBs, s&@7??.

iit http://swift.gsfc.nasa.gov/
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Figure 5.14 lllustration of a long-duration gamma-ray burs the popular “collapsar”
model. The collapse of the core of a massive star (which ksshydrogen
envelope) to a black hole generates two opposite jets masingat a speed
close to the speed of light. The jets drill a hole in the stat ghine brightly
towards an observer who happens to be located within theradibn cones of
the jets. The jets emanating from a single massive star abgiglt that they
can be seen across the Universe out to the epoch when thetdirsfaermed.
Figure credit: NASA E/PO.



Chapter Six

Stellar Feedback and Galaxy Formation

6.1 THE ULTRAVIOLET BACKGROUNDANDH 2 PHOTODISSOCIATION

Chapter 5 described star formation in gas with a primordatposition. We found

that this process crucially depends on molecular hydrogenol the cloud to den-

sities high enough for stars to form. In this section we wilhsider how radiation

from those very same stars can destroy that coolant and se mdisequent star
formation even harder.

6.1.1 Lyman-Werner Photons and the Solomon Process

Molecular hydrogenH{,) is fragile and can easily be photodissociated by photons
with energies ofl 1.5-13.6eV, to which the intergalactic medium (IGM) is trans-
parent even before it is ionized. The photodissociatioruccthrough a two-step
process, first suggested by Phil Solomon in 1965 and latdyzsthquantitatively
by Stecher & Williams (1967). In practice, this process s dmly way to photodis-
sociate H in interstellar (or intergalactic) space, because the quiesociation
continuum of H begins at 14.7 eV, while the photoionization continuum bhegi
at 15.4 eV. Both of these lie above the photoionization threshold of ol such
photons would be absorbed by H | long before they encountésed

The quantum mechanical configuration of the electronic gdostate of H is
denoteXmE;. Uppercase Greek letters denote the total electronic angub-
mentum of the system, projected onto the internuclear axib,X, IT, andA hav-
ing values of 0, 1, and 2 in units &f The left superscript (1 for the ground state) is
2S5 + 1, whereS = 0 or 1 is the total spin angular momentum. The right subscript
(g orwu) and superscript{ or —, and only forY states) describe the symmetries of
the configuration; this one asymptotes to two atoms withr tblkeictrons in the s
state at large separations. The leftmost Roman letter itbesdhe electronic states,
with X being the lowest level, with the relevant upper states forpurposes la-
beledB andC (capitalized letters refer to singlets). Each of thesetedaic states
is further split into a large number of sublevels by the gireat rotational and vi-
brational levels of the two nuclei, usually denoted yandwv. For example, the
ground state has 14 vibrational levels, each nominally withinfinite number of
rotational levels.

The next two singlet states aﬁéE; andC'II,, which asymptote to two atoms
with their electrons in thds and2s or 2p states, respectively. These can decay

iThese are far above the dissociation energy 9{448 eV) because the direct transition is forbid-
den.
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to the ground state via permitted electric dipole transgiathe analog of the H |
Lyman- transition. However, for these molecules there are a laigaber of
sub-transitions owing to the rotational and vibrationditspgs. Thus, H has two
bandsrepresenting these transitions. The first band betweenrthend state and
Blzj; is known as thd_ymanband and consists of many densely packed lines
beginning at 1108‘3\(11.26 eV). The second band between the ground state and
C11, is known as th&Vernerband and begins at 104(12.3 eV).

Now consider the following sequence:

Hy(X'S50=0)+7— Hy(B'S§,0=0) > Hy(X,v=0")+v (6.1)

Herew labels the vibrational energy level. Crucially, in electiotransitions there
are no sharp selection rules for the vibrational continutihus, the excited state’s
vibrational quantum numbef is not restricted to be small, and nor s the final value
v”’. Itis therefore possible for the final state to lie in the wifional continuum of
the molecule{¢” > 14): in other words, to dissociate the molecule. A similar
process also occurs for excitations and decays through #reavband. The rate
at which this occurs depends on the cross-section for algpttyman-Werner
photons (for which the oscillator strengths are typicallyl %) and the probability
of decay into this continuum (typically 15%). Figure 6.1 shows the energies of
some of these transitions, where the initial configuratiasth= 0 andJ = 0, 1;
the height of each line i8.01 x f.s.. Theaveragecross-section for this process
between 11.26 eV and 13.6 eV (averaged over 76 allowed liges)y = 3.71 x
10718 cm?.

6.1.2 The Suppression of K Cooling

Once Lyman-Werner photons appear, we must include thisoplisgtociation pro-
cess in the chemistry of the primordial clouds. The ratefodeht for photodisso-
ciation is

Kaiss = 1.38 x 10%Jpw 71, (6.2)

where Jrw is the specific intensity (in units ergs’scm=2 Hz=! sr!) in the
Lyman-Werner band (specifically, here we have taken= 12.87 eV for concrete-
ness, in the middle of the relevant energy range). It is coierd to normalize
Jow = 10721 x Jiw 21. The timescale for dissociation is therefore

taiss = kigias & 3 X 1084 o1 yT, (6.3)

diss
which is very short compared to the relevant cosmologicattcales. Thus, if the
Lyman-Werner background approaches this fiducial valueywyeld expect it to
destroy all of the molecular hydrogen.
In that case, if the radiation background (and local gas ¢ntigs) remain con-
stant on longer timescales, the Haction will approach an equilibrium where the
formation rate (approximately in equation 5.6) balances the dissociation rate,

k _8 7— THII 1+2\*/ A
oq = —— ~4x1078 )4 — 4
frasa = gy~ 01005k (£2550) (55) (55) - @4
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Figure 6.1 The “sawtooth” modulation of a uniform, spedyrdlat radiation background
in the Lyman-Werner frequency band when the IGM is still pmaéhantly neu-
tral. The three curves are far= 19.2, 15.7, and 9.2, from top to bottom; the
horizontal lines show the unattenuated spectrum, whiletimees with features
show the effect of Lyman-series absorption. The verticadiat the bottom of
the figure show some of the Lyman-Werner transitions, withhkight equal to
1% of the oscillator strength. Figure credit: Ahn, K. et &lstrophys. J695
1430 (2009).
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where we have takefi ~ 1000 K and a typical electron fraction before any cooling
begins. This is far below the critical value required fos Eboling to be efficient
(Eq. 5.12), sa substantial Lyman-Werner background suppresses malebyt
drogen cooling

The primary question is then whether a background of thislémnde can rea-
sonably penetrate the clouds in which primordial stars noasnf In the next sec-
tion we will examine whether a sufficiently strong backgrdwan be produced
by the integrated stellar population, but before that weertbait any such meta-
galactic radiation field must penetrate to the regions incwitl, actually forms —
that is, the centers of virialized halos. Once ¢boling becomes important, these
halos have large masses of the gas, and the outer layerstohakxcan theself-
shieldthe inner layers where cooling is actually occurring. Ifsa@uter layers are
dense enough to maintain an equilibriurg population that is optically thick in
the Lyman-Werner bands, this self-shielding is signific&¢onvenient numerical
approximation, due to Draine & Bertoldi (1996), for the effeof self-shielding in
a static medium is to taklyiss — fsnkaiss, With

) NH2 -0.75
fsh = min [1, (W) ] 5 (65)

where Ny, is the column density of molecular hydrogen. The dependanbi&h
column densities is steeper than expected from a naive @frgeowth analysis
because of overlap within the various Lyman-Werner linékhig estimate is not
accurate at very high column densities, but those are rargprtant in this con-
text.)

Note, however, that self-shielding is more complex if thedinen has velocity
gradients, because then the lines are shifted by differaouats relative to their
rest wavelengths in different parts of the cloud. This cansiderably reduce the
effectiveness of self-shielding and is a critical questioevaluating the importance
of a Lyman-Werner background

6.1.3 Photodissociation Feedback Inside Star-Forming Hak

It is conceptually convenient to divide feedback from Lym\&arner photodisso-
ciation into two simple cases: one in which starlight fromiaeg star inside a
collapsed halo acts upon gas inside the same halo, and secaridch a meta-
galactic radiation background affects halos from the adgtsiWe will consider the
first case here. We certainly expect that, within some zoowerat an individual star,
the Lyman-Werner background will dissociate enoughtéirender further cooling
inefficient, choking off later star formation. The questiame wish to address is
how large this zone is relative to the extent of the halo.

We suppose that a star sits at the center of such a halo. Tedghagcumu-
lative amount of photodissociation, we must compare thedtale for a star to
photodissociate the halo’s;Ho the main-sequence lifetime of the star. Very mas-
sive Population Il stars producd¥rw =~ 3400 photons in the 11.2-13.6 eV range
per baryon inside them; smaller stars produce them at abmulild that rate. If
we assume that a fractiofi,w ans ~ 0.01 of these photons are absorbed by the
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Lyman-Werner bands (a reasonable approximation for thevaglt column densi-
ties and expected line widths), and that abfiw 4iss ~ 0.15 of these absorptions
lead to dissociations, the total number of dissociatioomfa star (or set of stars)
with massi, is ~ frw abs fiw diss Now My /m,,. Comparing this to the total num-
ber of H, molecules in a haloy fu, M,/m, (WherelM, is the total gas mass), we
find that the fraction of molecules expected to be photodissed is

faestroy ~ 10 Siw abs \ [ fiwdiss | ( Now fuz s - M.
destroy 0.01 0.15 3400 3.5 x 104 Mg '
6

Thus, provided that the star formation efficiency is not extely small, the first
generation of stars can easily photodissociate all of then’s diffuse H, shutting
down further cooling at least temporarily.

However, gas clumps already in the process of collapse nragdl be dense
enough to maintain their Hpopulations in the presence of this radiation back-
ground. The relevant question for clumps is whether theatawh field can dis-
sociate the K both before collapse completes (overtqy,) and faster than the
clump can form H to replace it (Eq. 6.4). Analytic estimates show that clumps
that have already passed the “loitering stage” (witty 106 cm—3) are suppressed
only very close to the source star. Thus, the total rate offstenation within halos
may depend on the degree to which clumps are synchronizedsattre entire halo:
those collapsing at nearly the same time will be unaffectethb Lyman-Werner
background, but the collapse of those that are delayed mawlted completely.

6.1.4 The Metagalactic Lyman-Werner Background

Because the intergalactic medium is mostly optically tbiphotons in the Lyman-
Werner bands (and the small amount of intergalactiddHquickly dissociated as
the first sources appear), a metagalactic radiation fielt quiickly build up in
this energy range. If the background is intense enough,dteat which H is
destroyed inside collapsed objects will exceed the ratehitiwsuch molecules
form, preventing cooling in newly forming halos — and cagsinstrongnegative
feedback effect on star formation.

The magnitude of this feedback will depend upon how thesednswerner pho-
tons propagate through the IGM. In fact, the IGM is not petfeaptically thin to
these photons as line absorption by the H | Lyman series pnasesses the back-
ground below the Lyman limit, causing the sawtooth shapeveha Figure 6.1.
For any photon energy above Lymanat a particular redshift, there is a limited
redshift interval beyond which no contribution from sowsde possible because
the corresponding photons are absorbed through one of kteerfeely optically
thick) Lyman-series resonances along the WaSonsider, for example, an energy
of 11 eV at an observed redshift= 10. Photons received at this energy would
have to be emitted at the 12.1 eV Lymatine fromz = 11.1. Thus, sources in the
redshift interval 10-11.1 could be seen at 11 eV, but raatia¢imitted by sources

iThe Lymane optical depth given in equation (4.13), and higher Lymariesetransitions are re-
lated to this fall only by the ratios of the oscillator strémgmes frequency.
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atz > 11.1 eV would have passed through the 12.1 eV energy at some iaterm
diate redshift, and would have been absorbed. An obseregrivg the universe
at any photon energy above Lymarnwould see sources only out to some horizon,
and the size of that horizon would depend on the photon endigg number of
contributing sources, and hence the total background fleaah photon energy,
would depend on how far this energy is above the nearest Lygsmomance. Most
of the photons absorbed along the way would be re-emittéereitt Lymane or
in the2p — 1s two-photon continuum and then redshifted to lower energiée
result is a sawtooth spectrum for the UV background befoi@ization, with an
enhancement below the Lymanenergy.

Quantitatively, the specific intensity at a frequemcgnd redshift is

dt
Ju(z) = / dz' e (2)e™T), 6.7)

wherej,(z') is the emissivity from sources at a redshiftand a frequency’ =
v(142")/(1+ =) and the factor(z) is the accumulated optical depth as the photon
travels through the IGM. This is negligible so long as thetphatays between the
Lyman-series lines, but it becomes very large whenever tiggm crosses such
a line. An excellent approach is therefore to use a “scregapproximation” in
which the integral is truncated at a maximum redshift deteeah by the nearest
Lyman linei (of frequencyy; > v) via
1 + Zmax Vi

1+z v’ 6.8)
while the optical depth factor can otherwise be ignored.

Figure 6.1 shows this modulation in detail for a set of unifi@missivity sources
with flat spectra at three different final redshifts (the nalizations are arbitrary;
the horizontal lines show the spectra before attenuatiothéy.yman-series). As
the frequency increases and the spacing between the Lyaras$ines decreases,
the absorbing screens get closer together and the totagjbmokd decreases. Thus,
the uppermost Lyman-Werner transitions are affected byakesebackground.

Unfortunately, the direct detection of the redshifted sai spectrum as a rem-
nant of the reionization epoch is not feasible due to the nhiginer flux contributed
by foreground sources at later cosmic times. However, daipiocess does occur
before He Il is completely reionized at< 3, with the Lyman-series transitions
of He Il creating a similar sawtooth spectrum in the farawiolet. This may be
indirectly detectable through its effects on metal-lins@ibers, some of whose
ionization potentials lay inside the sawtooth region ofgphectrum.

Estimating the spectrum in more detail, and as a functiord$hift, requires a
model for the emissivity, (z). Clearly that will depend on the galaxy formation
processes that we will examine over the next several chaiet for a very simple
estimate we can assume that the star formation efficigpayithin halos is zero
below a minimum halo masa/,,;, and constant above that mass. Then we can
write

if dfcoll /Bb
4% dt my,

Ju(z) = ecw (v), (6.9)
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where the first factor converts from total emissivity to esiigty per solid angle
and the last factor is the energy produced by the stars pguérecy per baryon in
the Lyman-Werner region. Approximating the latterdyyy ~ hviw Now /Avew,
equation (6.7) gives

Nrow I« A feonl 142\°
Tzt~ 2.4 <3400> <0.1> < 0.01 > < 10 ) ’ (6.10)
whereA f.o11 is the fraction of gas that collapses onto star-forming saleer the
redshift rang€ z, zimax ). Radiation backgrounds of this magnitude are easily large
enough to strongly suppress ldooling in just-virialized gas (see Eq. 6.4).

Figure 6.2 shows a more careful calculation of the backgidapectrum ampli-
tude, though still in the context of a model with the star fatimn rate proportional
to df.on/dt and f, = 0.1. Here we show thaverageamplitude over the entire
Lyman-Werner frequency interval — the sawtooth absorptypically reduces this
from the emitted amplitude by about an order of magnitude stMav several dif-
ferent mass thresholds, increasing from the filter massdtope) to masses near
the atomic cooling threshold (bottom curve). The amplitubeeases rapidly with
decreasing redshift because these halos are initially erexponential tail of the
mass function; the turnover at lower redshifts is where tireasponding halos are
well below the cutoff in the mass function so that the growtws down. Equa-
tion (6.10) appears to provide a reasonable estimatkegfa; .

The choice off, is highly uncertain in these models, so Figure 6.2 is onlyrg ve
rough guide to expectations. If the first cluster of Popolatil.1 stars shuts down
further star formation in a halo, then one might expect onfewa hundred solar
masses of stars to form. Inthat cage~= M, /M, ~ 0.003(M, /500 Me,)(Mj,/10° M)~
Fortunately, these curves are all strictly proportionahtat parameter, so that their
amplitude can easily be rescaled.

This mean background is relatively easy to compute, butatityethe clustered
halos that source the background induce inhomogeneitieshortunately, at least
in the standard structure formation model, these inhomeiies are mild. Con-
sider the lower edge of the Lyman-Werner band, with 11.2 é\téns redshift
into this band out to the Lymag-transition at 12.1 eV, which corresponds to a
redshift of Az ~ 0.1(1 + z), or about 100 comoving Mpc. Each point there-
fore samples a huge volume of sources around it (even thdwegmbre closely-
spaced higher Lyman-series transitions weight the effeetblume to more nearby
sources), which averages out fluctuations. The Lyman-Wedryaekground will
therefore be nearly uniform except very close to individs@alirces or unless the
halo population itself has fluctuations en100 Mpc scales, which may indeed be
possible due to a strong source bias and baryon acoustitatiscis (se€3.3). In
such a case, the background may vary strongly, leading tstantal variations in
the halos able to cool and form stars efficiently.

6.1.5 External Feedback on H Inside Virialized Halos

With a model for the Lyman-Werner background in hand, it isirsraightforward
to gauge the metagalactic background’s effects gncbbling inside collapsing
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Figure 6.2 Evolution of the specific intensity of the metagét radiation field in the
Lyman-Werner band at high redshifts. The solid lines shog dmplitude of
the radiation field over time, taking several different m#s®gsholds for star-
forming halos: My, = Mg, 106, 107, and10® M, from top to bottom. The
curves assumé, = 0.1. Figure credit: L. Holzbauer (UCLA).
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dark matter halos. As a simple estimate of the column deo$igyvirialized halo,
we assume a uniform density sphere at the typical virial dewesity and with a
radiusr,;.. Then a halo of mas&/ has

M N\Y? /14 2\?
Nigy ~ 1017 (12 . 11
1, ~ 10 (3.5 x 10% ) \ 105 01, 50 ) “M° (6.11)

where we have inserted the saturation value for thér&ttion from equation (5.10)
as a fiducial estimate. In fact, simulations show that theotiffe column density is
typically a few times smaller than this since much of the gathée outskirts of the
halo remains optically thin, but confirm that it provides agsenable estimate for a
stationary halo in which velocity gradients are insignifica

This column density is well above the self-shielding thaddhn equation (6.5),
implying that much of the halo will be shielded from the metkagtic background.
Therefore, we write the effective backgroundfasJiw 21(z). We can then insert
this radiation field into equation (6.4) to determine thgfkaction in the presence
of feedback. Finally, comparison of this fraction to theticél value required for
cooling, fu,.. in equation (5.12) determines whether the halo is able tdimos
cooling and form stars.

Figure 6.3 provides a schematic illustration of these éffdazased on fits to nu-
merical simulations (c.f. Fig??). The solid line showsy, ., the critical frac-
tion required for efficient cooling. The dashed line (marl@dhows fi, in the
absence of radiative feedback; this lies very near the atibur level of equa-
tion (5.10). The thick dotted line (markdy shows fy, if self-shielding is ne-
glected and/iw 21 = 0.01. This markedly reducef;, and quantitatively matches
the estimates described in this section. However, the dsted line (marked)
shows the same, but with self-shielding approximatelyuded. Halos near the
critical cooling threshold are already very optically thiso in practice the radia-
tion background has substantially less of an effect thavehaexpected.

Nevertheless, the growing Lyman-Werner background willsirigkely “self-
regulate” the earliest stages of star formation. Withinhesiar-forming halo, the
first few stars create a strong Lyman-Werner background aedept any proto-
stars not already far along in their collapse from procegdirhe same stars create
a metagalactic background that reduces the efficiency oirgm other, newly
forming gas clouds, raising the mass threshold for star &ion. But as the abun-
dance and mass scale of dark matter halos increases, théogds bave better
self-shielding and raise the background, which in turnemithe mass threshold,
and so on. Eventually the Lyman-Werner background will Ileeso intense that
star formation is only possible through atomic cooling itosawith 75, ~ 10 K,
for which photodissociation is unimportant. However, tetteat these halos ionize
their gas and so likely form stars through the Populatio2 i{dleuterium-mediated)
channel described i§6.3. This Lyman-Werner background may therefore regulate
the transition from very high mass primordial stars to thedomass channel.
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Figure 6.3 Schematic illustration of molecular hydrogeacfion as a function of virial tem-
perature for virialized halos inside a cosmological sirtiolaatz = 17. The
solid line showsfu, ., the critical fraction required for efficient cooling. The
dashed line (marked) showsfu, ~ fu,,s in the absence of radiative feedback
(see Fig. 5.4). The thick (markdg) and thin dotted lines show, if self-
shielding is neglected and,w 21 = 0.01 or 0.1, respectively. The dot-dashed
line (markedc) shows the same, but with self-shielding approximatelyuided.
Figure credit: Yoshida et al. 2003, ApJ, 592, 645.
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6.2 THE X-RAY BACKGROUND: POSITIVE FEEDBACK

The radiative feedback ond-heed not be only negative, however. In the dense
interiors of gas clouds, the formation rate of Eould be accelerated through the
production of free electrons by X-rays. This effect couldioteract the destructive
role of Hy photo-dissociation. Unlike UV photons, X-rays can pertetfaige dis-
tances across the Universe, even at high redshifts. Thevdiammean free path
through the mean IGM density of an X-ray photon with enefigs:

—2 3
1 E
Ax ~ 11 9?11{/13 ( I)Z> <300 eV) comoving Mpc; (6.12)

thus, photons with? > 1.5[(1 + z)/15]'/2z}/ keV propagate an entire Hubble
length before interacting with the IGM. Similarly, they caenetrate large columns
of dense neutral gas inside of collapsed halos. Thus, amyXackground would
be pervasive at high redshifts.

X-rays interact with primordial gas, by either ionizing luh or hydrogen. The
resulting free electron can gain a large kinetic energy &tuthe difference be-
tween the photon energy and the ionization potential), tvitithen deposits as a
mixture of heat, collisional ionization, and collisionadaitation. Typically, a frac-
tion f; ~ xp1/3 of the energy is deposited in ionizing other atoms. Thus, e\ k
photon can result in- 25 free electrons. Because these free electrons catalyze H
formation, X-rays can exertpositivefeedback on primordial star formation.

An X-ray background seems almost inevitable at high retishvfiith a num-
ber of possible sources: (1) Very massive Population llissése hot enough for
their blackbody spectra to extend into the soft X-ray regi(2¢ Quasars or “mini-
quasars” must begin to form at very high redshifts in ordgartaduce the extremely
luminous quasars seen at~ 6 and likely have nonthermal spectra extending to
very high energies. (3) Supernova blastwaves may accel&stt electrons, which
can in turn scatter CMB photons to X-ray energies. The aaseticooling rate
of relativistic electrons increases dramatically withskift since the CMB energy
density scales ascyp o (1 + 2)%. (4) X-ray binaries, in which a massive black
hole accretes gas from a companion, are often produced wheasaive star ex-
plodes in a binary system; if massive stars are more aburatdngh redshifts,
then such binaries may be more common then. We will see |a14r.3.2) that
these contributions to the X-ray background significanffea the IGM temper-
ature and ionization history, and they also present an itapbpotential positive
feedback mechanism for the first stars.

Simple scaling laws suggest, however, that this positiedifack will only over-
come the negative Lyman-Werner feedback in unusual cirtamess. Let us sup-
pose that the electron fraction inside a cool cloud is inZzation equilibrium with
an X-ray background. We will assume that the X-rays are ssliby the same pop-
ulation of galaxies as the ultraviolet background (thougg $ources themselves
may differ, such as high mass stars and the X-ray binarigsftiren after dying).

For an X-ray background amplitudéy, ionization equilibrium implies:,
(Jxn)'/?, where we have ignored the temperature dependence of thmbéca-
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tion coefficient. Equation (6.4) therefore yields

Fitnieq < 0202 i (6.13)
In other words, the equilibrium molecular fraction dependse weakly on the X-
ray background than on the UV background. Assuming theséeatd¢o the same
underlying physical processes (i.e., are both ultimateiyeth by gas accretion onto
halos and star or black hole formation), X-rays can only makebstantial differ-
ence whenJy is still relatively modest. (Moreover, they only matter @it ia
the equilibrium electron fraction is larger than the valdgained from the usual
chemistry described if5.1.1.)

More detailed investigations have shown thatlif = exJw at the H | ion-
ization edge, X-rays exert mild positive feedback on derssedypuds whef.1 <
ex < 1. At smaller fluxes, the X-rays are relatively unimportant.ldger fluxes,
the heating generated by the X-rays counteracts the additimoling, negating the
boosted free electron fractidh.

6.3 RADIATIVE FEEDBACK: MECHANICAL EFFECTS

As discussed iff5.2.2 that radiative feedback from the first stars may beiat o
choking off accretion and setting their final mass scale. tBathigh-energy pho-
tons responsible for that process likely reach much faititerthe source halo and
the surrounding IGM once the star enters the main sequerfesdme processes
mentioned previously can dramatically affect these regjaomd subsequent star for-
mation in them, because the radiation can influence the mofithe surrounding
gas more than gravity. In this section we will consider sorhéhe relevant pro-
cesses in more detail.

6.3.1 The First H Il Regions: Photoevaporation

The most dramatic effects result from the high luminosityoofizing photons pro-

duced by the first stars. We discussed briefly%n12.2 how ionization fronts can

have powerful effects on gas dynamics — these effects exteriteyond the star

once it enters the main sequence. For example, considenainig front expand-

ing inside a gravitationally-bound halo, where the baryemsity declines with

radius. For pedagogical purposes, we adopt a simple deirsifije:
Ne r<Te,

TL(T) = TLC(T/TC)_“) ">, (6.14)
wherew is a power-law index that encapsulates the steepness ofdfike@ndn,
andr, are a core density and radius, respectively. Numericallgitins show that
primordial gas clouds have ~ 2-2.2 (see als§5.2.1).

The properties of the ionization front can be characterizil reference to the
Strdmgren radiusk,, the outer boundary around the source out to which the total

iii A similar negative feedback effect is at work even at lowera¥-fluxes in the diffuse IGM, where
the X-ray heating creates an “entropy floor” that preventtapse onto virialized objects. We discuss
this effect in detail ing8.10.
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rate of recombinations are equal to the total rate of iofozat For a star producing
ionizing photons at a rat®; in a constant density medium, this radius is

3N, 1 N, e 2/3
i i n -
R = (m) =10 (1050 sl> (Gws)  ve (629

where we have evaluated the recombination coefficignt= 2.6 x10~ 3 cm =3 s~!
at~ 10* K. If the H Il region reaches this size (or, alternativelyfdf a fixed ra-
dius the density exceeds an equivalent threshold value), tte ionizing photons
themselves are consumed within mostly-ionized gas. Bdfusetime, the front
was only limited by the rate at which photons could ionize tiedium. During
this fast expansion phase, we refer to the ionization frefR-#ype However, once
this expansion velocity slows down to near the sound spbedyds will be able to
react to its new thermodynamic properties. The Stromgaelius provides a sim-
ple way to estimate when this transition occurs, becauseapbint the expansion
will have nearly zero velocity. In more detail, the ionizatifront slows to become
D-typewhen its expansion speed falls to roughly twice the isotlasound speed
of the ionized medium2¢;. At this point, the increased temperature (and hence
pressure) within the front drives a shock into the surrongdhedium. The front
then propagates outward at roughly the speed of sound. Thedgdibn can there-
fore only expand through hydrodynamic processes and thedton front is said
to betrapped The average density of virialized (uncooled) gas insidd& daatter
halos at redshift is ~ 1 cm™3[(1 + 2)/30]3, independent of halo mass.

In the density profile given by equation (6.14), the Stroemgradius isk,, =
g(w)Rs, whereR; is evaluated using the core density and

o [% Joz (g_)z] 1/(3—2w) <%)211,/(3—2w) w3
(i) e {3 () 1] vmt2
(6.16)

The front's speed will depend on how far it extends: it eacelerateatr > r, if
the density profile is steep enough. In particularyif> 3/2, the recombination
rate (x n?) does not appreciably increase as the front’s radius grallaying the
front itself to escape to infinity. To see this, it is straigimvard to estimate the
velocity at which the ionization front expands before g limit is met:

Uir = (Rs/gﬁu(wl (6.17)
whereU. is the typical speed within the core and

e\ 2—W R, 3 2w 3(R/re)> 2"
()™ | (%) + o2~ 2] wa

u(w) = o 3 (6.18)
(z)" [(R—) ~1 —SIH(R/TC)] w=3/2.
The ionization front speed;; will remain R-type all the way to infinity if
3 1
Te
w > Wtrap = 5 [1 — <R_g> s (619)
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Figure 6.4 Cartoon of an ionization front propagating tlgiow cosmological halo. After
an initial R-type phase (not shown), recombinations in tigd{tlensity core trap
the front, making a D-type front in which a shock leads thezation front. As
the density falls, the recombination rate also falls, ewelty freeing the front to
expand much faster than the sound speed. The shock is léftcbahd lags the
front, often transforming into a simple pressure wave. Feguredit: Yoshida et
al. 2007, ApJ, 663, 687.

orw > 3/2 for ionization fronts able to reach well outside the coredpefstriking
the Stromgren limit.

The shock front will shift to D-type, driving a shock into tiserrounding gas,
if w < weap. This allows the ionization front to grow (slowly), even tigh
it has nominally reached its Stromgren limit, because tydrddynamic motions
of the gas decrease the average density behind the shocktyfpical halo, the
density profile steepens as one moves outward, usually witht w,,p in the
outskirts. Therefore, the front will eventually reach amaivhere it is no longer
trapped. At this time it will revert to R-type and expand iilpj with no immediate
hydrodynamic effect on gas outside of the H Il region itskRifimerical simulations
show that this point is well approximated by the Stromgradius of the initial
density profile, using equation (6.15) with the average iteisside ;. Figure 6.4
shows a cartoon of this evolution.

However, within the H Il region, the gas rapidly acceleratasvard. The tem-
perature structure of the cloud is set by photoheating: éaalkation leaves the
residual electron with some extra energy that depends umospectrum of the ion-
izing source (se&8.10 for more details on this process), typically with~ 10* K.
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The pressure profile will be set by the density profile — whilso &as not had time
to adjust to its new state. A strong pressure gradient thezefevelops, producing

an acceleration
2
oo 1 wer (6.20)
pdr r

which is strongest in the center of the halo. A pressure wheesfore develops,
pushing the gas ahead of it out of the halo — this regime is\a&éerred to as the
champagne phaseBehind the wave, the gas will have roughly constant density
and hence reach pressure equilibrium; ahead of it the gastillibe in its original
configuration.

The characteristic speed of this wave is a few times the sspedd of the ionized
gas,co® ~ /kT/m, ~ 10(T/10* K)/2km s~!. In comparison, the escape speed
from a dark matter halo is roughly

Q A 1Y/ M V3 14\ V2
esc M) ~ 2‘/(» vir) — 24.0 ua - ke ! '
Vese (M) & V2V (rir) [Qm(z) 187r2] (108M@> ( 10 ) -

(6.21)
where we have used equation (3.32) and assumed an isothéemsity profile
truncated at the virial radius;;,., for simplicity. Thus, the gas inside the H Il region
becomes strongly unbound and flows out of its host for halas saffficiently low
mass,M . The ionization front will only slow down when it reaches gian with a
shallower density gradient in the IGM, allowing it to retumthe Stromgren limit.
But by this point the bound gas had already escaped.

Numerical simulations of thishotoevaporatioprocess show that, in the limit of
a smooth, spherical halo, the radiation pressure from desiagpulation 111.1 very
massive star can evacuate the gas from an entire halo ofma&$M . Figure 6.5
shows an example from a detailed numerical calculation. Sitmeilation takes a
single200 M, star atz = 18.2 in a halo of total masgx 10> M. Clockwise from
top left, the panels show the ionized fraction, the tempeeathe (outward) veloc-
ity, and the density profile. Each panel shows snapshai8, &2, 95, 127, 317,
and 2200 kyr (left to right in all panels except bottom leftieve they are top to
bottom). In the last panel, the dashed line shows the deregjyired to enforce
the Strémgren criterion in equation (6.15); if the dengfceeds this value, the
ionization front will be limited by recombinations and betijpe. Clearly, the high
core density will trap the front, from which it will emerge wh it reaches- 1 pc.

In the upper panels, the large jump in the ionization frootation from 82—-95 kyr
involves the transition from D-type to R-type. The largewoartd gas velocities, at
2-3 times the sound speed of the gas are nearly times as large as the escape
speed from the minihalo (2km s 1).

Thus, the first stars have nearly emptied their halos of gagedsing the baryon
fraction to just a few percent. However, the picture is ldsarif the gas filling the
source halo is clumpy, with other collapsing cores (or inrbgéalos also en route
to forming their own stars). If these neighboring clumpséavodest densities,
they too will be completely evaporated. However, if theintal densities are
sufficiently high,n > 2000 cm~3, the core will remain neutral via self-shielding,
the radiation will have little effect, and the collapse witintinue until new stars are
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Figure 6.5 Evolution of a cosmological halo as an ionizafimmt propagates through it.
The simulation takes a sing#0 M, star atz = 18.2 in a halo of total mass
7 x 10° M. Clockwise from top left, the panels show the ionized frawtithe
temperature, the (outward) velocity, and the density mofitach panel shows
snapshots at3, 82, 95, 127, 317, and 2200 kyr (left to right in all panels except
bottom left, where they are top to bottom). In the bottom, lé¢fe dashed line
shows the density required to trap the ionization front.uFégcredit: Whalen et
al. 2004, ApJ, 610, 14.
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formed. The passage of a through surviving cores shock mawplcaid collapse
and encourage further star formation. Whether more thanstarecan form in a
low-mass halo (or in a halo with nearby neighbors) thus ellycdepends on the
degree of synchronization of clump formation.

As an example of the complex implications of the photoevatpze flow, con-
sider the shocked gas that lies ahead of the front during 4tgpe phase. This
shocked region is partially ionized by high-energy photand so its ionized frac-
tion is typically appreciablex 10~3). The extra free electrons catalyze the forma-
tion of Hy, potentially making self-shielding effective. The cogjimduced by H
can trigger fast thin shell instabilities that develop ingw star-forming clumps.

The long-term effects of this radiation pressure are alsmbwious and depend
on the details of the halo’s neighborhood. Although the gesuvery high velocity
as it leaves the halo, it can still be reincorporated intohtak® (or into one of its
nearby neighbors) through hierarchical structure fororatiBut numerical simu-
lations show that the fallback can take 100 Myr, a substantial fraction of the
age of the Universe at these high redshifts. This could leadlong delay in later
star formation or accretion onto any remnant black hole® gre-ionization would
also change the mode of any future star formation to Pojmunali.2 stars, possibly
with a somewhat lower mass scale than the first generatioomilBtion 111.1 stars.

6.3.2 Radiation Pressure From Lymanea Photons

Interestingly, the radiation can also exert a substantiad on the neutral gas sur-
rounding the H Il region. The Lyman-photons generated primarily by recom-
binations within the H Il regions scatter off the outside ,gagparting their net
outward momentum and driving the gas away from the centratcgo We can
gauge the possible dynamical effect of these photons by admpthe gravita-
tional binding energyEs ~ (/)G M? /ryi:, With the energy in the radia-
tion field, E, = Lo X tirap, WhereL, is the line luminosity of H Il region and
tirap 1S the typical timescale over which Lymanphotons are trapped inside the
cloud. Numerical calculations of line transfer suggest tha, ~ 15t;g1, Where
tight = Tvir/c IS the light travel time across the halo (see more discussichis
complex problemir§10.1.1). The conditio,, > Ep requires

M 4/3 14z 2 15t1' h
Lo > Lo it ~ 10%0 ) ergsl.  (6.22
ot (106 M@> ( 30 > ( torap g ( )

Note that~ 2/3 of recombinations produce a Lymanphoton, so this translates
to a direct constraint on the ionizing luminosity; the ficalduminosity shown here
corresponds to only 500 My, (per M ~ 10°M) in very massive Population
I11.1 stars, assuming that the H Il region reaches its Sgian limit.

For a nearly isotropic radiation field (valid in this case &ese of the large num-
ber of scatterings each Lymanphoton experiences), the acceleration induced by
Lyman- radiation pressure may be written as

14U,
3p dr’

(6.23)

ALya =
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wherep = mpygn, andU, is the energy density of the Lymanphotons. If the
gas was optically-thin, thefi, would have beer.,, /(4wrc), but the scattering
process traps Lyman-photons near the source and steepeng thé scaling. The
total impulsenr,y At therefore depends on the total Lymariluence of the source,
which in turn is dictated by the number of ionizing photongdurced by the stars.

The simple solution described #10.4.1, for scattering around a point source in
a uniform IGM expanding at the Hubble flow, hdsx r—2/3 at moderate distances
from the source. In reality, the H Il region surrounding thrental star, the infall
region surrounding the halo, and the details of Lymaseattering must be taken
into account in a realistic calculation, but this simplewsion provides a reasonable
gauge of the importance of Lyman+adiation pressure. Assuming very massive
Population III.1 stars, the corresponding final velocityaof atom at a distance
from the central source is

1kpe\ 2/ 15 \*/ f. M 1
va~6< . > T2 103 106 M, kms . (6.24)

While the final velocity is small, the escape speed at thaligidiusr,;, = 0.2 kpc

of a10% M, halo atz = 14 is ~ 6km s™'. Thus, Lymane scattering through
the neutral gasutsideof any H Il region can eject the gas from the vicinity of the
source halo, also slowing down accretion.

This same effect can also operate in larger galaxies latir e history of struc-
ture formation, many of which are observed to have substBhyiman« fluxes.
However, numerical simulations show that the effects ardesbunless the galaxy
also drives a wind that creates a neutral “supershell” taatraultiply the radiation
force through repeated scatterings. This is largely bexthusse galaxies are able
to ionize such a large region around them that the near regibare the force is
strongest, is still ionized and cannot trap the photons.

6.4 WINDS AND MECHANICAL FEEDBACK

6.4.1 Star Formation and Wind Energetics

As stars live and die, they inject large amounts of energy their surroundings,
through a number of channels. First, while they are luminthesr radiation cou-
ples to the interstellar medium as UV photons scatter off ustdyrains (which
are usually coupled to the neutral or ionized gas througlstmhs and magnetic
fields). Just as in the Lymam-scattering case described above, the pressure of the
radiation field can therefore eject gas from the galaxy.

Second, in the late stages of stellar evolution, many stére gowerful winds
into the ISM. Finally, supernova explosions when stars dject £ ~ 10°' ergs
of energy into the ISM, typically accelerating 10 M, of material per explosion
to ~ 3 x 10°kms~!. The energy and momentum flux from these mechanical
interactions can also unbind the gas from the host halo. Bywing gas from the
galaxy, these mechanisms choke off the fuel supply for &rrdtar formation and
may ultimately be responsible for regulating the pace of fetiamation over time.
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A clear understanding of the role of feedback is therefoeeesal to understand
not only the first galaxies but their more massive desceisdatgr on.

We begin with some plausibility arguments showing that wirde likely to
be important for the small galaxies most common at high réidshwe first ask
the question of how much star formation is necessary to uhthia gas inside of
a virialized halo. The total binding energy of a halo with mdg is given by
equation (3.34), but for thgaswe must multiply this by the mass fraction in gas
(fg ~ % /). Moreover, we have already seen that in order to form stegas
must collapse to high densities. To describe this simplyassime that the gas is
confined to a regior”< Aryi: (s€e§9.5.3 below). Thugy, ; ~ (fg/)\)GMQ/rvir.
Meanwhile, the energy injected by supernova&is; ~ f.fqsMwsn, wheref, is
the fraction of gas that is turned into stars ang; is the supernova energy input
per unit mass of star formation. Typical supernova modetsRwpulation Il IMFs
yield wsny ~ 1049 erg Mgl. However, we expect that some fraction of this en-
ergy will be radiated away as the hot, dense supernova rempi@ms through the
galaxy into the IGM around it. We assume that a fractjoof the total energy is
available for mechanically removing gas from the galaxyei the energy input by
supernovae exceeds the binding energy of the gas if

0.05 M N\ /142 WSN -
* e~ 0.01|——
fe> fup ~ 00 (fA)(loSM@) ( 0 ) 10 org M3
(6.25)

Even if the supernova remnants do lose their thermal engirgy,will still inject
a great deal of momentum into the ISM. If this momentum is daggough, it
can carry the gas outside of the halo without the “push” frowa thermal energy
inside each remnant (i.e., feedback can be much more effattan suggested by
Eq. (6.25) if¢ <« 1). The rate at which momentum is injected by supernovae,
dPSN/dt, is

/ )
d];iN ~ 2% 107 < wsN ) ( M, 1) gcms 2, (6.26)

300km st Mg yr=

wherewyy, is the rate of momentum injection from supernovae per unissrat
stars; the fiducial value takes one explosioni¥r M, of stars, each accelerating
~ 10 M, of material to~ 3 x 103km s~ 1.

Meanwhile, the rate at which stellar radiation injects matoen isd P, ,q /dt ~
L/c, where L is the stellar luminosity that couples to the interstellaedium
(ISM) gas¥ We write it in terms of the rest energy ds= eM, 2, wheree; =
(€/1073) ~ 1 for typical IMFs. TheniP,,q/dt ~ e3d Psx /dt, indicating that both
sources of momentum are likely important in launching winds

The acceleration equation for a parcel of gas with velocignd positiornr is

dv GM(r) L
dt 2 cMy(r)’ 6.27)

VWe assume here that the gas is optically thick to the radiaso that it efficiently absorbs the
momentum flux. Ifr < 1 (for example, because the metallicity is small and dustrie)rahen the
momentum injection rate from radiation decreases.
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whereM (r) is the halo mass andlf,(r) is the gas mass enclosed within a radius
r. For a simple estimate, let us assume that the halo is a sinigothermal sphere,
with M (r) = 202r/G whereo is the velocity dispersion, and that the gas traces
the dark matter. Then we can rewrite equation (6.27) as

dv 202 L
= | = _1 6.28
dt T (L]u ) ’ ( )
where
4f,c
Ly = %04. (6.29)

Clearly, L, represents the minimum luminosity for the net force on theggrcel
to act outward, and hence it is the minimum luminosity regdiin order to launch
a wind. If we further assume a constant star formation efficyef, to convert gas
into stars over a dynamical timigy,, ~ 7vir/c, this minimum luminosity translates
into a minimum star formation efficiencfy ,:

M 1/3 142 1/2
f* > f*’p ~ O'l(w,SN,300 + 63) (108 M®> ( 10 > s (630)

wherewdy 500 = wén/(300km s™') and the(wgy 390 + €3) factor accounts for
both supernovae and radiation.

Comparing equations (6.25) and (6.30), it is clear that far $mall halos in
which the first stars form, the energy reservoir is likely muaore important than
the raw momentum, provided that it is not lost through radéatooling. It is
also clear that the required star formation rate in theseshi very small: this
is fundamentally because the energy available in staresedth M (assuming a
constantf,), while the binding energy scales A£°.

However, at higher masses the excess energy becomes lemdanipwith the
momentum injection condition becoming more important when

3 3/2
M > M, ~ 10" (wiy 300 + €3)° (OA—(?) (1;“—0’2) Mg (6.31)
Nevertheless, in order for the momentum to lift gas out oftthb, star formation
must proceed very quickly - turning a substantial fractibthe gas into stars over
a single dynamical time. Such rates do appear in rapidlyfetaning galaxies at
lower redshifts, but those systems are relatively rare.

These two types of windgnergy-drivenand momentum-drivemare likely to
have very different characters. The condition thak > F}, , does not place any
restrictions on the rate at whichasss ejected from the galaxy; in fact, numerical
simulations of star-forming disk galaxies typically shdvat the energy is “blown-
out” along low-column density channels (perpendiculah®disk), carrying away
only a fraction of the galaxy’s mass. On the other hand, thenerdum must keep
its direction and sweep any gas it encounters as it props@ativards, carrying
with it a significant fraction of the galaxy’s gas. The asyaotjatvelocity v, of a
momentum-driven wind is typically just a few times the escapeed of the halb.

VThis can be seen, for example, by integrating equation J6ug8er the assumption thdt is
constant to obtain(r). Writing (dv/dt) = (dr/dt)/(dv/dr) = v(dv/dr) = (d(%vQ)/dr and
integrating both sides over > ro, yieldsv(r) = 20 x [(L/Lar — 1) In(r/ro) + v2(ro)/402]1/2.
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Momentum conservation then demands that the mass lossiridte wind is
dp/dt <300(w’SN7300 + e3)km sl>
L~ M* ,

M, = (6.32)

o0 UOO

comparable to the star formation rate for reasonably lasjesh

6.4.2 Expanding Blastwaves: Simple Solutions

In order to better understand the dynamics of these windswilleeview here
some simple models for expanding blastwaves following peiplosions. Al-
though oversimplified, these analytic scalings providdulsesight into the more
complex problem of winds inside and outside galaxies.

First consider a point explosion with energin a static, cold (or pressureless)
medium of mass density. The explosion drives a shock into the surrounding gas.
Simple dimensional arguments show that the shock radius$ depend orp, F,
and timet in the form

Ry = Ksrv(E?/p)'/°, (6.33)

whereKgry IS a constant.

It is easy to show from energy conservation th&fr ~ 1. The total mass that
has been swept up by the shocl@ié"B—”prh. Because a supersonic shock forms in
the ambient medium, the post-shock gas velocity must beosithg the frame of
the shock. Thus, most of the bulk velocity of the material iné from the shock it-
self, and the net fluid speedis Uy, = %Rsh/t. The kinetic energy of the swept-up
material is therefore- <X pR3 x U3 ~ 0.3R}, /t*. There s also, of course, the
thermal energy stored in the hot gas behind the shock, liigthypically compara-
ble to the kinetic energy of the shock. Energy conservatiguliesE = xpR3, /12,
wherex is a constant of order unity that accounts for summing theticrand in-
ternal energies. By comparison to equation (6.33), we seelhry = /2,
which we expect to be very close to unity. In fact, this problean be solved an-
alytically, giving the exact value akgry = 1.17 for a pure monatomic gas with
an adiabatic index = 5/3. The solution is known as 8edov-Taylor-von Neu-
mann blastwavgafter the three physicists to derive it independently atdawn of
the nuclear weapons age. Since there is no characteriststiale or lengthscale
in the setup of a point explosion, the hydrodynamic equatexmit aself-similar
solution in which the hydrodynamic variables of the gas¢puee, density, and ve-
locity) depend only on the combinatiofi Ry, (¢) instead of depending separately
onr andt.

The Sedov-Taylor-von Neumann solution imposes threeicéistis on the blast-
wave. First, it requires that the mass of the material belredshock is much
greater than the explosion ejecta. In an earlier phase, jdutaeexpands ballis-
tically encountering negligible resistance by the ambieetium. Second, it as-
sumes a strong shock, or that the ejecta velocity greatlgexk¢he sound speed
of the ambient medium. Finally, it assumes that all the esiplo energy is con-
tained either in the kinetic energy or thermal energy of thecked gas. In fact,
the strong shock jump conditions require that the densiy lpehind the shock is



162 CHAPTER 6

(v+1)/(y—1) = 4 times that of the ambient medium, decreasing rapidly ingard
This overdense shell will cool radiatively; once a substdrfitaction of the energy
has been lost, the energy conservation condition no longeies and the character
of the solution changes. In particular, as the gas in thd shels its density must
increase to maintain pressure equilibrium with the inteoitthe blastwave, and so
a dense shell develops at the leading edge of the blastwave.

This second phase is known apressure-driven snowplgvbecause the low-
density interior of the gas remains hot (and hence has a findesurep pushing
outward on the shell). In this phase, the shell sweeps upgaegpands, increas-
ing its mass at a raté/, = 47rR§hpUsh. Meanwhile, so long as the hot interior
does not cool, the internal pressure obeys the adiabatitittampl’” =constant,
pushing the shell outward with a forde R?p. The equation of motion for the shell

is then
. 3R2 3p; [ Ri Y
R, ‘sh _ ? v , 6.34
st Rsh pRsh (Rsh) ( )

wherep; is the internal pressure as this phase begins whgn= R;. Forp; # 0
andy = 5/3, this equation requires tha,, o t*/7, slightly shower than in the
“adiabatic” Sedov-Taylor-von Neumann phase.

The pressure-driven snowplow phase ends when either oneatdnditions is
fulfilled. First, if the hot bubble interior can cool radieiy, it loses the pressure
support. Second, if the interior pressure approaches thgspre of the ambient
medium, there will be no net driving force. In either cage, — 0 in equa-
tion (6.34). In that caseRs, o t!/*, which follows strictly from momentum
conservation AT pR3 (dRs/dt) = const. This final phase is therefore known
as amomentum-conserving snowplo®bviously, it is the proper solution for the
momentum-driven winds described in the previous section.

So far we have assumed that the blastwave propagates intéoanumedium.
While this describes the ISM of normal galaxies reasonaladi},whe gas making
the first stars had not settled into disk-like configurationstead, these stars were
surrounded by uniform density cores inside roughly power &mvelopes, with
p ~ po(Ro/R)*. Dimensional arguments similar to those above then shotv tha

2 \ /6=
Rsh = Kiso (—Q) .
po G

In particular, for an isothermal density profile= 2, close to the envelopes of the
first stars,Rq, o< t2/3. The blastwave propagates faster in this case because the
declining ambient density presents considerably less.drag

Similarly, it is straightforward to modify the equation ofation for the snow-
plow shell: sinceM, = 47 R?p(R)Uy,, the momentum equation reads

. (B3—a)R%,  (B-—a)p; [ R \”
2 sh — ) . 6.36
Fon 4 pRas  \ Ran (6.36)

Fory = 5/3, this equation admits the solutidty, o t>/(7—®) when the pressure is
important, andR.y, o< t'/(4=) during the momentum-conserving snowplow phase.
Again specializing to an isothermal density profily, o t*/°> andRg, o t'/2in
these two phases.

(6.35)
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6.4.3 Supernovae in the First Star-Forming Halos

The first supernovae occur in the halos describegbinAlthough the basic proper-
ties of these halos are well-understood, the mass specfratare and efficiency of
star formation are highly uncertain as they depend on theptexfragmentation

process, the degree of synchronization of the resultingpgtellar clumps, and the
dynamical impact of the surrounding H Il region.

For these reasons, the overall impact of the first supernawvaieeir host halos is
difficult to assess. Nevertheless, numerical simulati@vetbegun to explore these
events and their implications for subsequent star formatbleast in some simple
cases. Figure 6.6 provides an example, showing a simulatsetsova explosion
of a200 M, star atz ~ 20 in a halo withM = 5 x 105 My, andry;, ~ 100 pc
(the box measures50h~! comoving kpc across). We will examine this result in
some detail because it illustrates much of the importansigsyof high-redshift
supernovae.

The grayscale shows the gas temperature. The large, rosghbrical region
filling most of the box in all four panels is the H Il region; itsternal structure
is a result of the filamentary cosmic web surrounding the hBiothe star’s death
(2 Myr after its formation), it has photoevaporated the gagde~ r.;, /2, reducing
its density ton ~ 0.5cm~2. Meanwhile, the escaping photons ionize a large
region around the halo, initially heating it through inve@Sompton scattering and
causing pressure-driven expansion of the remnant intoavedensity, cool IGM
surrounding it.

The supernova then expands into this ionized environmeigur& 6.6 shows
snapshots of its evolution, while Figure 6.7 presents tledugonary phases of its
(spherically-averaged) radius. The four major phaseseéipansion are marked.
The explosion here, which is assumed to completely blowtdparstar via a pair-
instability supernova, carries a substantial mégs in ejecta. Until the swept-up
mass dominates the explosion, it expands freely (‘FE’ iruFég6.7). The simula-
tion does not follow this short phase explicitly; insteadahitializes the calculation
at the end of this phase.

After that point, the Sedov-Taylor-von Neumann phase ke@imarked ‘ST’).
The blastwave initially propagates through a roughly canstiensity interior (the
remnant gas after photoevaporation),Bg, o t*/5. Once the remnant reaches
~ Tvir/2 (att ~ 10° yr), it catches up to the photoevaporation shock, and the
character of its surroundings change. However, at just athisitime the gas in
the dense shell accumulating behind the shock is able to @mleral processes
allow cooling: atomic (and molecular) line radiation, biestrahlung, and inverse
Compton scattering of CMB photons. Ignoring any possibkencical enrichment
from the supernova itself, the atomic cooling rates are shioviFigure??. Because
these are driven by collisions, their rate scales’asThis mechanism is particularly
important in dense gas, where it dominates over the otharegses within the
remnant shell. The cooling time is therefdg, ~ nkT/A ~ 10° yr, where the
initial temperature ig” ~ 106 K.

Thus, at about the same time the remnant reaches the phptsatian shock,
the shell gas cools and transitions to a pressure-drivemiow solution (‘PDS’ in
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Figure 6.6 Temperature maps from a numerical simulation @fi@ernova explosion. The
supernova of 200 M, star is set off at ~ 20 in a halo withM = 5 x 10° M,
andryi» =~ 100 pc. The snapshots are 1, 10, 50, and 200 Myr after the explosio
In the first panel on the top left, the supernova is the cehtsafegion; the star's
H 11 region fills most of the box. The supernova remnant exgameer the four
panels, gradually becoming more anisotropic as it encosgsathe filamentary
structure surrounding the halo. Figure credit: Greif e28107, ApJ, 670, 1.
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Figure 6.7 Evolution of the simulated supernova explosiesctdbed in Fig. 6.6. The black
dots indicate the spherically-averaged mass-weightedkstedius, while the
dashed line shows the analytic estimate using the modéi4f2. The different
phases in the evolution of the remnant are labelled: ‘FEffee expansion (not
resolved by the simulation), ‘ST’ for Sedov-Taylor-von Meann phase, ‘PDS’
for pressure-driven snowplow, and ‘MCS’ for momentum-aming snowplow.
The shaded gray region shows the radial dispersion of thekskdnich increases
dramatically once the shock leaves its host halo. Figurdittréreif et al. 2007,
ApJ, 670, 1.
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the figure). Now it propagates through the roughly isothéisphere profile of the
unperturbed halo, s&., « t>/°> —the same dependence as in the previous phase.
This phase continues until either (1) the low-density iiotegas is able to cool or
(2) the postshock pressure reaches equilibrium with thei@minedium. At the
very low densities characteristic of the remnant’s inter@omic cooling is ineffi-
cient. However, the cooling time due to inverse Comptontedag is independent
of density (see Eq. 2.24),
20 \*

teool = 8 (1 n Z) Myr, (6.37)
which puts an upper limit on the duration of this phase. Batgbstshock pressure
reaches a valugy, ~ pU2 ~ pur, whereppy is the pressure inside the H I
region, after only~ 10° yr. (This is easy to show using the analytic scalings of the
previous section.)

Thus, the blastwave transitions to its final phase, the mdumertonserving
snowplow (marked ‘MCS’ in Figure 6.7), at 10° yr. At the beginning of this
phase, the density profile is still roughly isothermal,Bg o t!/?; in the simu-
lation R, maintains this scaling even after passing into the IGM (&8.2 for a
discussion of solutions in this limit).

The net effect of this single supernova is to completelywgisthe gas in the host
halo, expelling much of it{ 95%) and forcing the rest to high temperatures and
low densities where star formation is inefficient. The ladlstar formation will
persist until the high-entropy gas can be reincorporatesligh hierarchical build-
up of higher mass halos. Supernovae may therefore be effici@uenching star
formation within the first star-forming halos.

However, as in so many other aspects of feedback, there anenber of sub-
tleties to this simple picture, some of which may actugligmotefurther star for-
mation. These include:

e First, the supernovaitself is a source of heavy elementsn#sy of these el-
ements are much more efficient low-temperature coolantsthar H,, their
presence could promote future star formation, particularlcombination
with some of the mechanisms mentioned below. The primanguainty
is the degree of mixing of the enriched material with the aanbmedium,
which is likely driven by instabilities in the shocked lageMVe discuss the
physics of this change in star formation in more detal] ?12.

e Second, if the host halo remains largely neutral (for exanpecause the
characteristic mass scale of Population 11.1 stars is enly0 Mg, and
they form in massive halos, so that the explosion energyvieidhan the
gravitational binding energy of the halo gas), the remnahiplow through
much denser gas, even approachingl0” cm—3. Bremsstrahlung (free-
free) cooling in such dense environments is extremely &t the supernova
loses its thermal energy long before escaping the halo. Miesless, the
impulse provided by the explosion can efficiently stir up fees, possibly
triggering further fragmentation as shells collide and tiibely dispersing
heavy elements throughout the halo.
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e The blastwave itself may have very different effects on destsmps (either
inside the host galaxy or in nearby minihalos) than on thieisif gas we have
discussed. In particular, the shock compresses the gashwitreases the
density, speeding up the later stages of collapse, prowiugidhe gas can
efficiently cool (which is a precondition for star formatjonFurthermore,
the ram pressure of the shock will likely not be able to moverertlumps
along with the flow. The resulting configuration — a stream ofving fluid
flowing by a stationary cloud — can be unstable to Kelvin-Hedftz modes.
If so, the resulting mixing may allow metals to penetratedheer layers of
the pristine minihalo gas, triggering a change in the mod&afformation.

e Finally, the dense shell that accumulates behind the lgastock can it-
self be unstable and fragment through gravitational oriogainstabilities
into protostellar clumps. The condition for such fragméptais similar
to the classical Jeans instability: when the self-gravitthe shell operates
faster than the restoring pressure forces in the shell,wimplies that scales
> cs/+/Gp collapse. For a given ambient density, the shell therefoeat-
ally becomes unstable once the sound speed (or tempertailségr enough,
which of course requires efficient radiative cooling. In tase described
in Figures 6.6 and 6.7, no fragmentation occurred becalesétirdensity
ambient medium both increased the dynamical time and itddbnolecule
formation, maintaining relatively high temperatures. Hwer, fragmenta-
tion can be much more efficient if the blastwave propagatesitih a denser
neutral medium. In this case, the shell can trigger a segamration of
stars. Because these stars form out of ionized gas (eithrerdrpre-existing
H 11 region, or one produced by the passing shock), they vélsbnilar to
Population I11.2 stars discussedyb.3, with lower characteristic masses.

6.5 METAL ENRICHMENT AND THE TRANSITION TO POPULATION
I STAR FORMATION

The very first stars formed under conditions that were muctpkir than the highly
complex birth places of stars in present-day moleculardsoAs soon as the first
stars appeared, however, the situation became more compéeto their feedback
on the environment. In particular, supernova explosiogpelised the heavy ele-
ments produced in the interiors of the first generation akstao the surrounding
gas. Atomic and molecular cooling became much more effigéet the addition
of these metals.

Early metal enrichment and dispersal by the primordial su@eae described in
the previous section, triggered a change in the fundamertdde of star formation,
because heavy elements can radiatively cool the gas mudheffaiently than H.
To see this, consider a primordial cloud at the “loiteringase with, ~ 10* cm=3
andT ~ 200 K. At this point, radiative cooling by Hbecomes inefficient, so
the gas contracts only slowly, and fragmentation is sugaest least until an
accretion disk forms around the first protostar. This is whig ¢haracteristic mass
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of Population 111.2 stars may be as high-asl00 M, (see§5.1).

Now let us imagine that the gas instead has a small fractionegdils; if these
elements can efficiently cool the gas from this thermodycastite, they will in-
duce further fragmentation to smaller mass scales. We wél the common no-
tation [X/H]= log,o(Nx/Npu) — log,,(Nx /N )e to describe the abundance of
speciesX. Detailed calculations show that carbon and oxygen are tist impor-
tant elements at the relevant temperature and densityasi fer atomic cooling.
Carbon is likely to be singly-ionized C II, because the Urseeis transparent to
photons above the ionization potential of C | (11.26 eV)utifwit is sufficiently
close to the Lyman-Werner bands that it may suffer somesteéflding by H in
very dense clumps. Oxygen, on the other hand, has an iomizptitential very
near H | (13.6eV) and so it will remain neutral. Let us writg; (n,T') for the
radiative cooling rate from species and A for the total rate. For these two
species and at the relevant temperatures and densitiexdling is dominated by
fine-structure lines of O | (wavelength of 63uh) and C 11 (157.72m).

Fragmentation requires that the cooling time,; = 1.5nkgT /Aot be smaller
than the free-fall time in the gat; ~ 1/+/Gp. For a given species, this defines a
critical metallicity [X/O] .,;x above which radiative cooling suffices to induce frag-
mentation. Detailed calculations of the fine structuregitaons in these elements
yield [O/H].iy &~ —3.0 and [C/H].,;; = —3.5, with a factor of~ 2 uncertainty
owing to uncertainties in the thermodynamic state of thietaig phase.

The above considerations include only gas-phase cooliagyraf the ISM met-
als at low redshifts are contained in dust grains, which daa aid cooling due
to both thermal emission and,Hormation (which can occur very efficiently on
the surface of dust grains, since hydrogen atoms are trajppedse proximity).
Locally, dust formation is generally attributed to windsaisymptotic giant-branch
stars. At high redshifts, dust may be mainly produced in tletatrrich ejecta of
supernovae themselves. The dust formed inside superneci@aé$ a very efficient
coolant, and some models show that the critical metallfeilig to [Z/H]c.it ~ —6
if such dust is produced efficiently.

Regardless of its precise value, the small critical meiigjliis easy to achieve.
We have seen that a single pair-instability supernova caictean entire halo as
well as some portion of the IGM. Typical explosions generdigy x ~ 10 Mg
of C or~ 30 Mg of O. A single supernova therefore enriches its host to aaarb
abundance- 3 x 1073(Mgn,c/10 M) (10¢ Mg /M) times the solar value (and a
comparable level for oxygen). Thus, provided only that mixis efficient, a single
supernova suffices to shift star formation in its host halmé possibly its close
neighbors — into the Population Il channel.

The above arguments show that fragmentation can occur imletallicity envi-
ronments, but they do not determine the actual spectrum egrfragments. That
is highly uncertain, but it is still likely to be skewed to sificantly higher masses
than today. The same arguments a§5t2.4, in which the CMB sets the tempera-
ture floor for the cooling gas, will apply to these enrichednsps as well, setting
the characteristic mass scale to be a few tens of solar mass#swell into the
high-mass regime.

Nevertheless, the transition to Population Il is a crucidéstone in the history



STELLAR FEEDBACK AND GALAXY FORMATION 169

of the Universe. The arguments in this section suggestifimixing was efficient,
it took place very soon after the first star in each virialibado exploded.

6.5.1 Blastwaves in an Expanding Universe

A crucial point to understand about metal enrichment is ithatustbe highly in-
homogeneous, because the metals are produced at distestéssar-forming ha-
los) and must be advected with hydrodynamic flows, whichdgiy move rather
slowly by cosmological standards. Thus, the transitiomfif@opulation Il to Pop-
ulation Il is likely to had large spatial fluctuations; in peiple, Population Il star
formation could persist to late times, if the IGM enrichméntescales are very
long and if new halos virialize and cool. In this section, wi#l wonsider how
galactic winds (or other flows) can distribute this mategiaund the Universe.

Although the simple models §6.4.2 provide some intuition, they do not directly
apply to cosmological blastwaves, which propagate into xgraeding medium
whose density decreases with time. However, it is easy sndaise to estimate the
maximum distance to which the shock can reach: as in a unjfstatic medium,
the wave will sweep the matter before it into a thin shell. Buthe cosmological
setting, the shell will continue to expand in comoving cooades only while its
velocity relative to the Hubble flows positive — after that, the shell will simply be
dragged along with the Hubble flow. The drag from swept up neteill con-
tinue to decelerate it until its velocity matches the Hulflwer, which occurs at the
asymptotic (proper) radiuBg; the final kinetic energy is thet[H (z;) Rg]?/2.
(Herez; is the initial time of the explosion.) Some of this energy esnfrom the
explosion energy, but in contrast to the static medium, the initial configimat
also contains some kinetic energy from the Hubble flow. Iregg outward to
Rpg, this initial energy is3M,[H (z;) Rg)?/10. If we assume that the expansion is
rapid compared to the Hubble time, the maximum comovingisitieerefore

E 1/5
REcom™~ | —————— 1+ 2 6.38
E, {mmﬂ?(z»] (1+2) (6.39)
GE \°
=K cos 1 i_l/5 :
peoe (o) ()7 (6.39)

where Kg cos ~ 10'/5 is a constant of order unity that depends on how much
energy is transformed into thermal energy or kinetic enelgpte the similarity to
the Sedov-Taylor-von Neumann scaling, witk 1/H (z).

In fact, for a perfectly adiabatic shock in a matter-dométatUniverse with
Qp < Q,, a self-similar blastwave that mirrors the Sedov-TaylonWeumann
solution forms. In this limit, the constaff... = (327/3)'/° Ksry. The blastwave
also expands at a rafe.., < 72/%, where at high redshifts,

N 2
"= T,
Once radiative cooling in the shell and eventually the bebbterior become
important, the expansion slows down. We can estimate thédina of a bubble
in which cooling is extremely efficient by repeating the ab@avgument, but with

[(1+2)Y2 — (14 2)'/? (6.40)
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momentum conservation as our guiding principle rather gvagrgy conservation.
Writing the total impulse a®&’'/c, we obtain

E/C :|1/4
Ry com~ Kcos, 1+z2 6.41
P, p |:pb(Zz)H(Zq) ( ) ( )
GE/e \'* .
=Ky eos | —toe 14 2)" V8, 6.42
e () 0 (642

whereK, cos ~ 8/,

To put these estimates in the context of star-forming halesuse the notation
of §6.4.1 and write the energy released by a halo of Mdsss £ = f,wsn M, and
the momentum input aB /c = (ef, Myc?)/c, whereM, = (Q/Q,,) M. Then

WSN f* M _1/5
Ripcom~1.2 Eia 1 Mpc, (6.43
o (1049 org M_' 0.1 10° M@> (L+2)7"" Mpe,  (6.43)

fo M
Rp’com ~0.2 (63@ 108 M@
It follows that the maximal comovingolumeenriched by halos scales &
(fM)3/> or V, oc (f.M)3/*. In either case, this is sublinear, showing that low-
mass halos are much more efficient at enriching the IGM thagsivaones.

In practice, these maximal radii can be substantial ovieneses since they ne-
glect the gravitational attraction of the host halo; §&et.1.

To follow the time evolution in detail one must track the agyereservoir driving
the wind. Numerical calculations show that cosmologicasbiaves develop shells
even more rapidly than their counterparts in static medlze &quation of motion
for a shell is then

A R?
M,

) (1+ 2)~/8 Mpc. (6.44)

(R— HR),

(6.45)
where M, is the shell mass)l, = 47R?p,(R — HR) is the rate at which mass
is swept upp is the pressure of the bubble interipgzy; is the ambient pressure
of the IGM, andM (R) is the mass enclosed within the wind (including both dark
matter and any baryonic remnants). The first term is the pregsrce from the hot
interior, the second involves the gravitational deceleratiue to the interior mass
(and the shell itself), the third is the acceleration duentvdosmological constant
(which can be ignored at high redshifts), and the drag fom® fswept-up material.
This must be supplemented with an equation for the energysolbtibble interior,

L R
PN E 5pR. (6.46)
Here the second term is thellV work from expanding the shell, while the first
represents energy inputs or losses. These include theyesewgce powering the
wind and Compton cooling (which usually dominates at the bmsble densities
once the winds propagate into the IGM).

There is one additional subtlety in the cosmological cdseshell treatment as-
sumes that the ambient material is accelerated to the s#eliity through inelastic

R:

(0~ pr6ar) — s [M(B) + M, /2] + O (2) ()R~ 12

p:
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Figure 6.8 Placeholder figure. Shell sizes as a function of redshift for several different
model halos.

collisions. L also must account for the energy dissipated in this prodette shell
cooling time is short, most of it will be lost (the static medi solutions described
in §6.4.2 implicitly take this limit), but some may be transmdtto the bubble in-
terior through turbulence if it is not lost in cooling. We |t be the fraction of this
energy transmitted to the bubble interior; theimcludes a term

Lq = f4Ms(R— HR)?/2. (6.47)

Figure 6.8 shows solutions to these shell expansion equsatiy several model
halos and winds. We show winds launchingat 30, 20, 15, and 10, from halos
with Tyi, = 10* K. In all cases we assume an instantaneous burst of startiorma
with f, = 1073, 1072, and0.1 from bottom to top within each set. We halt the
expansion and assume that the bubbles are “frozen-in” tdtieble flow once
their expansion velocity falls below that limit. Note thdrfalong times for the
bubbles to reach these limiting sizes and the sublinearrdbgree of the limit on
the total energy input.
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Figure 6.9 compares the asymptotic bubble sizes as a furmtioput energy (in
this case parameterized as halo mass, ijte= 0.1 held constant) in this detailed
calculation to the maximal limit from equation (6.43), bais® energy conserva-
tion, and the minimal limit from equation (6.44), based oe tbtal impulse. The
upper and lower solid lines adopy = 0 and1, respectively — these two curves
therefore bracket the real bubble expansion, since théistexdpected to cool part-
way through the expansion. Note that the energy limit ureterates the final sizes
because it does not account for the expanding Universe jwdliows bubbles to
grow farther both by the decelerating expansion and deicrgaensity. (On the
other hand, Figure 6.8 shows that it takes a substantial ahodtime to reach the
maximal limit, so during the high-redshift era of interds estimate is reasonably
accurate.)

The numerical results turn over at high masses, becausedhigagional poten-
tial well of the host traps the wind. Typically this occurddre the wind escapes
far into the IGM, so there is a severe cutoff in the maximune sizecall that the
gravitational binding energy scales &2, while the available energy only goes
like M. This, together with thé” o« E3/°> « (f,M)3/® scaling of the enriched
volume, mean that the smallest halos are likely the most itapbfor chemical en-
richment, unless the star formation efficiency itself dases strongly at low halo
masses.

6.5.2 Metals in the Intergalactic Medium

Given the fate of a wind bubble around any individual souitcs, straightforward
to estimate the fraction of space filled by these bubbles ndefi/ (m, z) to be the
volume filled by a bubble blown by a halo of massat redshiftz, we integrate
over the halo mass function:

QL(z) = / dM n(M, 2)V (M, z), (6.48)
Mmin

where the integration extends over all star-forming halbise resulting’, is the

total volume filled by all the bubbles, not accounting for da&p. If the bubbles

were randomly distributed, and if overlapping winds did aat each other’s ex-

pansion, the true filling fraction of wind material would e = (1 — e—Qé).

This simple estimate has an important shortcoming: it igadhe clustering of
these galaxies. In reality, high-redshift galaxies forwsel to each other along in-
tersections of sheets and filaments in the cosmic web. Thied lubbles therefore
tend to overlap rather than fill new space. Becalisec E3/5, multiple sources
contributing to a single bubble atessefficient than individual sources generat-
ing their own bubbles, so clustering will tend to decreasefilling fraction of the
enriched material.

Figure 6.10 shows some example enrichment histories witsimple approach.
We consider two different models: a maximal estimate in Wwistar formation in

viIn reality, there will be quite a bit of scatter in this retaiship, as halos (even of the same mass)
form and grow with different merger and star formation hiits. For the simple estimates here we
ignore this scatter, though it can be easily followed witimeuical simulations.
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Figure 6.9 Placeholder figure. Comparison of maximal wind sizes in the detailed model
of eq. (6.45) (solid lines) with the estimates of eq. (6.4%) é.44) (dashed and
dotted lines, respectively) based on energy and momenturseceation. The
upper and lower solid lines show solutions wiflh = 1 and 0, respectively. In
reality, the shell likely cools partway through the expansiso full integrations
lie somewhere between these curves. The numerical resutisover at high
masses because the wind cannot escape the gravitatioealtipbtvell of the
host halo.
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small halos through K cooling is efficient (with all halos withy;, > 1000 K
having f, = 0.1), a more conservative model in which star formation in suglo$
is very inefficient (withf, = 10~ unlessl%;, > 10* K). In both cases we show the
numerical integrations (with the solid lines, settifig= 1) as well as the energy
and momentum estimates (with the dotted and dashed lirsgsectvely).

Figure 6.10 shows that, in order for a large fraction of spiacbke filled with
heavy elements by ~ 6, much of those metals must come from the shallow po-
tential wells of very small halos, which must produce stany\efficiently. Indeed,
if supernova and photoionization feedback is as efficiertasearlier estimates
suggest, it seems implausible to expect such halos to betalgienvert 10% of
their baryons into stars. Thus, metal enrichment in thedg phases seems likely
to be very patchy, with important consequences for strectomation (se€6.6).

In galaxies that were likely responsible for most of the rhetaichment, both
supernova winds and radiation pressure from hot starsiboted to powering the
outflows. The former ultimately provide more energy for theflow, but much of
that energy may be lost as the supernova blast waves prepidgatigh the dense
ISM of the galaxies. The momentum inputs from the two chasae comparable
for typical IMFs, so even if supernova remnant cooling iscégfit winds from
starbursts should be able to enrich a few percent of the IGM.

Unfortunately, numerical cosmological simulations cathg lack the dynamic
range to model the launch of these winds and their propagétimugh the IGM
(because the shells cannot be resolved), although sirontatif individual galax-
ies are beginning to examine outflow dynamics in detail. tgdascale structure
simulations, winds are launched by hand with a parameténzedel; they are
then tracked as they propagate through the IGM in the momeigiominated limit.
Such numerical simulations also show that plausible mddelinds from halos
above thel0* K cooling threshold can enrich only a few percent of the IGM.the
winds continue to expand at later times, this fraction iases, but many models
predict that much of the IGM remains pristine even to latesm

The mean metallicity of these enriched regions follows lgdsom the above
models with only one additional parameter: the fractjan. of metals that are
ejected in the wind. This is usually parameterized withress-loading factorn
which describes how much material escapes the galaxy is ohthe star forma-
tion rate,y = M,,/M,. According to the model described §6.4.1,1 ~ o¢/o
(see Eg. 6.32), assuming that the momentum input rate sisgales with the star
formation rate and that the final velocity of the winds is jagew times the escape
velocity of the halo. Observations of low-redshift staidtarare consistent with
this simple relation ifoy ~ 300km s™!, though we note that the proportionality
constant depends on the IMF and may lgeger if the IMF is top-heavy at high
redshifts. On the other hand, this provides yet anotheioreagy small galaxies
more efficiently enrich the IGM with metals, gsx o~ oc M ~1/3.

If we then assume that the metals are perfectly mixed ingidegtlaxy, this
implies that a fractiom f, of the metals produced in each galaxy are ejected into
the IGM. This material is then diluted by a facter@. f.on; thus, the mean IGM
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Figure 6.10Placeholder figure.Filling factor of wind-enriched regions in different model

of star formation and wind expansion. The upper and loweoketirves show
models with efficient star formation in halos below the atoowoling threshold
(settingf. = 0.1 in all halos withT;: > 1000 K) and in which it is not (setting
f« = 107% in halos withT;; < 10* K). The solid curves show numerical
calculations using eqg. (6.45), while the dotted and dashieeks use estimates
from energy and momentum conservation, respectively (E48 and 6.44).
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metallicity will be

Zigm ~ 1072 (n) (%gcslll) Zgal, (6.49)
whereZ,,; is the mean metallicity of material inside of galaxies &niis averaged
over the entire galaxy population. The mean metallicityenfichedregions will
be larger by~ Q. !. Becaus&). should increase witlf..;, this shows that the
metallicity of enriched regions is likely to be above theticel threshold for the
transition to Population Il star formation in most plausiBtenarios.

An alternative empirical estimate of the IGM metallicitylltavs by observing
the total density of stars (which, assuming an IMF, traeslanto a total metal
yield). Type Il supernovae from high-mass stars forming tymcal Salpeter IMF
processx 2.4% of the stellar mass into metals. Using the observed stelbssm
estimates at ~ 2, this implies that the IGM should have ~ (1/30) Z¢, at that
redshift.

For a similar constraint at higher redshifts, we can catibthe stellar mass to
the number of ionizing photons produced per baryon, whidhlatius gauge the
overall level of enrichment near the time of reionizatiore &t be the number of
ionizing photons reaching the IGM per hydrogen atovs: IV, fesc f« feoll, Where
N, is the number of ionizing photons produced per baryon irsstar4000 for a
Salpeter IMF) andf.s. is the fraction of these photons that escape their host galax
into the IGM; we will discuss these parameters in more détaiB. Meanwhile,
the mean metallicity implied by these stars787, ~ 1.3 f, fcon, Where the factor
/« is the conversion from th2.4% metal yield to solar metallicity (with.89% of
the mass in metals). Thus,

3 400
Z ~3x107°Q <N7fesc> Zg. (6.50)
Again, the mean metallicty in enriched regions will be ada¢) ! larger.

Our primary tools for constraining these winds are metadIsystems in the
Lyman- forest (see54.5). Metals seem ubiquitous in the high-column density
systems that may be associated with virialized objectschvimplies that such
halos are highly enriched. This is not surprising, sincdfitlseéstars in any halo are
themselves likely enrich the hosts’ material to substhidigels. More interesting
is the wide scatter in the metallicity of lower-density r@gs. The estimate in
equation (6.49) is reasonably close to the observed ntigt of these systems
(Z ~ 1073Zy), so careful studies of IGM metal lines over time may shetitlig
on winds and other outflows. In particular, everzat 6, these enriched regions
will produce measurable absorption in quasar or GRB spgaitteough identifying
each line’s origin may be difficult (s€&.6).

However, only~ 10% of these metals predicted by measuring the stellar mass
of the Universe have actually been observed: the remaindgrba buried inside
additional galaxy populations or in the IGM. If the lattehjgt suggests that the
enrichment may indeed be very widespread, at least ky2—3.

As we will see in§9.5, these winds likely also play a crucial role in regulat-
ing star formation within galaxies, and their parameterstt@&refore be estimated
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not only through IGM metallicity measurements but also bsnparison to galaxy
luminosity functions, metallicities, and other propestid his provides another ob-
servational handle on winds and, indirectly, chemical@nrient processes.

6.6 THE FIRST GALAXIES

In Chapter 5, we discussed the physics of primordial stan&dion. Although there
are many unanswered questions, the problem of gtestformation is a tractable
one: the initial conditions are well-posed and the physies matter and baryonic
collapse, chemistry of the primordial gas, accretion dshrfation, and radiative
feedback) is straightforward enough that one can at leasgiime solving the prob-
lem in full.

However, in this chapter we have examined the myriad feddbaxchanisms
generated by these stars and their descendants. As soanfasttbtars form, these
processes complicate matters immensely, and it is extsedifficult to imagine
building a picture of the subsequent generations of stan&tion from first princi-
ples — there are simply too many uncertain parameters griach one. Neverthe-
less, the underlying physics of each process is relatiedyghtforward, and from
detailed studies of each individual process we can buildesiomaiition for how the
interplay may proceed.

Such “global” formulations are coming into focus for thertsformation of the
first stars to the firsyalaxies We define a “galaxy” as a gravitationally-bound sys-
tem of stars embedded in a dark matter halo and exhibstis¢ainedtar formation
(even if at a low level) over cosmological time periods (i@substantial fraction
of the Hubble time). This definition requires: (i) a viriadid dark matter halo able
to accrete baryons (hendé > Mg); (ii) efficient cooling in the baryons (above
a critical virial temperaturd,,;, that depends on the chemistry of the constituent
gas); (i) sufficient mass to be stable against feedbaak fite own stars; and (iv)
sufficient mass to be stable against feedback from neighfbilos.

Here we will describe a plausible scenario for how such dbjean appear at
high redshifts. It should be obvious, however, that thoudé tepresents a “best
guess” given present theoretical investigations, the ¢ddbservational constraints
on this expectation likely means that it is at best partiafiyrect. Nevertheless, it
provides a coherent synthesis of the concepts we have didwsd is a useful
baseline paradigm for future work. Figure 6.11 illustrates following evolution-
ary stages graphically and identifies some of their key goint

1. The first stars form inside halos cooled by molecular hgdrg with char-
acteristic masses determined by the chemistry p€bbling (se€5.1.2 and
Fig. ??), with T,;; > 1000 K. Massive Population Ill.1 stars form at the
center of these halos after cooling to low temperatures. KBlyequestion is
whether the gas cloud fragments before the material accmt® the pro-
tostar. If not, the final mass is likely regulated by radiatieedback (with
M, > 100 My); alternatively, the first protostar’s accretion disk ig timost
likely site for fragmentation, and the characteristic masy be several times
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Figure 6.11 Stages in a plausible scenario for the birth effitst stars and galaxies (see
text for details). (1) The first Population 11l.1 stars form in small halos via
H2 cooling. (2) These stars empty their hosts of gas via photoevaporatidn an
supernova blastwaveg3) This feedback triggers Population I11.2 star forma-
tion in nearby minihalos(4) The Lyman-Werner background from these stars
suppresses star formation in small minihalos, gradualtyeiasing the charac-
teristic mass scale of star-forming objedS) The first self-sustaining galaxies
eventually form in halos above the atomic cooling threshdlg. ~ 10 K.
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smaller.

2. The first star (or star cluster) exerts extremely stroregback on its host
halo’s gas. The H Il region created by a very massive Popuidtl.1 star
evaporates any diffuse gas in the central regions of the(§6l8.1), and the
star’s death as a supernova will trigger a blastwave thatdyiclears out the
rest of the gas (provided, of course, that the star does riatpse directly
to a black hole without generating an explosig;4.3), and it enriches the
entire halo with heavy elements. Dense clumps well on thaiy to star
formation may survive this feedback (and in fact the shockpession may
even speed up their collapse), but nothing else will. Thelaek will be
less severe, but still substantial, if Population Ill.1rstare less massive.
NeverthelesRopulation l1l.1 star formation in any individual halo manly
occur in a single rapid burst.

3. These same feedback mechanisms also operate on somavgeatdcales,
as the H Il region and supernova blastwave are able to peadtra- kpc
scales. Any nearby halos will therefore be subject to theeseffiects: those
that have not yet collapsed to high densities will have thaityons evapo-
rated at high entropies, while those already dense enousgiftshield from
the ionizing radiation will likely have their star formatiaccelerated;??).
However, because these systems will form their stars frorizéa gas, the
enhanced HD chmistry will lead to more efficient cooling amdte (proba-
bly) a smaller characteristic mass of Population Ill.2 s{@ees5.3). (Note
that, because supernova blastwaves travel much sloweHHharegions, it
is very possible for this triggered star formation to be riétee.) Still, even
with this positive feedback, the Population Ill.1 and Papioh 111.2 stars in
a given cluster of minihalos will form temporally close tdlger (as other-
wise the clumps would have been photoevaporated), leadifiigursts” of
Population Il stars followed by long pauses as the halascaete their gas.
Figure 6.12 illustrates some of the complexity of this stagme the several
nearby stars that form and the complicated morphology ofrtbkecular gas
catalyzed by the presence of the H Il regions.

4. Feedback also operates on larger scales. All Populaticstdrs produce
photons in the Lyman-Werner that photodissociate Ms more stars form,
the Lyman-Werner background increases, gradually raigiagritical virial
temperature for cold gas formation inside minihal§8.1.5 and Fig. 6.3).
Because more massive halos are also more rare, this wilkteself-regulate
the global rate of star formation.

5. Eventually, the Lyman-Werner background will becomeirsie enough to
choke off Population Il star formation in pristine miniloal entirely. Then
star formation will shift to halos withl\,;, > 10* K, where H 1 is ion-
ized by the virial shock and atomic cooling is efficient (ség B.1). Most
likely these halos will have had progenitors that formediaton 11l stars,
in which case they will already be pre-enriched with metald aegin to
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Figure 6.12 Results from a numerical simulation of the fdioraof a metal-free stars and
their feedback on the surrounding environment. Radiatseglback around the
first star involves ionized bubbles (light grey) and regiafshigh molecule
abundance (medium grey). The large residual free electamtion inside the
relic ionized regions, left behind after the central stas tieed, rapidly catalyzes
the reformation of molecules and a new generation of lowassstars. Figure
credit: Bromm, V., Yoshida, N., Hernquist, L., & McKee, C.Nature459, 49
(2009).
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form Population Il stars. It is possible, however, that ssueh halos will
form without stars inside their progenitors (perhaps beeahey form rela-
tively late and so have star formation suppressed by the hywdarner back-
ground). In that case, their initially-ionized gas will c@uPopulation [11.2
star formation.

6. Systems witll};, > 10* K can also maintain reasonable (though still small)
star formation rates without completely disrupting thersgsupplies (see
Eq. 6.25).It is therefore this “second-generation” of star-forminglos that
host the first sustained galaxies.

7. Nevertheless, feedback continues to be important inaégg galaxy forma-
tion at later times. Winds and outflows are likely crucial fegulating star
formation inside galaxies (s€6.5), and photoheating from ionizing photons
in the IGM will gradually increase the Jeans mass and so &ser¢he mini-
mum mass scale for galaxy formation ($8210, where we will discuss this
topic in detail.)

The transition to star formation in long-lived galaxieslik occurred long before
the Universe was reionized. The intensity of the Lyman-Webackground can be

estimated as
CNLW hv
~ 6.51
JLW 47T ( AZ/LW ) ( )

wherenyy is the number density of photons in the Lyman-Werner bandsmdgy

is the band’s width in frequency space. We then Wit ~ frw /ion@/ fesc i,
wherefiyw /ion is the number of Lyman-Werner photons produced per ioniphmay

ton by stars (which is- 0.1 for very massive Population Il stars or near unity for
Population Il stars)g is the number of ionizing photons that escape into the IGM,
and f.«. is the fraction of all ionizing photons that manage to esdagais way.

Then
0.1 fLw /ion 1+2\°
Ji ~ 100 . 6.52
S Q(fesc 0.1 )( 20 ) (6-52)

Lyman-Werner photons suppress Eboling completely whedw 21 > 1, which
should occur long before enough ionizing photons are preduo reionize the
IGM. Thus, it seems very likely that the primary sources casible for reionizing
the Universe were long-lived galaxies, rather than thetgurenihalos in which
the first stars themselves formed.

Although this is a very plausible picture consistent withtaded theoretical
work, there are a number of points at which seemingly minaicds may dra-
matically alter the results. We list several here to give aoildor the uncertainties:

o If fragmentation is efficient in accretion disks composegifordial stars,
the first halos would form clusters of moderately sized stattser than single
very massive stars. The resulting feedback would be legsasftj potentially
allowing gas to remain in halos somewhat below the ugyal ~ 10* K
atomic cooling threshold. The mass scale of the first gatawieuld shift
downward.
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o If Population Ill stars form in the mass ranges 400- M, or 140-260 Mg,
they will die by exploding rapidly to black holes without dspions. This
would allow their halos to retain more of their gas, with otitg photoevap-
oration feedback to contend with, and allow sustained stan&tion to con-
tinue in low-mass halos. Moreover, they would not enriclirtevironments
(except perhaps weakly through stellar winds), allowingiration 111.1 and
[11.2 to persist for longer timescales — possibly even to @t@mic cooling
threshold.

o Ifthe shells that form at the edges of supernova blastwaesgravitationally
unstable, they can fragment and form stars as well. [If thgnfientation
scale is small, these could even be long-lived stars whd exatively small
feedback.

o If black holes form abundantly and accrete gas efficientyrfrbinary star
companions or the ISM (seg7), then their X-ray background increases
the free electron fraction inside halos, promotingfdrmation and possibly
counteracting photodissociation from Lyman-Werner phetoThis would
allow much more rapid primordial star formation in low-mémsgos.

e The consequences of enrichment inside minihalos has begeljjaunex-
plored, because the gas is expected to be expelled. But ¢ sonetained,
the metals allow rapid cooling and hence more efficient sianétion than
Hs. This too could lead to smaller galaxies.

Obviously there is a great deal of uncertainty in how the fitsirs will grow
into the first galaxies — most likely, observations will becessary to settle the
guestion. However, in closing we stress that most of the tyidg physics is well-
understood in isolation and has many applications to otteasaof astrophysics.
It is the complex interplay of the processes we have deattieee that makes the
problem challenging and exciting to explore observatiynal



Chapter Seven

Supermassive Black holes

Why did the collapsed matter in the Universe end up makingpges and not black
holes? One would have naively expected a spherical collapse to étfdtine for-
mation of a point mass at its center. But, as it turns outstilem neighboring
objects torque the infalling material and induce non-sjglitgrand some spin into
the final collapse. The induced angular momentum preveatgdl from reaching
the center on a direct plunging orbit. After the gas coolslasds its pressure sup-
port against gravity, it instead assembles into a disk inctvine centrifugal force
balances gravity. The finite size of the luminous region dégias is then dictated
by the characteristic spin acquired by galaxy halos, whygtically corresponds
to a rotational velocity that is- 5% of the virial circular velocity, with a negligi-
ble dependence on halo mass. This does not imply that no gamatates at the
center. In fact, galactic spheroids are observed to gemiricarbor a central black
hole, whose formation is most likely linked to a small masgfion the galactic gas
(< 0.1%) which has an unusually low amount of angular momentum. Thalls
mass fraction of the central black holes implies that theavgational effect is re-
stricted to the innermost cusp of their host galaxy. Newwéess, these central black
holes are known to have a strong influence on the evolutioheaif host galaxies.
This state of affairs can be easily understood from the faat the binding energy
per unit mass in a typical galaxy correspond to velocitie$ hundreds ofim s—!
or a fraction~ (v/c)? ~ 10~ of the binding energy per unit mass near a black
hole. Hence a small amount of gas that releases its bindiagygmear a black
hole can have a large effect on the rest of the gas in the galaxy

The growth of supermassive black holes is intimately lini@the hierarchical
growth of their host galaxies. Figure 7.1 shows the evolutib the luminosity
function of quasars at different observed wavelengthsdnéldshift intervat = 2—
5. The inferred growth in the comoving mass function of blaokes along with its
integral over all black hole masses (i.e. the comoving massitly) are shown in
Figure 7.2. The highest redshift quasar known is ULAS J10834 atz = 7.085
(only 0.77 Gyr after the Big Bang), with a bolometric lumiitgof 6.3 x 103 L
and an estimated black hole mas20f 10 M.

We start this chapter with a short introduction to the preipsrof black holes in
general relativity.
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Figure 7.1 Redshift evolution of the luminosity function gfiasars at different observed

10g(Per) Mg Mpc?]

wavelengthsB-band (center-left panels), soft X-rays§—2 keV) (center), hard
X-rays (2 — 10keV) (center-right; red), and mid-IRL xm) (right; cyan). The
left panels show the distribution of bolometric luminosgi(integrated over all
wavelength). Lines show the best-fit evolving double polaer-model to data
points at all redshifts (solid), the best-fit model at theegivedshift (dashed),
and the best-fit model that allows only the break luminositgvolve (dotted).
Figure credit: P. F. Hopkins, G. T. Richards, & L. Hernquisstrophys. J654,
731 (2007).
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Figure 7.2 Left panel: the black hole mass density of quasars from the data (Cjreled

the best fit luminosity function (solid line). The inset stethe fraction of the
mass density at = 0 (psu (2)/psu(0)), on a linear scaleRight: the black hole
mass function at = 0 (thick black line) and: = 1, 2, 3 (from top to bottom).
The shaded region shows tthe observational uncertainty. Figure credit: P. F.
Hopkins, G. T. Richards, & L. HernquisAstrophys. J654, 731 (2007).



SUPERMASSIVE BLACK HOLES 185

7.1 BASIC PRINCIPLES OF ASTROPHYSICAL BLACK HOLES

In Newtonian gravity, the gravitational field at any radiugside a spherical mass
distribution depends only on the mass interior to that raditihis results is also
true in Einstein's General Relativity, where Birkhoff’ssthrem states that the only
vacuum, spherically symmetric gravitational field is thasdribed by the static
Schwarzschild metrjc

ds? = — (1 — 7"57*1) Edt? + (1 - TSTh) " 1240, (7.1)
whered() = (d6? + sin® 0d¢?). The Schwarzschild radiuss related to the mass
M of the central (non-spinning) black hole,

TSch = 262—2M =2.95 x 10° cm (%) : (7.2)
The black hole horizon;y,, (= rsen here), is a spherical boundary from where
no particle can escape. (The coordinate singularity of ttlew&rzschild metric
atr = rgen can be removed through a transformation to Kraskal coordinate
system(r,t) — (u,v), whereu = (r/rsen — 1)1/2 e"/?rsencosh(ct/2rsen); v =
u tanh(ct/2rscn).) The existence of a region in space into which particles faky
but never come out breakd time reversal symmetry that ctexiaes the equations
of quantum mechanics. Any grander theory that would unifgrgum mechanics
and gravity must remedy this conceptual inconsistency.

In addition to its mas$/, a black hole can only be characterized by its spin
and electric charg€ (similarly to an elementary particle). In astrophysicatam-
stances, any initial charge of the black hole would be qyiddutralized through
the polarization of the background plasma and the prefiientall of electrons or
protons. The residual electric charge would exert an atefdrce on an electron
that is comparable to the gravitational force on a prot@p,~ GMm,, implying
(Q*/GM?) ~ Gm2 /e* ~ 10730 and a negligible contribution of the charge to the
metric. A spin, however, may modify the metric considerably

The general solution of Einstein’s equations for a spinrbtagk hole was de-
rived by Kerr in 1963, and can be written most convenientiyhemBoyer-Lindquist
coordinates,

. .2

TSch” \ 9,9  2j7Schrsin” 6 Sk o

ds?=—[1- =22 dt® — ———cdtd —d

s ( 5, >c y, cdtdo + A T

Tscth’l“ sin® 6
Xk

where the black hole is rotating in tlfedirection,j = [J/M¢] is the normalized
angular momentum per unit mass (in units of cm),= 2 — rrgq, + j2, and

Yk = r? + j2cos? 6. The dimensionless ratie = j/(GM/c?) is bounded by
unity, andae = 1 corresponds to a maximally rotating black hole. The horizon
radiusry,, iS now located at the larger root of the equatitn= 0, namelyr, =
irgen[l+ (1 - a?)'/2]. The Kerr metric converges to the Schwarzschild metric for
a = 0. There is no Birkhoff's theorem for a rotating black hole.

+3,.d6? + <r2 + 5%+ ) sin? 0d¢?. (7.3)
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Figure 7.3 The left panel shows the radius of the black hotezbn ri,, (dashed line) and
thelnnermost Circular Stable Orbit (ISC@yound itrisco (solid line), in units
of the Schwarzschild radiugs., (see equation 7.2), as functions of the black
hole spin parameter. The limiting value ofa = 1 (a = —1) corresponds to a
corotating (counter-rotating) orbit around a maximalpirging black hole. The
binding energy of a test particle at the ISCO determines dld@tive efficiency
e of a thin accretion disk around the black hole, shown on thletpanel.

Test particle orbits around black holes can be simply dbedrin terms of an
effective potential. For photons around a Schwarzschidlbhole, the potential
is simply Von = (1 — 7sen/7) /2. This leads to circular photon orbits at a radius
Tph = %rsCh. For a spinning black hole,

2
Tph = T'Sch {1 + cos (§ cos‘ﬁ:l:a])} : (7.4)

where the upper sign refers to orbits that rotate in the ojpgpdsection to the black
hole (retrograde orbits) and the lower sign to corotatinggpade) orbits. For a
maximally-rotating black holel¢| = 1), the photon orbit radius ig,,, = 3rsch for
a prograde orbit antlrs, for a retrograde orbit.

Circular orbits of massive particles exist when the firstvgsive of their effec-
tive potential (including angular momentum) with respectddius vanishes, and
these orbits are stable if the second derivative of the piates positive. The ra-
dius of thelnnermost Circular Stable Orbit (ISCQ)efines the inner edge of any
disk of particles in circular motion (such as fluid elememtsah accretion disk).
At smaller radii, gravitationally bound particles plungga the black hole on a
dynamical time. This radius of the ISCO is given by,

1
Pisco = 37sen {3 Y 2,3 Z)B+ 21+ 222)]1/2} , (7.5)

whereZ; = 1+ (1 —a?)Y/3[(1 4 a)'/? + (1 — a)'/*] and Z, = (3a® + Z7)/2.
Figure 7.3 shows the radius of the ISCO as a function of spire @inding energy



SUPERMASSIVE BLACK HOLES 187

of particles at the ISCO define their maximum radiative efficly because they
spend a short time on their plunging orbit interior to the G his efficiency is

given by
T2 — T'Sch” F ] %TSchr
V . (7.6)
r(r? — Srsenr F 2j4/ 57sent) !/

The efficiency changes between a valueof (1 — /8/9) = 5.72% for a =
0, to (1 — +/1/3) = 42.3% for a prograde (corotating) orbit with = 1 and
(1 —+/25/27) = 3.77% for a retrograde orbit.

e=1-—

7.2 ACCRETION OF GAS ONTO BLACK HOLES

7.2.1 Bondi Accretion

Consider a black hole embedded in a hydrogen plasma of umiflemsityp, =
mypno and temperaturéy. The thermal protons in the gas are moving around at
roughly the sound speedl ~ /kgT/m,. The black hole gravity could drive
accretion of gas particles that are gravitationally bounid, thamely interior to the
radius of influencey;,; ~ GM/c2. The steady mass flux of particles entering this
radius ispgcs. Multiplying this flux by the surface area associated with tadius

of influence gives the supply rate of fresh gas,

: M \’/ n T, \
M =~ w2 epocs = 15 (108M®) (1 cm_3) (104 K) Mo yr~'. (7.7)

In a steady state this supply rate equals the mass accrat®mto the black hole.

The explicit steady state solution to the conservationagus of the gas (mass,
momentum, and energy) was first derived by Bondi (1952). Ttextesolution
introduces a correction factor of order unity to equatiori’}7 The solution is
self-similar. Well inside the sonic radius the velocity iese to free-fallu ~
(2GM/r)'/? and the gas density js ~ po(r/rint)~>/2. The radiative efficiency
is small, because either the gas is tenuous so that its gaiie is longer than its
accretion (free-fall) time or the gas is dense and the dfutime of the radiation
outwards is much longer than the free-fall time. If the inflogrgas contains near-
equipartition magnetic fields, then cooling through syottan emission typically
dominates over free-free emission.

A black hole that is moving with a velocity” relative to a uniform medium
accretes at a lower rate than a stationary black hole. At tbcities, the radius
of influence of the black hole would be nowG M /V 2, suggesting that the sound
speedc, be crudely replaced with- (¢2 + V2)/2 in equation (7.7). A similar
suppresion factor applies for the accretion of baryons dat& matter halos, when
the baryons have a net bulk velocity relative to the dark endtee;??7?).
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7.2.2 Thin Disk Accretion

If the inflow is endowed with rotation, the gas would reach atdtigal barrier
from where it could only accrete farther inwards after itgalar momentum has
been transported away. This limitation follows from theegter radial scaling of
the centrifugal accelerationq »—3) compared to the gravitational acceleration
(< r72). Near the centrifugal barrier, where the gas is held agajravity by
rotation, an accretion disk would form around the black hoéatered on the plane
perpendicular to the rotation axis. The accretion time \ddlen be dictated by the
rate at which angular momentum is transported through vsatress, and could
be significantly longer than the free-fall time for a nonating flow (such as de-
scribed by the Bondi accretion model). As the gas settlesdisla the dissipation
of its kinetic energy into heat would make the disk thick antl ith a proton tem-
perature close to the gravitational potential energy petqar~ 1012 K(r /rscn) L.
However, if the cooling time of the gas is shorter than theoiss time, then a thin
disk would form. This is realized for the high gas inflow ratgidg the processes
(such as galaxy mergers) that feed quasars. We start byrengptbe structure of
thin disks that characterize the high accretion rate of aisas

Following Shakura & Sunyaev (1973) and Novikov & Thorne (28%ve imag-
ine a planar thin disk of cold gas orbiting a central blackeherhd wish to describe
its structure in polar coordinatés, ¢). Each gas element orbits at the local Ke-
plerian velocityv, = rQ = (GM/r)'/? and spirals slowly inwards with radial
velocity v, < vg as viscous torques transport its angular momentum to thes out
part of the disk. The associated viscous stress generassvilgich is radiated
away locally from the the disk surface. We assume that thie idised steadily
and so it manifests a constant mass accretion rate at ail fddiss conservation
implies,

M = 27rYv, = const, (7.8)

whereX(r) is the surface mass density of the disk.

In the limit of geometrically thin disk with a scale height< r, the hydrody-
namic equations decouple in the radial and vertical dioasti We start with the
radial direction. The Keplerian velocity profile introdcehear which dissipates
heat as neighboring fluid elements rub against each othes. cbhcept of shear
viscosity can be can be easily understood in the one dimealsexample of a
uniform gas whose velocity along theaxis varies linearly with the coordinate,

V =W + (dVy/dx)x. A gas particle moving at the typical thermal speetia-
verses a mean-free-pathalong thex-axis before it collides with other particles
and shares itg-momentum with them. Theg-velocity is different across a distance
A by an amounAV ~ AdV,,/dz. Since the flux of particles streaming along the
x-axis is~ nv, where n is the gas density, the net fluxyefhomentum being trans-
ported per unit time;~ numAYV, is linear in the velocity gradienjdV, /dx, with

a viscosity coefficienyy ~ pvA, wherep = mn is the mass density of the gas.
Since the excess kinetic energy density across a mearmpétbe; p(AdV, /dx)? is
dissipated every collision time (\/v), viscosity heats the gas at a rate per unit
volume ofQ ~ [n(dV, /dx)]? /.

Within a Keplerian accretion disk, the flux gimomentum which is transported
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in the positiver-direction is given by the viscous strefis = %nﬂ, wheren is the
viscosity coefficient (ig cm ™! s~') and = (GM /r3)!/? is the orbital frequency
at aradius-. The viscous stress is expected to be effective down to t68&|$rom
where the gas plunges into the black hole on a free fall time.tiWgrefore set the
inner boundary of the disk assco, depicted in Figure 7.3. Angular momentum
conservation requires that the net rate of its change wahiadius- be equal to the
viscous torque, namely

fox (2mr x 2h) x 1 = M [(GMr)l/Q - (GMTISCO)UQ} . (7.9

_ The production rate of heat per unit volume by the viscoussstiis given by
Q = f2/n. Substitutingf,, and equation (7.9) gives

3M GM {1 B (msoo)l/z] .

2hQ = (7.10)

d7r? r r

This power gives local flux that is radiated vertically frohettop and bottom sur-
faces of the disk,

1 . 3M GM risco\ 1/2
F==-x2 =——|1— . 7.11
2~ he 8rr r [ ( r ) ( )
The total luminosity of the disk is given by
o 1GMM
L= / oOF x 2mrdr — - & , (7.12)
TISCO TIsco

where we have ignored general-relativistic correctiontheodynamics of the gas
and the propagation of the radiation it emits.

In the absence of any vertical motion, the momentum balandée vertical
z-direction yields

ldb _ GMz (7.13)

p dz r2 7
wherez < r and P andp are the gas pressure and density. This equation gives a
disk scale height ~ ¢,/Q wherec, ~ (P/p)!/? is the sound speed.

Because of the short mean-free-path for particles cofisidghe particle-level
viscosity is negligible in accretion disks. However, suikd are susceptable to the
powerful magneto-rotational instability (MRI) that anfjs magnetic turbulence
on an orbital time. The origin of the instability can be eashderstood by imag-
ining two fluid elements that are threaded by a single magffieid line and are
slightly displaced from each other in the radial directidine magnetic field acts
as a spring owing to its tension. In a Keplerian disc the irflugd element orbits
more rapidly than the outer element, causing the springrétcst. The inner fluid
element is then forced by the spring to slow down, reduceritgiar momentum,
and therefore move to a lower orbit. The outer fluid elemermanwhile, is forced
by the spring to speed up, increase its angular momentunthanefore move to a
higher orbit. The spring tension increases as the two fl@thehts separate farther,
and eventually the process runs away. The magneto-ro#diiostability is likely
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to develop turbulent eddies in the disk which are much mdectbe at transport-
ing its angular momentum than particle viscosity. In thiseea andv should be
replaced by the typical size and velocity of an eddy. Thedsargalue that these
variables can obtain are the scale heigtand sound speed, in the disk. This
implies f, < (pcsh)Q =~ pc? ~ P. \We may then parameterize the viscous stress
as some fraction of its maximum valuef, = oP.

The total pressur® in the disk is the sum of the gas pressig, = 2(p/m,)ksT,
and the radiation pressurg,.q = %aT“. We define the fractional contribution of
the gas to the total pressure as
_ Pgas

/8 - P )
whereP = P,.q + Pyas. In principle, the viscous stress may be limited by the gas
pressure only; to reflect this possibility, we wrifg = aP3°, whereb is 0 or 1 if
the viscosity scales with the total or just the gas pressaspectively.

Since the energy of each photon is just its momentum timesgked of light,
the radiative energy flux is simply given by the change in thdiation pressure
(momentum flux) per photon mean-free-path,

dPrad
dr ’
where the optical-depthis related to the frequency-averaged (so-called Rosseland
mean) opacity coefficient of the gas,

(7.14)

F=—c

(7.15)

h 1
T = / kpdz &~ =KX, (7.16)
0 2

whereX. = 2hp. For the characteristic mass densitand temperaturg’ encoun-
tered at the midplane of accretion disks around supermab$ack holes, there are
two primary sources of opacitglectron scatteringvith

Fos = 2L = 0.4cm?gL, (7.17)
myp
andfree-freeabsorption with
—7/2
T
kg~ 8 x 102em? gL [ 2 = , (7.18)
gcm—3 K

where we assume a pure hydrogen plasma for simplicity.

It is customary to normalize the accretion raté in the disk relative to the
so-called Eddington raté/z, which would produce the maximum possible disk
luminosity, Lr4q (See derivation in equation 7.33 below). When the lumiryosit
approaches the Eddington limit, the disk bloats arapproaches, violating the
thin-disk assumption. We writés = (M /Mgaq), With Mgaq = (Lgaa/ec?),
wheree is the radiative efficiency for converting rest-mass to aéidn near the
ISCO.

Based on the above equations, we are now at a position toedi@/scaling
laws that govern the structure of the disk far away from th€dS For this pur-
pose we use the following dimensionless parameters= (r/10Rgcn), Ms =
(M/108M¢), m_1 = (m/0.1), a_1 = (a/0.1) ande_; = (¢/0.1).
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In local thermodynamic equilibrium, the emergent flux frome tsurface of the
disk (equation 7.11) can be written in terms of the tempeesatidisk midplang”
asF ~ caT*/kX. The surface temperature of the disk is the roughly,

AF 1/4 } _ _ 1/2
Ty ~ <_> — 105 K Mg i e |1 — ( L ) . (7.19)
a T1sCco

Note that the disk surface temperature rises at low black lmalsses and reaches
the X-ray regime for stellar-mass black holes. (Non-thdreay emission from
a hot corona or a jet can supplement this disk emission.)agtelass black holes
can therefore be important X-ray sources at high redskeipecially if they get
incorporated into a binary system where they accrete gas &@ompanion star.
In the local Universe, black-hole X-ray binaries come in tilavors, depending
on the mass of the companion stdow-mass x-ray binariesvhere a low-mass
companion transfers mass owing to the tidal force exertethbyblack hole, and
high-mass X-ray binaries (BH-HMXB or micro-quasang)ere the companionis a
massive star which could also transfer mass to the blackthodeigh a wind. At
redshiftsz > 6 when the age of the Universe was short, BH-HMXB were probably
most important since they are known to produce their X-rayer @ short lifetime
(< 10° yr). The cumulative X-ray emission from BH-HMXB is expectxbe
proportional to the star formation rate. If indeed the e@dpulation of stars was
tilted towards high masses and binaries were common, BH-BM¥»y have been
more abundant per star formation rate in high redshift galax As we discuss
in other chapters, the X-rays produced by BH-HMXB may have imaportant
observable effects as they catalysegfbrmation, heated the IGM, and modified
the 21-cm signal from neutral hydrogen. Their overall infloe was, however,
limited: hydrogen could not have been reionized by X-rayses based on current
limits on the unresolved component of the X-ray backgrouitiroughout this
chapter, we focus our attention on supermassive black helegh are brighter
and hence easier to detect individually at high redshifts.

For supermassive black holes, the accretion disk can beativiadially into
three distinct regions,

1. Inner region:where radiation pressure and electron-scattering opdoity-
inate.

2. Middle region:where gas pressure and electron-scattering opacity déeina

3. Outer region:where gas pressure and free-free opacity dominate.

The boundary between regions 1 and 2 is located at the radius
ry 540 B oy Je_1) O/ MEPY if b =1, (7.20)
58 a2 (11 fe_1) 'O/ ME* it b =0, (7.21)
and the transition radius between regions 2 and 3 is

r A4 x 102 (g fe_1)¥/3. (7.22)
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The surface density and scale-height of the disk are given by
Inner region:

. /5
Y(r)~ (3 x 106gcm*2)a:411/5 (—ml) M81/57"1_3/5 ifb=1, (7.23)
€1
. —1
(8 x 102gem™2)a”} (m‘1> P2 it b =0, (7.24)
o (22, 029
-1
Middle region:
i~ 3/5
Y(r) ~ (3 x 106 gcrer)ozjll/5 (6—11) M§/5r1_3/5, (7.26)
i\ 1/
h(r)~1.4 x 1072 Rga_1/"° (6—‘;) Mg 020 (7.27)
Outer region:
i~ 7/10
Y(r) ~ (6 x 10° gcm*Q)oz:;l/5 (ﬁ) M§/5r1_3/4, (7.28)
m 3/20
h(r)~10"2Rga /" (—6_11> M0, (7.29)

The mid-plane temperature is given by,

m 1/5
T (r) = (167%) ~/° (—p ) o~ VBRIBN5Q3/5 5= (/501 (7 30)
kpor

The above scaling-laws ignore the self-gravity of the digkis assumption is
violated at large radii. The instability of the disk to grational fragmentation due
to its self-gravity occurs when the so-called Toomre patamé = (c;Q/7GY),
drops below unity (se€5.2.3). For the above scaling laws of the outer disk, this
occurs at the outer radius,

ry A 2 x 10428 (i fe_y) T2/ M2 (7.31)

Outside this radius, the disk gas would fragment into stansl the stars may
migrate inwards as the gas accretes onto the black hole. fAdrgyeoutput from
stellar winds and supernovae would supplement the visceatirty of the disk and
might regulate the disk to hav@ ~ 1 outside the above boundary. We therefore
conclude that star formation will inevitably occur on largeales, before the gas
is driven into the accretion disk that feeds the centrallbtagle. Indeed, the broad
emission lines of quasars display very high abundance ofyhelements in the
spectra out to arbitrarily high redshifts. Since the totabant of mass in the disk
interior to this radius makes only a small fraction of the ma$ the supermas-
sive black hole, quasars must be fed by gas that crossesahigibry after being
vulnerable to fragmentation.
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Figure 7.4 Simulated image of an accretion flow around a blaslk spinning at half its
maximum rate, from a viewing angle @f° relative to the rotation axis. The
coordinate grid in the equatorial plane of the spiraling flslmows how strong
lensing around the black hole bends the back of the appargnug. The left
side of the image is brighter due its rotational motion ta¥gathe observer. The
bright arcs are generated by gravitational lensing. A daltiosette appears
around the location of the black hole because the light ethity gas behind it
disappears into the horizon and cannot be seen by an obser¢ee other side.
Recently, the technology for observing such an image froenstipermassive
black holes at the centers of the Milky Way and M87 galaxiestieen demon-
strated as feasible [Doeleman, S., etldhture455 78 (2008)]. To obtain the
required resolution of tens of micro-arcseconds, signa$aing correlated over
an array (interferometer) of observatories operating atlinmeter wavelength
across the Earth. Figure credit: Broderick, A., & Loeb, Jsurnal of Physics
Conf. Ser54, 448 (2006):Astrophys. J697 1164 (2009).
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7.2.3 Radiatively Inefficient Accretion Flows

When the accretion rate is considerably lower than its Egtdim limit (A7 /Mg <
10~2), the gas inflow switches to a different mode, calleRaiatively Inefficient
Accretion Flow(RIAF) or an Advection Dominated Accretion FIOpADAF), in
which either the cooling time or the photon diffusion time aruch longer than the
accretion time of the gas and heat is mostly advected witlgéeinto the black
hole. At the low gas densities and high temperatures chexrraictg this accretion
mode, the Coulomb coupling is weak and the electrons do raitugeto the proton
temperature even with the aid of plasma instabilities. &ty heats primarily
the protons since they carry most of the momentum. The otlagomheat source,
compression of the gas, also heats the protons more effgcthvan the electrons.
As the gas infalls and its densityrises, the temperature of each spedigacreases
adiabatically ag” oc p?~!, wherey is the corresponding adiabatic index. At radii
r < 10%rsq, the electrons are relativistic with = 4/3 and so their temperature
rises inwards with increasing density @5 o p'/3 while the protons are non-
relativistic withy = 5/3 and soT;, x p?/3, yielding a two-temperature plasma
with the protons being much hotter than the electrons. Bipiwdels yield}, ~
102 K(r/rsen) "4, Te ~ min(7T), 109711 K). Because the typical sound speed is
comparable to the Keplerian speed at each radius, the ggoofi¢he flow is thick

— making RIAFs the viscous analogs of Bondi accretions.

Analytic models imply a radial velocity that is a factor f o smaller than the
free-fall speed and an accretion time that is a factorof longer than the free-
fall time. However, since the sum of the kinetic and thernmedrgy of a proton is
comparable to its gravitational binding energy, RIAFs aqeeeted to be associated
with strong outflows.

The radiative efficiency of RIAFs is smaller than the thisidvalue ¢. While the
thin-disk value applies to high accretion rates above saitieat value, i > i,
the analytic RIAF models typically admit a radiative effiway of

L M
— el — , (7.32)
M2 Moyt

for M < My, With M, in the range 0f).01-0.1. Here M is the accretion rate
(in Eddington units) near the ISCO, after taking accounthef fact that some of
the infalling mass at larger radii is lost to outflows. For exde, in the nucleus
of the Milky Way, massive stars shed 1073 M, yr~! of mass into the radius of
influence of central black hole (SgrA*), but only a tiny frat ~ 10~° of this
mass accretes onto the black hole.

Since at low redshifts mergers are rare and much of the gaalaxigs has al-
ready been consumed in making stars, most of the local swgssive black holes
are characterized by a very low accretion rate. The regulowv luminosity of
these dormant black holes, such as4he 10° M, black hole lurking at the center
of the Milky Way galaxy, is often described using RIAF/ADAFodels. Although
this mode of accretion is characterized by a low mass iné&#,rit could persist
over a period of time that is orders of magnitude longer thenquasar mode dis-
cussed earlier and so its contribution to the growth of blaalles in galactic nuclei
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may not be negligible.

7.3 THE FIRST BLACK HOLES AND QUASARS

A black hole is the end product from the complete gravitaiawllapse of a ma-
terial object, such as a massive star. It is surrounded byriadrofrom which
even light cannot escape. Black holes have the dual virtligsing extraordinarily
simple solutions to Einstein’s equations of gravity (as/thee characterized only
by their mass, charge, and spin), but also the most dispfroatetheir Newtonian
analogs. In Einstein’s theory, black holes represent ttimate prisons: you can
check in, but you can never check out.

Ironically, black hole environments are the brightest otgen the universe. Of
course, it is not the black hole that is shining, but rather skirrounding gas is
heated by viscously rubbing against itself and shining agiitals into the black
hole like water going down a drain, never to be seen again. drfggn of the
radiated energy is the release of gravitational bindinggnes the gas falls into
the deep gravitational potential well of the black hole. Asamas tens of percent of
the mass of the accreting material can be converted into(heat than an order of
maghnitude beyond the maximum efficiency of nuclear fusids}rophysical black
holes appear in two flavors: stellar-mass black holes thrat fshen massive stars
die, and the monstrous super-massive black holes thattsie atenter of galaxies,
reaching masses of up to 10 billion Suns. The latter type bsemwed as quasars
and active galactic nuclei (AGN). It is by studying theserating black holes that
all of our observational knowledge of black holes has beeainbd.

If this material is organized into a thin accretion disk, whéhe gas can effi-
ciently radiate its released binding energy, then its teécal modelling is straight-
forward. Less well understood are radiatively inefficieatretion flows, in which
the inflowing gas obtains a thick geometry. It is generallglaar how gas mi-
grates from large radii to near the horizon and how, pregjsefalls into the black
hole. We presently have very poor constraints on how magfietds embedded
and created by the accretion flow are structured, and howsthatture affects the
observed properties of astrophysical black holes. Whikelieginning to be possi-
ble to perform computer simulations of the entire accretewjon, we are decades
away from trueab initio calculations, and thus observational input plays a crucial
role in deciding between existing models and motivating iosmas.

More embarrassing is our understanding of black hole jete (mages 7.5).
These extraordinary exhibitions of the power of black hales moving at nearly
the speed of light and involve narrowly collimated outflomsogse base has a size
comparable to the solar system, while their front reachakesacomparable to the
distance between galaxies. Unresolved issues are as Isasica jets are made
of (whether electrons and protons or electrons and postronprimarily electro-
magnetic fields) and how they are accelerated in the firseplBoth of these rest
critically on the role of the black hole spin in the jet-latireg process.

A quasar is a point-like (“quasi-stellar”) bright sourcetla¢ center of a galaxy.
There are many lines of evidence indicating that a quasafveg a supermassive
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Chandra X-Ray|

HST Optical

Figure 7.5 Multi-wavelength images of the highly colliméjet emanating from the super-
massive black hole at the center of the giant elliptical xalsl87. The X-ray
image (top) was obtained with the Chandra X-ray satellite radio image (bot-
tom left) was obtained with the Very Large Array (VLA), ancetbptical image
(bottom right) was obtained with the Hubble Space Teles¢BiST).
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black hole, weighting up to ten billion Suns, which is actrgtgas from the core
of its host galaxy. The supply of large quantities of fresk gaoften triggered
by a merger between two galaxies. The infalling gas heatsupsairals towards
the black hole and dissipates its rotational energy throuigbosity. The gas is
expected to be drifting inwards in an accretion disk whoseirdrain” has the
radius of the ISCO, according to Einstein’s theory of gnavihterior to the ISCO,
the gas plunges into the black hole in such a short time thetstno opportunity
to radiate most of its thermal energy. However, as mentioned.1 the fraction

of the rest mass of the gas which gets radiated away justdautise ISCO is high,
ranging between 5.7% for a non-spinning black hole to 42.8%@afmaximally-

spinning black hole (see Figure 7.3). This “radiative efficy” is far greater than
the mass-energy conversion efficiency provided by nuclesioh in stars, which is
< 0.7%.

Quasar activity is observed in a small fraction of all gadesat any cosmic epoch.
Mammoth black holes weighing more than a billion solar masgere discovered
at redshifts as high as ~ 6.5, less than a billion years after the Big Bant.
massive black holes grow at early cosmic times, should teeinants be around
us today?Indeed, searches for black holes in local galaxies havedithex every
galaxy with a stellar spheroid harbors a supermassive lilatkat its center. This
implies that quasars are rare simply because their acta/giort-lived. Moreover,
there appears to be a tight correlation between the blaak tmalss and the grav-
itational potential-well depth of their host spheroids tdrs (as measured by the
velocity dispersion of these stars). This suggests thabliek holes grow up to
the point where the heat they deposit into their environnoerthe piston effect
from their winds prevent additional gas from feeding themtHar. The situation
is similar to a baby who gets more energetic as he eats moke atinner table,
until his hyper-activity is so intense that he pushes thel f@idthe table and cannot
eat any more. Thiprinciple of self-regulatioexplains why quasars are short lived
and why the final black hole mass is dictated by the depth gbthential in which
the gas feeding it resides. Itis also possible the feedback §tar formation in the
vicinity of the black holes affects or controls their sedigulation. Most black holes
today are dormant or “starved” because the gas around thestmaatly used up
in making the stars, or because their activity heated or @di#haway a long time
ago.

What seeded the formation of supermassive black holes dnilljom years after
the Big BangaVe know how to make a black hole out of a massive star. When the
star ends its life, it stops producing sufficient energy ttdhtself against its own
gravity, and its core collapses to make a black hole. Longteefvidence for black
holes was observed, this process leading to their exist@asainderstood theoret-
ically by Robert Oppenheimer and Hartland Snyder in 1937Avéi@r, growing a
supermassive black hole is more difficult. There is a maxinuminosity at which
the environment of a black hole of ma&&s;; may shine and still accrete gaghis

iWhereas the gravitational force acts mostly on the protttesyadiation force acts primarily on
the electrons. These two species are tied together by algidwdric field, so that the entire “plasma”
(ionized gas) behaves as a single quasi-neutral fluid whickubject to both forces. Under similar
circumstances, electrons are confined to the Sun by aniel@dtential of about a kilo-Volt (corre-



198 CHAPTER 7

Eddington luminosity ¢, was derived in equation (5.27) by balancing the inward
force of gravity on each proton by the outward radiation éomn its companion
electron (which is the momentum flux carried by the radiatiores the scattering
cross-section of the electron) at a distance

e = on 039
wherem,, is the proton mass angr = 0.67 x 10724 cm? is the cross-section
for scattering a photon by an electron. Interestingly, tihgting luminosity is
independent of radius in the Newtonian regime. Since therigdoin luminosity
represents an exact balance between gravity and radiatioed, it actually equals
the luminosity of massive stars which are held at rest aggirwity by radiation
pressure, as described by equation (7.34). This limit ismédly valid in a spherical
geometry, and exceptions to it were conjectured for otheredion geometries over
the years. But, remarkably, observed quasars for whichkiilate masses can be
measured by independent methods appear to respect this [Babstituting all
constants, the Eddington luminosity is given by,

106 M,

Interestingly, the scattering cross section per unit mast/¥ radiation on dust
is larger by two orders of magnitude than/m,. Although dust is destroyed
within ~ 10*GMgg/c* by the strong illumination from an Eddington-limited
quasar, it should survive at larger distances. Hence, ttiatran pressure on dust
would exceed the gravitational force towards the black fzoid drive powerful
outflows. Spectral lines could be even more effective thast @utheir coupling
to radiation. The integral of the absorption cross-sectiba spectral line over

frequency,
2
[owar = s (;ch) , (7.35)

is typically orders of magnitude larger thafrr5; wherewvs; is the transition fre-
quency andfi is the absorption oscillator strength. For example, the &ym
transition of hydrogen, for whiclf;2 = 0.416, provides an average cross-section
which is seven orders of magnitude larger thianwhen averaged over a frequency
band as wide as the resonant frequency itself. Therefores kkould be even more
effective at driving outflows in the outer parts of quasarinments.

As discussed before, the total luminosity from gas acogetinto a black hole,
L, can be written as some radiative efficierdjmes the mass accretion raté,

L =eMc?, (7.36)

M,
Lp=13x10% ( BH ) ergs (7.34)

sponding to a total charge ef 75 Coulombs). The opposite electric forces per unit volumégadn
electrons and ions in the Sun cancel out so that the totaspredorce is exactly balanced by gravity,
as for a neutral fluid. An electric potential of 1-10 kilo-¥klso binds electrons to clusters of galaxies
(where the thermal velocities of these electrord).1c¢, are well in excess of the escape speed from the
gravitational potential). For a general discussion, seebl-é.Phys. RevD37, 3484 (1988).
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with the black hole accreting the non-radiated componkefa; = (1 — €)M. The
equation that governs the growth of the black hole mass s the
Mgu

Mgy = — (7.37)
E
where (after substituting all fundamental constants),
1—¢) L\ "
tp =4 x 107 U= (LY 7.38
B x 10 years( 10% I ( )

We therefore find that as long as fuel is amply supplied, taelbhole mass grows
exponentially in timeMpy o« exp{t/tg}, with ane-folding timetg. Since the
growth time in equation (7.38) is significantly shorter thha~ 10° years corre-
sponding to the age of the Universe at a redshift 6 — where black holes with
a mass~ 10°M,, are found, one might naively conclude that there is plenty of
time to grow the observed black hole masses from small seEdsexample, a
seed black hole from a Population Il starl@f0 A/, can grow in less than a billion
years up to~ 109M, for e ~ 10% andL ~ L. However, the intervention of
various processes makes it unlikely that a stellar masswéke able to accrete
continuously at its Eddington limit with no interruption.

For example, mergers are very common in the early Universengime two
gas-rich galaxies come together, their black holes ardylikcecoalesce. The coa-
lescence is initially triggered by “dynamical friction” dhe surrounding gas and
stars, and is completed — when the binary gets tight — as & fsihe emission
of gravitational radiation. The existence of gravitatibwaves is a generic predic-
tion of Einstein’s theory of gravity. They represent rippla space-time generated
by the motion of the two black holes as they move around thainraon center
of mass in a tight binary. The energy carried by the wavesksrtaaway from
the kinetic energy of the binary, which therefore gets #ghtith time. Computer
simulations reveal that when two black holes with unequasea merge to make
a single black hole, the remnant gets a kick due to the nameisic emission of
gravitational radiation at the final plun§€This kick was calculated recently using
advanced computer codes that solve Einstein’s equatiotaskahat was plagued
for decades with numerical instabilities). The typicalkkielocity is hundreds of
kilometer per second (and up to ten times more for special@péntations), bigger
than the escape speed from the first dwarf galaxies. Thisesghat continuous
accretion was likely punctuated by black hole ejection &sgflorcing the merged
dwarf galaxy to grow a new black hole seed from scrdtch.

If continuous feeding is halted, or if the black hole is temgpidy removed from
the center of its host galaxy, then one is driven to the caigiuthat the black

iThe gravitational waves from black hole mergers at high mifgscould in principle be detected
by a proposed space-based mission called_teer Interferometer Space Anten(ldSA). For more
details, see http://lisa.nasa.gov/, and, for examplethgyi). S. B., & Loeb, AAstrophys. J590, 691
(2003).

i These black hole recoils might have left observable sigeatin the local Universe. For example,
the halo of the Milky Way galaxy may include hundreds of fyeftbating ejected black holes with
compact star clusters around them, representing relickeokarly mergers that assembled the Milky
Way out of its original building blocks of dwarf galaxies (@ary, R. & Loeb, AMon. Not. R. Astron.
Soc.395, 781 (2009)).
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Figure 7.6 Numerical simulation of the collapse of an eavad galaxy with a virial tem-
perature just above the cooling threshold of atomic hydnogied no H. The
image shows a snapshot of the gas density distribution 50myears after
the Big Bang, indicating the formation of two compact objentar the center of
the galaxy with masses @f2 x 10°Mg and3.1 x 10° M, respectively, and
radii < 1 pc. Sub-fragmentation into lower mass clumps is inhibitedduse
hydrogen atoms cannot cool the gas significantly below itg@lrtemperature.
These circumstances lead to the formation of supermastive that inevitably
collapse to make massive seeds of supermassive black Aitlesimulated box
size is 200 pc on a side. Figure credit: Bromm, V. & Loeb A&trophys. J596,
34 (2003).
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hole seeds must have started more massive than0M . More massive seeds
may originate from supermassive stats.it possible to make such stars in early
galaxies? Yes, it is. Numerical simulations indicate that stars weighup to

a million Suns could have formed at the centers of early dwathxies which
were barely able to cool their gas through transitions ofratchydrogen, having
T.ir ~ 10*K and no H molecules. Such systems have a total mass that is several
orders of magnitude higher than the earliest Jeans-magtensations discussed
in §3.2. In both cases, the gas lacks the ability to cool wellWwelg;,, and so it
fragmentsinto one or two major clumps. The simulation shimigure 7.6 results
in clumps of several million solar masses, which inevitadig up as massive black
holes. The existence of such seeds would have given a jumpcthe black hole
growth process.

Supermassive stardefined as hydrostatic configurations with mad$8s103 M,
have not been observed as of yet. Theoretically, they areatag to be supported
almost entirely by radiation pressure and hence their lasitg equals the Edding-
ton limit, L = 1.3 x 10*(M,/10°My) ergss~!. Supermassive stars steadily
contract and convert their gravitational binding energsetiation with a total life-
time < 10° yr before they collapse to a black hole. First we show thatthelope
of such stars must be convective.

The condition for convective instability is that that tharséxhibits a negative
entropy gradient. This follows from the fact that conveetdddies which are hotter
and rarefied relative to their environment tend to rise talsahe star’s surface and
decrease their density adiabatically (at constant enjroppressure equilibrium
with their environment. If the background entropy decreaze the eddies rise,
then they become even more rarefied relative to their enmiet (lower ambient
entropy at the same pressure implies higher ambient dérsity continue to rise
even further, hence leading to an instability. The energpdport by convective
eddies drives the star to a state of marginal stability, igamearly uniform entropy.
Let us first show that in the absence of convection, a supestiveastar will tend to
develop a negative entropy gradient as it radiates awaynéesyg.

The entropy of each electron-protonfluid element in a supssine star is chang-
ing according to the local radiative heat fllixat a rate,

2T, Os
my, Ot
wherep, T, and s are the mass density, temperature and specific entropy of the

element. If the opacity is dominated by Thomson scattethay the local radiative
heat fluxF is related to the radiation pressure gradient by,

= —%v F, (7.39)

— 1
" ~vp,,. (7.40)
ar p

Ignoring gas pressure and rotation, the hydrostatic dayiuln equation is simply,

F =

1
;va =g, (7.41)

where the gravitational fielg obeys Poisson’s equation,
V.-g=—4nGp. (7.42)
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Combining equations (7.40)-(7.42), we find that the rigahth side of equation
(7.39) is constant,

EV.FZM
P oT

Therefore, the gradient of equation (7.39) gives,
QVS _ 27er12, E
ot or Tg2

The radial temperature gradient is negative since heat fbawsf the star, imply-

ing that the star will develop a negative entropy gradiemt laacome convectively

unstable. This result holds also for a rotating star, as Esthe rotation period is
much longer thatiGp)~/2 = 1.1 hr(p/1 g ecm=3)~1/2,
The nearly uniform entropy established by convection makesstructure of

supermassive stars simple (equivalent to a so-callednoplgtwith an index: = 3)

with a unique relation between their central temperafiyrand central density,,

1/3 1/6
Pe M
T.=2x10°K [ ——=— —_— . 7.45

: x (1 g cm3> (106M@) (7.45)

Hence, nuclear reactions are insignificant in metal-paanssivith massed/, >
10° M,. General relativistic corrections make the star unstabtirect collapse to
a black hole as soon as its radius contracts to a value,

1/2
Ry < Reyip = 1.59 x 10° <10¥1\*4@> (Gi\f) : (7.46)

Rotation can stabilize supermassive stars to smaller, radiieven rotating stars
are expected to evetually collapse to a black hole afterdihgdheir angular mo-
mentum through a wind. If the supermassive star is made eépriched gas, then
powerful winds will inevitably be driven at its surface wieg¢he opacity due to lines
from heavy elements far exceeds the Thomson value, makéngrttward radiation
force stronger than gravity.

We note that the infall of a sufficiently dense, opticallyethspherical envelope
of gas cannot be prevented by radiation pressure even ifafliatron production
rate exceeds the Eddington limit near the center. To seglétigs consider a gas
shell falling inwards with a velocity;, (r) at a radius-. If the outward diffusion
time of photons through the gasig ~ 7r/c, exceeds the infall timé;,, ~ r/v;y,
then the radiation will be dragged by the infalling gas irfte black hole. Even
though the radiation is always diffusing outwards in thealaest-frame of the gas,
it actually moves inwards in the black hole frame of refeeentent i > ti,. In
that regime, the radiation will never be able to counteraetdollapse of gas shells
that are farther out. Here ~ (o /my)pr is the shell's optical depth to Thomson
scattering. Expressing the mass accretion rate as,

M = drprivy, (7.47)

= const. (7.43)

<0. (7.44)

we find thattgig > tin if
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where ) is the mass interior to radiusand My = Lg/ec? is the mass accre-
tion rate that produces the Eddington luminosity = (4nGMmyc/or) for a
radiative efficiency. We therefore conclude that as long as the mass infall rate
is sufficiently high, the Eddington limit will not apply bease of photon trapping.
Super-Eddington accretion can therefore grow a seed blatkrapidly, as long

as the blanket of infalling gas advects the radiation inwaasl it accretes onto the
black hole. This “obscured” mode of black hole accretioni@lis hidden from
view for observers) could be particularly important at higlshifts when the gas
density and infall rate onto galaxies obtain their highedtigs.

The nuclear black holes in galaxies are believed to be feld gas in episodic
events of gas accretion triggered by mergers of galaxieg ertergy released by
the accreting gas during these episodes could easily utkéngas reservoir from
the host galaxy and suppress star formation within it. liremlear black holes reg-
ulate their own growth by expelling the gas that feeds thensol doing, they also
shape the stellar content of their host galaxy. This maya®phe observed tight
correlations between the mass of central black holes irepteday galaxies and the
velocity dispersiorv, or luminosity Ly, of their host spheroids of stars (namely,
Mgy « of or Mpn o Lsp). Since the mass of a galaxy at a given redshift scales
with its virial velocity asM o V.2 in equation (3.32), the binding energy of galac-
tic gas is expected to scale asV.? o V> while the momentum required to kick
the gas out of its host would scale a8V, « V;*. Both scalings can be tuned
to explain the observed correlations between black holesezaand the spheroid
velocity dispersion of their host galaxies, shown in Fig@®e Star formation in-
evitably precedes black hole fueling, since the outer mregiothe accretion flows
that feed nuclear black holes is typically unstable to fragtation.

The feedback regulated growth explains why quasars ma shirch brighter
than their host galaxies. A typical star like the Sun emitsimihosity, Lo =
4% 1033 erg s~! which can also be written as a fractien3 x 10~ of its Eddington
luminosity Lz = 1.4 x 1038 erg s—!. Black holes grow up to a fraction 10~3 of
the stellar mass of their spheroid. When they shine closkdiv Eddington limit,
they may therefore outshine their host galaxy by up to a fagte- (1073/3 x
10~5), namelyl-2 orders of magnitude. The factor is smaller during shortstest
episodes which are dominated by massive stars with largaingtbn fractions.

The inflow of cold gas towards galaxy centers during the ghgpitase of their
black holes would naturally be accompanied by a burst of fetanation. The
fraction of gas not consumed by stars or ejected by superdovan winds will
continue to feed the black hole. It is therefore not surpgghat quasar and star-
burst activities co-exist in ultra-luminous galaxies, dnalt all quasars show strong
spectral lines of heavy elements. Similarly to the abovexinaed prescription
for modeling galaxies, it is possible to “dress up” the masgithution of halos in
Figure 3.4 with quasar luminosities (relatedfig, which is a prescribed function
of M based on the observédgy—o, relation) and a duty cycle (related tg or
the dynamical time of the host galactic disk), and find thdwi@n of the quasar
population over redshift. This simple approach can be tunagive good agree-
ment with the data on the quasar luminosity function showhigure 7.1. To get
reasonable agreement with observations, one needs to asBatuasars deposit
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Figure 7.7 Dynamical measurements of the correlation batwsipermassive black hole

mass (Meu) and velocity dispersion of stars in the spheroid of its rgadtxy
(o). The symbol indicates the method of black hole mass measne dy-
namics of starsgentagramp dynamics of gasdfrcles) dynamics of maser
sites @sterisky. Arrows indicate 3 upper limits to black hole mass. The
shade of the error ellipse indicates the Hubble type of th&t lgalaxy: el-
liptical, SO, or spiral. The line is the best fit relation toetffull sample:
Mgn = 1032 Mg (0/200 km s~')*2*, The mass uncertainty for NGC 4258
has been plotted much larger than its actual value so thét gwow on this plot.
Figure credit: K. Gultekin, et alAstrophys. J698 198 (2009).
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~ 5% of their Eddington luminosity in the ISM of their host galaxhe coupling
mechanism is unknown and could be related to either the braglhiation or fast
outflows that are known to be produced by quasars.

The early growth of massive black holes led to the supermaddack holes
observed today. In our own Milky Way galaxy, stars are obséite zoom around
the Galactic center at speeds of up to ten thousand kilomptsrsecond, owing
to the strong gravitational acceleration near the centetkbhole. But closer-in
observations are forthcoming. Existing technology shaadn be able to image
the silhouette of the supermassive black holes in the Millay\&hd M87 galaxies
directly (see Figure 7.4).

7.4 BLACK HOLE BINARIES

Nearly all nearby galactic spheroids are observed to hostckear black hole.
Therefore, the hierarchical buildup of galaxies throughgees must generically
produce black hole binaries. Such binaries tighten thradygtamical friction on
the background gas and stars, and ultimately coalesceghitbe emission of grav-
itational radiation.

In making a tight binary from a merger of separate galaxies,mass ratio of
two black holes cannot be too extreme. A satellite of nfesg in a circular orbit
at the virial radius of a halo of magd,,;, would sink to the center on a dynamical
friction time of ~ 0.1¢ i (Mya10/Msat ), Wheret i is the Hubble time. If the orbit is
eccentric with an angular momentum that is a fracti@f a circular orbit with the
same energy, then the sinking time reduces by a facter gf*. Therefore, mostly
massive satellites with/;,; > 0.1 My, bring their supermassive black holes to
the center of their host halos during the age of the Universe.

As a satellite galaxy sinks, its outer envelope of dark nnaitel stars is stripped
by tidal forces. The stripping is effective down to a radinside of which the
mean mass density of the satellite is comparable to the antnthémsity of the host
galaxy. Eventually, the two black holes are stripped dowith® cores of their
original galaxies and are surrounded by a circumbinary lepeeof stars and gas.
As long as the binary is not too tight, the reservoir of staithin the binary orbit
can absorb the orbital binding energy of the binary and ailtaashrink. However,
when the orbital velocity starts to exceed the local velodispersion of stars, a
star impinging on the binary would typically be expelledrfréhe galactic nucleus
at a high speed. This happens at the so-called the “hardeauings” of the binary,

Qhard ~ 0.1

q (o -2

e R (100 km s*l) Pe (7.49)
at which the binding energy per unit mass of the binary exséea, whereo is the
velocity dispersion of the stars before the binary tighteri¢ere M = (M, + M>),
Mg = (M/10°M), whereM; and M, are the masses of the two black holes,
q = M, /M, is their mass ratio, and = M; M, /(M; + My) is the reduced mass
of the binary.

A hard binary will continue to tighten only by expelling stawhich cross its
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orbit and so unless the lost stars are replenished by new \stdch are scattered
into an orbit that crosses the binary (through dynamicalxation processes in the
surrounding galaxy) the binary would stall. This “final pgegproblem” is circum-
vented if gas streams into the binary from a circumbinark.disideed, the tidal
torques generated during a merger extract angular momefintumany associated
cold gas and concentrate the gas near the center of the mergeant, where its
accretion often results in a bright quasar.

If the two black holes are in a circular orbit of radius< an..q around each
other, their respective distances from the center of mass;ar= (u/M;)a (i =
1,2). We define the parametér= 4./ (M, +M-), which equals unity ifV/; = Ms
and is smaller otherwise. The orbital period is given by

P =2n(GM/a®) /2 = 1.72 x 102 yr a2 M /2, (7.50)
wherea14 = (a/10'* cm). The angular momentum of the binary can be expressed
in terms of the absolute values of the velocities of its memmbe andv, asJ =
Yi=1,2M;v;a; = pva, where the relative orbital speed is

v = + vy = (2ma/P) = 1.15 x 10* km sflMﬁl/Qal_j/2 . (7.51)

In gas-rich mergers, the rate of inspiral slows down as setha gas mass
interior to the binary orbit is smaller thanand the enclosed gas mass is no longer
sufficient for carrying away the entire orbital angular maram of the binary,J.
Subsequently, momentum conservation requires that frashwgjl steadily flow
towards the binary orbit in order for it to shrink. The binaightens by expelling
gas out of a region twice as large as its orbit (similarly tobéetder” opening
a hollow gap) and by torquing the surrounding disk througina$@arms. Fresh
gas re-enters the region of the binary as a result of turbbatensport of angular
momentum in the surrounding disk. Since the expelled gatesa specific angular
momentum of- va, the coalescence time of the binary is inversely propodiitm
the supply rate of fresh gas into the binary region. In a statate, the mass supply
rate of gas that extracts angular momentum from the bireryis proportional to
the accretion rate of the surrounding gas disk. Given thaaetibn of the mass
that enters the central gap accretes onto the BHs and fuasagactivity, it is
appropriate to exprest/ in Eddington units\ = M /Mg, corresponding to the
accretion rate required to power the limiting Eddington inasity with a radiative
efficiency 0f10%, Mg = 0.023M, yr~' M. We then find,

taas = (J/Muva) = p/M = 1.1 x 107 yr (ML (7.52)
For a steady\, the binary spends equal amounts of time perdamtil GWs start
to dominate its loss of angular momentum.

The coalescence timescale due to GW emission is given by,

5  cPat al
taw = — ———-— = 2.53 x 103 14 7.53
W = 956 G M2 Y M3 (7:53)

By settingtaw = tgzas We can solve for the orbital speed, period, and separation at
which GWs take over,
vaw =4.05 x 10% km s~ ¢~V4(MMe)'/® (7.54)

Pow =04 yr (34 M EM—3/8 (7.55)
agw =2.6 x 10~ pe (V2 MY M4, (7.56)



SUPERMASSIVE BLACK HOLES 207

For a binary redshift, the observed period il + 2)Pgw. The orbital speed
at which GWs take over is very weakly dependent on the supgtly of gas,
vaw o M/®. 1t generically corresponds to an orbital separation oford 10?
Schwarzschild radiidG M /c?). The probability of finding binaries deeper in the
GW-dominated regime? « tgw, diminishes rapidly at increasing orbital speeds,
with P = PGW(U/U(;w)_S.

Black hole binaries can be identified visually or spectrpgcally. At large sepa-
rations the cores of the merging galaxies can be easilyiftEhas separate entities.
If both black holes are active simultaneously, then the Ergeparation between
the brightness centroids can in principle be resolved aty-optical, infrared,
or radio wavelengths. The UV illumination by a quasar usuploduces narrow
lines from gas clouds at kpc distances within its host galaxigroad lines from
denser gas clouds at sub-pc distances from it. Thereforexiséence of a binary
can be inferred from various spectroscopic offs¢isbetween two sets of narrow
lines if the galaxies are separated by more than a few kpc atidtave quasar
activity at the same timgji) between the narrow emission lines of the gas and the
absorption lines of the stars due to the tidal interactiomwvben the galaxies at a
multi-kpc separation(iii) between narrow lines and broad lines if the black hole
binary separation is between the kpc and pc scales. Theffast signature can
also be produced by a single quasar which gets kicked oueatehter of its host
galaxy while carrying the broad-line region with it. Suchiekcould be produced
either by the anisotropic emission of gravitational wavesrty the coalescence of
a binary (producing a recoil of up t& 200 km s~ in a merger of non-spinning
black holes, and up te- 4,000 km s~! for special spin orientation), or from triple
black hole systems that form when a third black hole is addeal galaxy center
before the binary there had coalesced. Aside from testimggé relativity in the
strong field limit, fast recoils have an important feedbaff&a in forcing a fresh
start for the growth of black holes in small galaxies at higtighifts. These early
recoils may have also left a fossil signatures in the localehse: for example, the
hierarchical formation of the Milky-Way may have left releal black holes float-
ing in its halo, which are detectable through the compactdtssters that remain
bound to these intermediate-mass black holes following #jection from their
host dwarf galaxies at high redshifts.






Chapter Eight

The Reionization of Cosmic Hydrogen by the First

Galaxies

8.1 IONIZATION SCARS BY THE FIRST STARS

The CMB indicates that hydrogen atoms formed 400 thousaacsyadter the Big
Bang, as soon as the gas cooled below 3,000K as a result obtginal expan-
sion. On the other hand, observations of the CMB as well aseo$pectra of early
galaxies, quasars, and gamma-ray bursts indicate thahless billion years later
the same gas underwent a wrenching transition from atonistbdbeir constituent
protons and electrons in a process knownesnization. More specifically, the
z ~ 6 Lyman- forest shows that the IGM is highly-ionized at this time,ubb
there are possible hints from other methods that some lagg&ral hydrogen re-
gions persist at these early times, which suggests that wenoianeed to go to
much higher redshifts to begin to see the epoch of reiominatMoreover, CMB
polarization studies demand that the universe could nat haly reionized earlier
than an age of 300 million years. Itis intriguing that thesiméd reionization epoch
coincides with the appearance of the first galaxies, whiekitably produced ion-
izing radiation.How was the primordial gas transformed to an ionized statéhley
first galaxies within merely hundreds of million of years?

We begin this chapter by addressing this question usingamls tlescribing the
formation and evolution of galaxies during the cosmic daWne course of reion-
ization can be determined by counting photons from all gakas a function of
time. Both stars and black holes contribute ionizing phetdnut the early Universe
is dominated by small galaxies which, in the local univehnsae disproportionately
small central black holes. In fact, bright quasars are kntonse extremely rare at
z > 6, so we will generally focus on stellar models as a fiduciaécas

Because stellar ionizing photons are only slightly morergeiéc than the 13.6
eV ionization threshold of hydrogen, they are absorbediefitty once they reach
a region with substantial neutral hydrogen. This makes &M during reioniza-
tion a two-phase medium, characterized by highly ionizedesoseparated from
the neutral sea of gas by sharp ionization fronts. While dushift at which reion-
ization ended only constrains the overall cosmic efficieforyproducing ionizing
photons, a detailed picture of these structures in progrésteach us a great deal
about the population of the first galaxies that produceddbésnic phase transition.
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8.2 PROPAGATION OF IONIZATION FRONTS

The simplest reionization problem is to consider how a sipglolated galaxy ion-
izes its surroundings. The formation of H Il regions, or wsd bubbles, around
galaxies is the fundamental process that drives reiomizatilthough in practice
these galaxies are only isolated in the very earliest phafsesonization. Our first
goal is to model this problem of an isolated expanding H lioag

Let us consider, for simplicity, a spherical ionized voluigseparated from the
surrounding neutral gas by a sharp ionization front. In thgemce of recombina-
tions, eachhydrogen atom in the IGM would only have to bezedionce, and the
ionized physical volumé&/, would simply be determined by

agVp = N, (8.1)

whereny is the mean number density of hydrogen aviglis the total number of
ionizing photons produced by the source.

The size of the resulting H Il region depends on the halo whiduces it. Let
us consider a halo of total ma3$ and baryon fractio), /$2,,,. To derive a rough
estimate, we assume that baryons are incorporated in®ttr an efficiencyf,
and that the escape fraction for the resulting ionizingaidn is f.s.. We also let
Nion be the number of ionizing photons per baryon inside starsjsh- 4, 000 for
Population Il stars with a “normal” IMF. We finally introdu@eparametedy, =
4/(4—3Y,) = 1.22, whereY, is the mass fraction of helium, as a correction factor
to convert the number of ionizing photons to the number oiZed hydrogen atoms
(assuming that helium is singly ionized as well). At leasbur simple model, so
far as the IGM is concerned all these parameters are corpliggenerate and
determine the overall ionizing efficiency, which we will tg|

C = AHef*fescNion~ (82)

If we neglect recombinations, then we obtain the maximumaang radius of the
region which the halo of mas§ can ionize,

(3NN (3 ¢ o9 MNP
fmax = <47T n%) N (477 nY Q, mp>
¢ M 1/3
40 108M@> '
Here we have taken Population Il stars with. = 8% andf, = 10% for a fiducial
estimate.

We may make a similar estimate for the size of the H Il regimuad a quasar.
For the typical quasar spectrum, 10* ionizing photons are produced per baryon
incorporated into the black hole, assuming a radiative iefficy of ~ 6%. The
overall efficiency of incorporating baryons into the cehtskack hole is low k&
0.01% in the local Universe), buf.s. is likely to be close to unity for powerful
guasars which ionize their host galaxy. Thus, quasarsajlgibave( ~ 100.

However, the elevated density of the IGM at high redshiftliggpthat recombi-
nations cannot be ignored, so this simplest method must peowad. Just before
World War Il, the Danish astronomer Bengt Stromgren aredythe same problem

=680kpc ( (8.3)
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for hot stars embedded in the interstellar meditfrin the case of a steady ionizing
source (and neglecting the cosmological expansion), hedfdliat a steady-state
volume (now termed a ‘Stromgren Sphere’) would be reactredugh which re-
combinations are balancing ionizations:
dN,
Tl (8.4)
where the recombination rate depends on the square of ttetyland on the re-
combination coefficient; here we use the case-B value ondbenaption that ion-
izing photons resulting from recombinations to the groutadeswould contribute
to the growth of the Stromgren sphere itself (§4€3).
To model the detailed evolution of an expanding H Il regioluding a non-
steady ionizing source, recombinations, and cosmologijansion, we writé
d dN
iy <% — 3HVp) = dt” —ap(n)V,. (8.5)
In this equation, the mean density; « «~3(¢) and the angular brackets denote a
volume average. Note that the recombination rate scaléeas|tiare of the density.
Therefore, if the IGM is not uniform, but contains high-diynslumps separated
by modestly underdense voids, then the recombination tiitiéevshorter. This is
often accounted for by introducing a volume-averaged ciagnfactorC' (which
is, in general, time dependent), defined by

C= <n§{> /A% . (8.6)
Unfortunately as we will see i8.3.1 below, the clumping factor is rather difficult
to estimate robustly.

If the ionized volume is large compared to the typical scélelamping, so that
many clumps are averaged over, then equation (8.5) can bedsby specifying”'.
Switching to the comoving volumE, the resulting equation is

av 1 dN, C _,

— = ——"1—ap—=nyV 8.7

at ~ nY dt  PastH ®.7)
wheren?, is the present number density of hydrogen. The solutioif@) around
a source which turns on at= ¢; is 3°

Y1 dN, gy
— ("0 ¢!
V(t) /t R dt’, (8.8)

O[BT_L%{VP =

where
t C(t//)
_ =0
F(t/,t) = —OéBnH [, a3(t”)
We can simplify this in the high redshift limit(>> 1), where the scale factor varies
asa o t?/3, if we make the additional assumption of a constanirhen, defining
f(t) = a(t)~3/2, we obtain

dt’ . (8.9)

, 2 OZBT_L(I):[ , C ,
Fot) =~ 328 C1f() ~ f0)] = ~026 (15 ) 1)~ £(0] . (810)

iThe recombination rate depends on the number density aff@te; and in using equation (8.6)
we are neglecting the small contribution made by partiatljudly ionized helium.
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Figure 8.1 Evolution of the ionized mass for a stellar iomigsource, scaled to the max-
imum possible Masd/ax = A Vinax = 4TAETE./3 (See eq. 8.3). The
solid and dashed curves assume that the sources begingshinin= 10 and
15, respectively. Within each set, they take= 0, 1, and10, from top to bot-
tom. The source has = 40 and is assumed to fade with time like*-® after a
timet, = 3 x 10° yr, characteristic of the massive star lifetime. Figuredite
Barkana & Loeb 2001, Physics Reports, 349, 125.

One must be careful in applying equation (8.8), becausedheneV is not a
physical-space volume; rather, it is the comoving volurret thiould be filled by
the ionized gas, if held at the mean density. That is, the &iem assumes that the
gas insidéel” is completely ionized — effectively combining recombioat to the
edge of the “ionized volume” — rather than allowing for thes gaside the zone to
recombine uniformly. This simple model is neverthelesguwl§er many purposes,
especially for steady sources where recombinations aaéively unimportant. We
present a more rigorous model for the ionization fronts, padial ionization in-
side, in§8.9.2.

Figure 8.1 shows some examples of the ionized mass for @pkatimodel of an
isolated galaxy; the results are scaled to the maximuméohizass for the galaxy.
The models také = 40, which makes,.x ~ 20ryi,. They also take three possible
clumping factors (from top to bottond; = 0, 1, and 10; se§8.3.1 below) at =
10 and15 (solid and dashed curves, respectively). For this souheejdanization
rate is assumed to be constantfpe= 3 x 10 yr, the characteristic lifetime of the
massive stars that produce ionizing photons, before daglin ¢t —*° as these stars
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die; this is a reasonable approximation to an instantankorst of star formation
with a “normal” IMF.

Without recombinations, the ionization front reaches itximal distance shortly
after this characteristic time and remains there at lateesi; the result here is in-
dependent of redshift. If recombinations are allowed, tmézed mass never quite
reaches its maximal value, with the shortfall increasinthwedshift and clumping
factor. Moreover, once they are included the ionized masislshrapidly once
the source dims, as recombinations destroy the ionized@&sremind the reader
again that this doesot mean that the front separating partially ionized and néutra
gas shrinks; rather, the recombinations extend througtheubnized volume, with
that front staying more or less in place in this simple mgdeeécombinations only
slow down at late times as the effective recombination timeeeds the Hubble
time.

One additional correction is sometimes necessary for equég.5): in the limit
of an extremely bright source, characterized by an arhiyraigh production rate
of ionizing photons, then equation 8.5 would imply that thél iHegion expands
faster than the speed of light. At early times, the ionizafimnt can indeed ex-
pand at nearly the speed of liglat,but only if the H Il region is sufficiently small
that the production rate of ionizing photons by the centmalrse exceeds their
consumption rate within the current volume. It is straightfard to take the light
propagation delay into account. The general equation oréhativistic expansion
of the comovingradiusR = (1 + z)r, of an H Il region in an IGM with neutral
fractionzyy is %%,

dR

. o, -
= =cll+2) N, — apCam (%)~ (1 +2)° (42 R?)

N, + 47 R2 (1 + 2) camn®

, (8.11)

whereN7 is the rate of ionizing photons crossing a shell of the H lioegt radius

R and timet (and so corresponds to the luminosity of the source at a tnbé
past). Indeed, foN7 — oo the propagation speed of the proper radius of the H Il
regionr, = R/(1 + z) approaches the speed of ligdy, /dt) — c.

8.3 GLOBAL IONIZATION HISTORY

The next level of sophistication in understanding reioticrais to compute the
evolution of the average neutral fraction across the ebliveerse. We can obtain a
first estimate for the requirements of reionization by dediag one stellar ionizing
photon for each hydrogen atom in the Universe. Ignoring gusafor the time
being, to zeroth order the accounting is relatively simple= efficiency parameter
¢ is simply the number of ionizing photons produced per banyside galaxies;
thus the neutral fraction (ignoring recombinations) is

Qui = (feol, (8.12)

whereQun denotes thdilling factor of ionized bubbles (i.e., the fraction of the
Universe’s volume inside of H Il regions) and the collapsacfion f..; is the
fraction of matter incorporated in galaxies (typically @asome minimum mass
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threshold determined by cooling and/or feedback). Thiséqn assumes instanta-
neous production of photons, i.e., that the timescale ffdhmation and evolution
of the massive stars in a galaxy is relatively short compé&rdtie Hubble time at
the formation redshift of the galaxy.

A simple estimate of the collapse fraction at high redslsiftie mass fraction
(given by equation (3.39) in the Press-Schechter modellioshabove the cooling
threshold, which gives the minimum mass of halos in which ¢@s cool effi-
ciently. Assuming that only atomic cooling is effective ohgrthe redshift range of
reionization, the minimum mass corresponds roughly to a b&Virial temperature
T.ir = 10* K, which can be converted to a mass using equation (3.33).

The next level of sophistication is to treat each ionizingrse as producing an
isolated bubble and assume that their volumes add to giveothEfilling factor;
although in fact overlap is very important, this is not a bagraximation because
—neglecting internal absorption — any photons that passaindther ionized bubble
propagate to its edge and help to grow it. Starting with eignd8.7), if we assume
a common clumping factar' for all H 1l regions, then we can sum each term of the
equation over all bubbles in a given large volume of the Ursigeand then divide
by this volume. TherV can be replaced by the filling factor and, by the total
number of ionizing photons produced up to some timeer unit volume. The
latter quantity is simply f.on7, which provides the emissivity of ionizing photons.
Under these assumptions we convert equation (8.7), whisbries individual H
Il regions, to an equation which statistically describestilansition from a neutral
Universe to a fully ionized one:

d dfco C _
W _ (dea o) Sy @ 813)
which admits the solution (in analogy with equation 8.8),
Qu u(t / gdf;j“ P gy (8.14)

whereF (¢, t) is determined by equation (8.10).

Although this equation appears simple, even at this levebphistication it hides
a great deal of uncertain parameters. Not only do each oflémeants of¢ have
large uncertainties, but they may also evolve in time; sin| the clumping factor
C depends on the pattern of ionization in the IGM. We next disaach of these
factors in turn.

8.3.1 Recombinations and the Clumping Factor

Before considering, we first discuss some subtleties of the sink term in equa-
tion (8.13). First of all, the recombination coefficient isagrtain by a factor of

a few through both the gas temperature (which depends orequitibrium pro-
cesses during reionization; se& 3.1) and an environmental factor that determines
whether case-A or case-B is more appropriate. On the one, kanmgider the
case in which ionizations (and hence recombinations) esilolited uniformly
throughout the IGM. Then case-B would be appropriate. Onother hand, in
the highly-ionized low-redshift universe, most recomlbioas actually take place
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inside dense, partially neutral LLSs because high-enengygms can penetrate in-
side these high-column density systems. However, theiimmjzhotons produced
after recombinations to the ground state usually lie neatyman-limit (where the
mean free path is small) so they are consumed inside thasysthus, these pho-
tons would not help ionize the IGM, and case-A would be moragriate. Which
of these regimes is more relevant depends on the details af-soale clumping
and radiative transfer.

Even more problematic is the clumping factdfz). It may seem at first that
this volume averaged factor can be computed through nualeaiimulations. But
that requires overcoming several difficult probler{is). tracing the gas distribution
with sufficient precision to resolve density fluctuationstba smallest scale$2)
correctly tracing the topology of ionized and neutral gageduse the average must
be performednly over the ionized gas; an@®) correctly modeling the evolution
of gas clumps during the reionization process itself.

The first problem is obvious: even leaving aside the ISM ohegalaxy (which
is included inf.. in equation 8.2) the Jeans mass in the cold IGM i$0° M.
This allows the formation of a well-defined cosmic web, aslasl“minihalos,”
dense gas clouds that virialize but cannot cool or form starg, as we shall see,
simulations of reionization must span 100 Mpc boxes in order to adequately
sample the large H Il regions, requiring an enormous dynaerige. Thus, even
in simulations, clumping is usually accounted for througdisabgrid” model built
from semi-analytic techniques or bootstrapped from smalfaulations.

The second problem is perhaps more subtle: how do the soanckabsorbers
relate to each other, and how does ionization affect thelssnale clumping? For
example, if low-density gas is ionized firgt, < 1 throughout most of reionization,
because all the dense gas would remain locked up in newgtbktselded systems
(which cannot, by definition, recombine). On the other hamd|arge scales the
ionizing sources actually lie inside overdense regionsdthand filaments), where
the recombination rate is relatively high. The relative ortance of these two
features changes as reionization progresses, which makpkfied prescriptions
particularly difficult to develop.

Finally, as the gas is ionized, the thermal pressure willdase and the clumps
will evaporate and fade into the IGM. Studying this problesquires simulations
of coupled gas dynamics and radiative transfer, which ¢altfn now possible) is
difficult and highly dependent on the particular model obretation. As an addi-
tional difficulty, the pre-reionization gas temperaturamgertain by a factor of 100
or so, making even the initial clumpiness rather uncertaiwell.

Thus, while the introduction of the clumping factor is anesdtal approximation
for many analytic models, its evaluation is rather difficule will describe more
physically motivated approachesg@? below. Nevertheless, a reasonable and con-
crete estimate is often useful. A recent fit from simulatitret ignores the second
and third problems above but does resolve the proper scles i

C(z) = 27.466 exp(—0.1142 + 0.00132822). (8.15)
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8.3.2 The lonizing Efficiency

We now move on to the source term in equation (8.13). Thissmaparts:df.on/dt
and the ionizing efficiency. The collapse fraction for a given cosmology depends
only on My,in, the mass threshold for galaxy formation. The most commaiceh
for M., corresponds to a virial temperatufg, = 10* K, the threshold at which
hydrogen line cooling becomes efficient for primordial gabove this mass, cool-
ing and fragmentation into stars is relatively straightfard. Other choices are,
however, physically plausible in certain regimes. For eglanwe have seen that
Hs cooling could allow Population 1l star formation in much aler halos, while
internal feedback within galaxies (like supernova winds) strongly suppress star
formation in galaxies near the cooling threshold, effedfiraisingM i, .

The factor¢ is even more difficult to pin down. A star formation efficienfy ~
10% is reasonable for the local Universe, but so little gas hdlapsed byz = 6
that this does not directly constrain the high-redshifiueal Appropriate values
for Population 1l stars are even more uncertain. To therebdieat each halo can
form only a single very massive{ 102 M) star that enriches the entire hats (
105Mg), fo ~ (Qm/Q)M,/M;, < 1073, though larger values are permissible,
especially if metal dispersal is inefficient.

The UV escape fraction is small in both nearby galaxies anddfat moderate,
with many upper limitsfesc < 5% and only a few positive detections. Interestingly,
fesc Shows large variance between galaxies; most likely, iogizihotons are only
able to escape along clear channels in the galactic ISM,hwdyipear to be quite
rare in the objects we can study. However, it could be comalulg larger inside
small, high-redshift galaxies, whose interstellar media easily be shredded by
radiation pressure, winds, and supernovae, clearing ayg kescape paths.

Nion depends on the stellar initial mass function and metafli€onvenient ap-
proximations areV;,, ~ 4000 for Z = 0.05Z Population Il stars with a present-
day initial mass function, and/;,, < 10° for very massive Pop Ill stars. Note,
however, that the latter estimate hinges more on the higlsesasf these stars than
on their primordial composition; metal-free stars with amal Salpeter IMF are
only ~ 1.6 times more efficient than their Pop Il counterparts.

Of course, we actually expect all of these factors to evolwveughout reion-
ization due to the feedback processes discussed elsewheus, a robust model
for the filling factorQy 11 requires a sophisticated understanding of galaxy evolu-
tion during the cosmic dawn. This lies well beyond our povwarpresent, but we
can make some progress by generalizing the ionizing effigi¢om be a function
of both time and halo mass,, ( = {(mn,t). The mass dependence is meant
to capture internal feedback mechanisms that affect edetiygan a deterministic
fashion, like the effects of starburst winds. Of coursegmal feedback mecha-
nisms — which depend on the halo’s large-scale environmeatjtire additional
inputs. With this prescription, we must replace the souecmtin equation (8.13)
with an integral over the mass function,

%/dmh%dmh,t)n(mh,t), (8.16)

wheren(my, t) is the halo mass function.
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8.4 THE PHASES OF HYDROGEN REIONIZATION

The process of the reionization of hydrogen involves se\distinct stages® The
initial “pre-overlap” stage consists of individual ionmg sources turning on and
ionizing their surroundings. The first galaxies form in theshmassive halos at
high redshift, which are preferentially located in the leghdensity regions. Thus,
the ionizing photons which escape from the galaxy itselftthen make their way
through the surrounding high-density regions, charanéerby a high recombina-
tion rate. Once they emerge, the ionization fronts propagatre easily through
the low-density voids, leaving behind pockets of neutraghkdensity gas. Dur-
ing this period, the IGM is a two-phase medium charactertngethighly ionized
regions separated from neutral regions by ionization oRurthermore, the ion-
izing intensity is very inhomogeneous even within the iedlizegions.

Because these first sources are highly clustered, this phdge quickly enters
the central, relatively rapid “overlap” phase of reionipatwhen neighboring H
Il regions begin to overlap. Whenever two ionized bubblesjained, each point
inside their common boundary becomes exposed to ionizimgopis from both
sources. Therefore, the ionizing intensity inside H |l e rises rapidly, allowing
those regions to expand into high-density gas which hadiquely recombined
fast enough to remain neutral when the ionizing intensity be@en low. By the end
of this stage, most regions in the IGM are able to “see” maudyidual sources,
making the ionizing intensity both larger and more homogeseas the bubbles
grow than before overlap.

During this central phase, most ionizing photons streamudin the IGM with-
out absorption, because the gas is highly-ionized. Howdévemproto-cosmic web
makes this gas inhomogeneous, and in dense pockets of theth&NMecombi-
nation rate is much larger. These neutral regions — the redihift analogs of
Lyman-limit systems (LLSs; se$1.4.2) — absorb any ionizing photons that strike
them, preventing the H Il regions from continuing to groweBtually, the ionized
bubbles become so large that most photons strike one of thetebefore reach-
ing the edge of a bubble. This final “post-overlap” phase tmasslower evolution
in the ionizing background, modulated by the evaporatiothete LLSs, and it
becomes increasingly more uniform.

Of course, this reionization process develops at differaess in different regions
of the Universe; naturally, areas with an abundance of smuoadergo more rapid
reionization, while those with relatively few sources rgqunput of ionizing pho-
tons from external sources. Because the galaxy populataes the underlying
density field, these correspond to overdense and underdegisas, respectively.
But because the galaxies are highly biased relative to tHerdatter, even a mod-
estly overdense region can undergo reionization muchegaflin fact, if galaxies
were unbiased, reionization would not occur any faster inséeregions because
the increased galaxy counts would be exactly cancelled dynitreased gas den-
sity!) This general march of reionization from high to lowrsty is referred to as
“inside-out” reionization (although of course, on suffitily small scales the pro-
cess is better thought of as “outside-in,” since dense bietmsin partially neutral
for long periods).
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Figure ?? illustrates this patchiness (or “Swiss cheese topologyit &s often
termed). The four panels from top left, top center, top rigimd bottom left show
the density of ionized hydrogen (in units of the mean) whea- 25%, 50%, 75%,
and~ 100%. The bottom right panel shows the redshift;,,,, at which each cell in
the simulation was ionized. Note the wide distribution afiied bubble sizes, with
the largest bubbles centered around the largest clustgedafies in the simulation,
and the tight correlation with, oy, -

8.5 THE MORPHOLOGY OF REIONIZATION

Clearly, the patchiness of the ionization field — omitsrphology — is tightly related
to where galaxies had formed at high redshifts. This momdwis therefore of
much interest from both theoretical and observationalgemtves, and we next
describe its theoretical modeling.

Given the complex physics of the sources and sinks of iogiphotons and
their interaction in the IGM, it may seem that the problem trhes tackled with
detailed numerical simulations, and indeed much of theyeastk, beyond the pre-
overlap stage, followed that approach. However, at itsthre@mization is actually
surprisingly straightforward: until the post-overlapga it simply requires us to
count photons. Thus a great deal of progress can be made iwigilesanalytic
models.

Let us consider the simplest possible exercise: we counmdhaber of ionizing
photons produced by galaxies inside some specified volumaglafsR and density
dr and compare it to the number of hydrogen atoms. The regionilgrbe ionized
if the former exceeds the latter, or

Cfeonl(2,0r, R) > 1. (8.17)
Here f.on(z, dr, R) is the collapse fraction within this region,

5crit (Z) - 5R/D(Z)
2[c2. — 02(R)]

min

feonn(z,0R, R) = erfc [ , (8.18)

whered.,; is the threshold for halo collapse (typically using the Bs8shechter
criterion), the factorD(z) linearly extrapolates the real densify to the present
day for comparison to the collapse threshold, afig, is the variance of the den-
sity field on the scale corresponding to the minimum mass &exy formation,
Mmin- The proportionality constartis the ionizing efficiency per baryon in stars
(equation 8.2); here we have assumed that it is identicavémyegalaxy, though
that is straightforward to modify as in equation (8.16).

There are two flaws to this approach. The first is that somdifraof the gas
may recombine before the region is completely ionized, soentttan one photon
per atom is required. If such recombinations were uniforra,omuld account for
them simply by replacing — ¢/(1 + Nyec), Where N, is the mean number of
recombinations per baryon. In practice this is not a verydgapproximation, so
we describe the effects of inhomogeneous recombinatidveis la
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Figure 8.2 Snapshots from a numerical simulation illugtgathe spatial structure of cosmic

reionization in a slice of 140 comoving Mpc on a side. The $ation describes
the dynamics of the dark matter and gas as well as the ragliméimsfer of ioniz-
ing radiation from galaxies. The first four panels (readingpas from top left to
bottom left) show the evolution of the ionized hydrogen dignsi11 normalized
by the mean proton density in the IGku) = 0.76, p when the simulation
volume is 25%, 50%, 75%, and 100% ionized, respectivelygéacale over-
dense regions form large concentrations of galaxies whwseing photons pro-
duce joint ionized bubbles. Atthe same time, galaxies aeewithin large-scale
voids in which the IGM is mostly neutral at early times. Theatbm middle
panel shows the temperature at the end of reionization whéebottom right
panel shows the redshift at which different gas elementseiomized. Higher-
density regions tracing the large-scale structure arergépeeionized earlier
than lower density regions far from sources. At the end afmiziation, regions
that were last to get ionized and heated are still typicadiyedr because they have
not yet had time to cool through the cosmic expansion. Figtedit: Trac, H.,
Cen, R., & Loeb, AAstrophys. J689 L81 (2009).
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The second problem is the propagation of photons over lacgkes. Equa-
tion (8.17) islocal, in that it only compares atoms in a region to photons geadrat
in the same regionin fact, a particular patch of space may be entirely ioniagd
sources from outside the patch: in the extreme examplejdemns spherical shell
in the IGM that surrounds a galaxy. The galaxy sits insidestied|, but if the shell
is sufficiently close to the galaxy it will nevertheless briied.

Thus, to apply equation (8.17), we require some way to adhesscaleR as
needed to account for nearby sources. Fortunately, we Heseds studied just
such a technique: the excursion set model for dark mattershadlves this very
problem. In that case, the problem was that a small-scalsitydtuctuation might
lie inside a larger-scale feature that itself may have pskal to form a halo; in
our case a small region might lie inside a larger ionized teiblm both cases the
solution is to compare the threshold (for spherical cokapsionization) orall
scales, working from large to small so as to include neighlaatomatically, by
phrasing it as a diffusion problem.

We therefore consider here the trajectoryafas we move from large to small
scales. We compare this smoothed density to the criterieguration (8.17), which
can be rewritten as

O0r > 0p(M, 2) = derit — \/iK(C)[Ufmn — (M, z)]l/z, (8.19)
where K (¢) = erf *(1 — ¢~') anderf(z) = 1 — erfc(z). The barrier in equa-
tion (8.19) is well approximated by a linear function ef, 65 ~ B(M) =
By + B1o?(M), where By and B; are fitting constants. Conveniently, for this
linear approximation there is an analytic solution to thiudion problem, which
we can transform into the mass function of ionized bubbles

dny |2 p |dlno | By B2(M)

dM N 7w M?|dln M| o(M) o { 202(M)}
This function (dn,/dM)dM provides the comoving number density of ionized
bubbles with IGM mass in the range betwednand M + dM .

The solid curves in Figure 8.3 show the resulting size distions for a range of
z,; atz = 15; the ordinate is the fraction of the ionized volume filled lubbles of
a given size. The most important result of these models tshilables grow large
during the middle stages of reionization, with characterisizesR. ~ 1, 4, 10,
and30 comoving Mpc wherz; = 0.2, 0.4, 0.6, and0.8. Comparing this to equa-
tion (8.3), it is clear that by the midpoint of reionizatiortygical ionized bubble
already contains thousands of sources — overlap is indeteehesly important in
determining the morphology of ionized bubbles

A second important point is the very different shape of theses functions
compared to the halo mass function, which increases toveamass. The barrier
of equation (8.19) increases relatively rapidly toward Bndd, choking off the
formation of small bubbles. This imprints a characteristize R, on the ionized
bubbles. To understand this size, note tRatis the scale at which a “typical”
density fluctuation is able to ionize itself, without the inipf external sources;
mathematically, it is where(R.) ~ B. In the large bubble limitB ~ By), our
original ionization criterion becomes

¢ feonl(8 = By, 0% =0) = 1. (8.21)

(8.20)
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Figure 8.3 H Il region size distributions at= 15 in the analytic model of equation (8.20).

The solid and dashed curves assupme m, andm;’®, respectively. From left
to right within each set, we take; = 0.05, 0.2, 0.4, 0.6, and0.8. Recombina-
tions are assumed to be uniform throughout the IGM.

Expanding equation (8.18) to linear order, this can be ®mitt
;-1
D(Z)beff ’
whereb.g is the average galaxy bias. Intuitively, a more biased gatepulation
provides a larger “boost” to the underlying dark matter fliattons, allowing larger
regions to ionize themselves. The dashed curves in Fig@r#l@strate this effect:
they show the bubble size distributiondfoc m>/®, wherem,, is the halo mass.
This emphasizes the massive, more biased galaxies andrease@.s. Thus, by
measuring the H Il region sizes, one can constrain the gadaltiving reionization.

Several properties of equation (8.20) deserve emphasist, it a givenz;,
dny/dM depends only weakly on redshift. This is because the shafiga®, R)
evolves only slowly with redshift; quantitatively?(z)b.g is roughly constant for
high-redshift galaxies, assuming thiat,;,, is determined by a virial temperature
threshold. Second, the width af(m) is ultimately determined by the shape of the
underlying matter power spectrum, which steepens towagetaadii with a shape
that is only weakly dependent on astrophysical uncertsnti

Thus, at least in this simple model, the bubble sizes depssehéally on only
two parameters: the overall filling fraction of the ionizeaby) 11, and the average

o(R.) =~ By ~ (8.22)
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bias of the ionizing sources,s. Varying the overall efficiency of reionization (and
hence its timing) has only a small effect on the morphologyeddnization. This
robustness makes the morphology an extremely useful toohderstanding the
reionization process.

Finally, the similarity to the Press-Schechter halo masstion also means that
most of the machinery used for halo mass functions, clusgedtc. can be carried
over to describe these ionized bubbles. For example, tladibias of H Il re-
gions, defined so that(m|d) = ny(m) [1 + burr(m) ] in a large region of mean
overdensitys, is'

(m)/o®(m) —1/By
D(z) '

Note that in this model each bubble must correspond to a megith above av-

erage density (although it can of course contain smalleetdghse voids). This

is obvious from equation (8.17): once the averggs (d = 0) = 1/¢, the entire

Universe must already be ionized.

However, the biasy; can become negative for sufficiently small bubbles. Phys-
ically, this occurs because overdense regions are fartbegan the reionization
process, so most small bubbles have already merged witérlardf regions. Dur-
ing the late stages of reionization, only the deepest vaisain galaxies isolated
enough to create small bubbles. Nevertheless, the averagefionized gas,

dnb

by = QHH/dm -
m

is quite large throughout the early stages of reionizatidtaining values- 3—10.

As another example, each bubble must have its density eqjttz¢ barrier value
at the appropriate mass (or volume). One can then generasityl¢rajectories
with the initial conditions fixed at these values and appé/ubkual spherical (or el-
lipsoidal) collapse criterion to generate the halo masstions within each bubble;
thus one can predict the galaxy populations that ionize eegion of space. We
explore this possibility farther i§10.6.1.

Finally, we end this section by noting that tbbserveddistribution of bubble
sizes differs from this “intrinsic” one. The theoreticakttibution is evaluated at
a single instant in cosmic time; however, real observatabeerve different times
because of the finite speed of light. This “light-cone effétiposes amaximum
observable bubble size at the end of reionization, whictbeagstimated via similar
arguments to those we have used here. Let us take the slgjhijyler case of
including only those photons generated within a given negibcomoving radius
R. Then the ionization state of that region depends only orctilapse fraction
inside it. Again, reionization should be completed whers txceeds a certain
critical value, corresponding to a threshold number ofzorg photons emitted per

bair(m) = 1+ B (8.23)

V(m)bHH (m) (8.24)

iThere is one subtlety in this calculation compared to thealbalo bias. With the linear barrier
fit to equation (8.19), the fractional bubble overdensitg baermB; o2 /By, whereo? is the mass
variance on the large scale on which the bias estimate is .nmtde term does not scale with the dark
matter density and so it spoils a linear bias estimate. Ratgly, it is large only ifaf2 is large (i.e., on
small scales) or very close to the end of reionization, wBer>> By.
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baryon. There is an offsét between the redshift at which a region of mean over-
densityér achieves this critical collapsed fraction, and the redshift which the
Universe achieves the same collapsed fraction on average.

This offset may be computed by expanding the expressionhiercollapsed
fraction f.., assuming small deviations (an excellent approximationtherarge
scales and early times relevant here), giving

0z or U%\
= —1—/1— 2

T Romin
where again the minimum galaxy mass\is,;,,, respectively. Obviously the offset
in the ionization redshift of a region depends on its lineagredensitysr. Note
also that equation (8.25) is independent of the criticalealf the collapsed fraction
required for reionization: the only redshift dependenceid/,,;,, and is rather
mild. Therefore, as with the bubble size distribution, thieization redshift relative
to its average value is nearly independent oftthreng of reionization.

Because the density distribution narrows/asncreases, the typical deviation
0z decreases wittR. On the other hand, the light-crossing tirmereaseswith
R. Thus there is a critical size above which photons from thedge of a bubble
reach the observer only after the near edge of the bubble dws folly ionized.
This then determines the maximuobservablesize. With the presently favored
cosmological parameters, this yields10 comoving Mpc, nearly independent of
the time at which redshift occurred.

8.6 RECOMBINATIONS INSIDE IONIZED REGIONS

Incorporating inhomogeneous recombinations into the esten set model for ion-
ized bubbles is relatively straightforward. Each H Il rag@bviously contains den-
sity fluctuations. Because the recombination rate incsehise (1 + d,1)%, where
&1 is the fully nonlinear fractional overdensity, dense climgll remain neutral —
and optically thick — longer than voids will.

We begin with the simple ansatz that there exists a thresthehdityd; below
which gas is ionized and above which it is neutrahny ionizing photons striking
these dense blobs will be lost to recombinations in the aégtas and hence are
useless for increasing the filling factor of the ionized bekb In other words, for
an H Il region to continue growing, the average separatiothe$e dense blobs
must exceed the radius of the bubble. Given a model for themelaveraged
IGM density distribution,Py (d,1), we can estimaté; by requiring the mean free
path between such regions to equal the bubble radius. glgssithreshold must
increase as the bubbles grow — so that denser and denserigrizésl.

However, ionizing more deeply into the dense gas will alswease the recom-

il Of course, this cannot be exactly true, because galaxiesnaibedded in dense filaments, so ion-
izing photons do not immediately reach the voids. This machgllicitly assumes that these “local”
recombinations are incorporated into the escape fragtign
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bination rate per proton, which is
&
Avee = a(T)e (1 + 6) / A6 Py (0u) (14 601)? (8.26)
-1

=a(T)n.C(6, Ry),
whereC(d, R) is thelocal clumping factor within a bubble of radiug,.” The

bubble can only grow if ionizing photons are produced mopédig than recombi-
nations consume them, or in other words if

CW > a(T)n. C(6, R), (8.27)
The crucial point is thaf’ depends on both the mean density of the bubble (recall
that bubbles correspond to large-scale overdensitiesparits size (through;).
Thus, as expected fro§8.3.1, inhomogeneous reionization affects the clumping
factor. Moreover, the complete model is therefore bothitiasout” on large scales
and “outside-in” on small scales. Recombinations becoroeasingly important
as bubbles grow; eventually they balance ionizations aadtibble growth satu-
rates in true cosmological Stromgren spheres.

Equation (8.27), which places a constraint on the instauas emissivity of
ionizing photons, complements our original ionization dition, equation (8.17),
which requires that theumulativenumber of ionizing photons exceeds the total
number of hydrogen atoms. In reality both conditions mudtuiféled, but in prac-
tice one of the two generally dominates. This is essenti@lyause recombinations
take over only whem; approaches the characteristic density of virialized disjec
or in other words when LLSs dominate the mean free path, dwitotver-redshift
Universe.

As a consequence, it is possible to combine the two condiiiothe excursion
set formalism and compute the “bubble” sizes including rebimations. However,
this approach requires one conceptual shift: rather thaattual size of discrete H
Il regions, the radiug2 now corresponds to the mean free path of ionizing photons.
When recombinations are unimportant, this equals the dizeotated bubbles.
But once the bubbles “saturate” as Stromgren sphereshibeigng H 1l regions
can touch — it is only that their ionizing photons will not udince each other.
This is, in actuality, the same configuration that is presemie post-reionization
Universe, where ionizing photons are limited by LLSs. Thedelaherefore de-
scribes how the “bubble-dominated” topology charactierist reionization transi-
tions smoothly into the “web-dominated” topology of the poesionization Lyman-

« forest, albeit in an inhomogeneous manner across the Wsaver

The key input parameter is obviousBi, (d,1), which parameterizes the IGM
clumpiness (see alg@.6). In detail, the nonlinear evolution requires cosmaiah
simulations that include coupled dark matter dynamicsgdyaamics, and radiative
transfer (to account for the effects of photoheating be&mr@ during reionization).
This difficult problem has not yet been solved in detail, amdgproximate models

VIn detail, we actually require the density distributidly as a function of large-scale overdensity.
Fortunately, in practice most large ionized bubbles (whesembinations are relevant) are very close
to the mean density.
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are generally used. These typically either take the pastization limit (where
the gas is smoothed on the Jeans scale corresponding to ertgarg of~ 10* K)
or appeal to a simple model for structures present befoomization (such as mini-
halos).

In practice, including recombinations in this manner hags®y gimple effect: it
imposes anaximum sizéo the “ionized regions” that corresponds to the mean free
path of an ionizing photon through the inhomogeneous IGMgmithe local ioniz-
ing background. Bubbles substantially smaller than thigtlare almost unaffected
by the LLSs, because so few of their ionizing photons stiilant.

This picture has importantimplications for our understagaf the end of reion-
ization. Consider, for example, the evolution of the meagcix intensity of the
radiation background] = e)\/(4n), wheree is the emissivity and\ is the mean
free path (see equation 4.40). If we ignored neutral gadéie ionized bubbles,
the mean free path would simply equal the size of the locakehbubbble Ry,
which of course reaches infinity at the end of reionization.

Now consider how the radiation background grows at a a fixéat jjothe IGM,
including inhomogeneous recombinations. When the poiittiized, J increases
rapidly. As the sources inside the bubble ionize their sumdings — gradually
adding more sources within the visible “horizon” providegithe bubble edge —
J increases slowly, in proportion t&. Occasionally, however, the sources will
ionize a thin wall separating a neighboring H Il region. A¢gle points, many more
sources suddenly become visible ah¢along with the local bubble size) increase
by a large factor instantaneously. The solid curves in @4 illustrate this series
of discontinuous jumps in the ionizing background at a feffedent points in the
IGM.

However, this series of discontinuous jumps cannot costindefinitely: even-
tually, the bubble grows large enough that most ionizingtphs intercept dense
LLSs rather than reaching the bubble’s edge. From that ptiietionizing back-
ground is regulated by the abundance of these systems th#methe global ionized
fraction: in effect, the point has reached the “post-oygrktage even if some of
the IGM (at large distances from our point) remains neutiralFigure 8.4, this is
illustrated by the range of redshifts (or bubble filling fait) for which the random
trajectories reachys.

8.6.1 The Mean Free Path at High Redshifts

Obviously, the mean free path of ionizing photons will playextremely important
role in regulating the end of reionization. Can we place amystraints on it?

This is a difficult proposition at best. Extrapolating ohsgions at: < 6 (equa-
tion 4.47) imply that\ ~ 7 (1) proper Mpc at ~ 6 (10); simple theoretical models
predict values in this range as well. However, as the Une&zbecomes denser and
as the ionizing background declines, the densities reqtirbost an optically thick
system approach the mean cosmic density. It is thereforatradt clear that such
an extrapolation is justified.

For example, equation (4.46) tells us the density of an LL&iims of the ion-
izing background. We can make a simple estimate of this lrackgl for a stellar
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Figure 8.4 Bubble histories for several randomly generatagctories. The vertical axis
shows the bubble radius surrounding a fixed IGM point as atfomof the filling
factor of bubbles and; here we arbitrarily fix( so that reionization completes
atz = 6. The solid lines include the effect of inhomogeneous redoattons,
while the dashed ones ignore them. These only matter whebutbisles grow
larger than the mean free path of ionizing photons (neartideoéreionization),
so these are only distinguishable wh@n> 0.9. The dotted and dot-dashed lines
show the average bubble siz& andALLs, respectively, in this model.
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population in the context of our simple reionization modehfi the proper emis-
sivity (in erg cm 3 s71),

- <hVH1/)b dfcoll, (8.28)
m, dt
and the mean free pathgives,
ACHI 14 A dfcon .
I~ ~ 2. 1 —_ —_— . 2
€ T 5% 10 Mpe ¢ i S (8.29)

In equation (4.46), these fiducial values imply that wkth~ 1 proper Mpc at

z ~ 10, 0ys ~ 1. Thus, the LLSs would be gas very near the mean density
— presumably with much different physical properties tHa@ dense LLSs in the
moderate-redshift Universe. In fact, more detailed modedd attempt to self-
consistently match mean free paths of this order with IGMcpes find that ab-
sorbers must lie inside weakly overdense regions.

A second concern is that the ionizing background — and hdmeéotation of
LLSs — will fluctuate across the Universe, even discountimgdontrast between
predominantly ionized and neutral regions. Within bublslesller than this mean
free path" < R because the volume available for ionizing sources scalé®’as
while the flux from each scales & Thus the wide variation in bubble sizes shown
in Figure 8.3 will translate into an equally wide variatiorii, although as we have
argued above the increased number of LLSs in small bubblésatisubstantially
affect the morphology of reionization. Moreover, even withized bubble§' has
substantial (and systematic) fluctuations as they expawndadw-density regions
devoid of sources — although of course such regions also fleswer dense blobs
capable of becoming LLSs. In practice, once the ionizingkgemunds fall low
enough to be near the cosmic mean, Ehituctuations are more important and the
optically thick systems cluster near the edges of ionizdibles wherd" is small.

A final concern is in the uncertain amount of small-scalecttme in the high-
redshift IGM, which depends sensitively on the Jeans masisi®fyas and hence
the IGM temperature evolution. If, for example, the IGM id aignificantly heated
before it is ionized, the gas will be much clumpier than in guest-reionization
Universe, which would render extrapolation from obsewasiuseless. We discuss
these issues further §8.10 below.

8.6.2 Maintaining Reionization

A related question (and one that existing observations @mginbto answer) is
whether known ionizing sources can keep the IGM ionized atfficgently high
level. On a global scale, this requires balancing the redoation rate per unit
volume with the emissivity (by number) of ionizing photons,

a(T)Cizr = fion. (8.30)

Unfortunately, this equation has all of the ambiguities @edalready emphasized.
The choice of recombination coefficient, case-A or casesBot clear and depends
on the nature of the absorbers as well as the underlying gagetature (this in-
troduces factor of two uncertainties). Moreover, the dffecclumping factorC'
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depends on the degree to which dense regions are ionized anchewhat degen-
erate with the number of ionizing photons they consume; taitig will actually
depend on the emissivity;,,, in order to maintain net ionization equilibrium. An
additional difficulty is the implicit assumption that ioimg photons are absorbed
instantaneously (or equivalently that the time before gitgan is much smaller
than both the Hubble time and the characteristic sourceugwaltimescale).

Nevertheless, this equation provides a simple qualitafivde to gauge whether
a source population may be able to maintain the observeddtan rate in the Uni-
verse. The canonical relation for the comoving star fororatiensity in galaxies
is,

3 7

However, converting the critical rate of ionizing photoroguction to a star for-
mation rate introduces a new set of uncertainties. One aatiat difficulty is the
escape fractiorf.s., which is uncertain to at least an order of magnitude. Others
are the initial mass function (IMF) of stars, because ondy ittiost massive stars
produce ionizing photons, and the metallicity, which idlimoes a factor of about
four uncertainty in the ionizing efficiency per unit starriwation rate; the relation
here assumes a Salpeter IMF and solar metallicity, both aftwdire likely conser-
vative and smverestimatéhe required,.. Thus, without additional observational
constraints on the source populations, equation (8.34jges only a rough guide.

In order to ionize most of the IGM in the first place, the cuntivipopulation of
stars needs to produce at least one ionizing photon per ggdratom in the Uni-
verse. Under the same assumptions about the IMF and miyadlcused above,
this condition implies a minimum comoving density of staftereionization,

ps ~ 1.6 x 10%f22 Mo Mpce™3. (8.32)

Note that this constraint does not involve the clumpiness$ofa since both the
number of sources and atoms scale the same way with volume.

1 3
pa ~ 0.003f2) (9) ( a Z) M yr~! Mpc3. (8.31)

8.7 SIMULATIONS OF REIONIZATION

So far we have discussed simplified analytic models of thenieation process.
Such models ignore a large number of physical effects, dofy(1) the complex-
ities of radiative transfer, such as shadowing of radialipra dense absorber; (2)
the detailed geometry of the “cosmic web” and source digtidin, which is poorly
approximated by spherical averaging; (3) the (possibles@nce of high-energy
photons that can propagate some distance through neusiald)ahe feedback of
photoionization and photoheating on the sources of re@ita and on the IGM,;
and (5) the nature and clustering of the dense absorbesshitiefore necessary to
develop more sophisticated numerical approaches to mitan.

8.7.1 Radiative Transfer Simulations

One option is a full cosmological simulation that attemputsriclude all of the
relevant physics, including gravitational dynamics, lgaimamics, and radiative
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transfer. This approach is crucial for understanding mainghe above issues —
particularly those involving feedback of reionizatioreifson the gas distribution.
However, it imposes daunting requirements on the simuiatidlost importantly,

we have seen that the relevant scales during reionizatisityegaach tens of Mpc,

so simulating a characteristic volume requires boxes that s 100 Mpc. On the
other hand, the source halos (even discounting moleculdmolggn cooling) have
masses\/ ~ 10® M. Spanning both these scales — with even a single particle per
galaxy — requires a dynamic range of 10° (in mass), which is very difficult to
achieve at present.

As a result, simulations with hydrodynamics — the most diffiof these three
physics components to resolve over large dynamic rangegieatyy focus on de-
tails of reionization that appear on small physical scalash as feedback on small
IGM clumps and the escape of ionizing photons from the loggirenment of their
sources. These sorts of simulations have shown that idmizatound galaxies is
often highly anisotropic, due to the dense filaments alonighvbalaxies sit, that
photoheating feedback will efficiently destroy the smallgsvitationally bound
clumps of baryons (ominihalog, and that this same feedback will moderate the
clumping factor throughout the IGM. They cannot, howevesaibe global quan-
tities like the average evolution of the ionized fractiomadiation background sim-
ply because the simulated volumes are too small to include than one growing
ionized bubble.

On the other hand, pure gravitational simulations of thisaiyic range are rel-
atively straightforward, and radiative transfer optindZer reionization by stellar
sources (in which simply following the fate of mono-energ&inizing photons is
not a bad approximation) is relatively simple. Thus, mostkto date has focused
on dark matter simulations that assume a simple relatiomdsat the baryons and
dark matter and apply radiative transfer to the resultimybafield. These simula-
tions very effectively address the the detailed geomethefsources and cosmic
web and can at least approximately address the complexitieadiative trans-
fer and the propagation of high-energy photons, but theywatdetermine how
reionization feedback affects the sources or the IGM (sihese are, by definition,
hydrodynamic effects).

A variety of radiative transfer algorithms appear in ther#tture, and fortunately
they seem to converge reasonably well in most circumstaridesgeneral problem
is very difficult, as computing the specific intensity(¢, x, n, v) requires solving
a seven-dimensional problem: timgpositionx, frequencyv, and direction of
propagationn. Furthermore, simulations can contain hundreds of thodsar
sources, even excluding the diffuse light generated by I@8bmbinations. Thus
the complete problem is prohibitively expensive, and apipnate schemes are nec-
essary.

To simulate adequately the fact that each of the many souhaesgnates its sur-
roundings ovedr steradians requires a large number of rays. Codes typitzily
one of three approaches: (1) a Monte Carlo algorithm, in tvhitarge number of
photon packets are cast from the sources; (2) adaptiveaaity, in which a small
number of rays are initially cast from each source, spawngw ones as necessary
to maintain the desired resolution, or (3) a field-based @i, in which photon
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propagation is abstracted into a continuous field. The firstriaightforward but
faces the most serious convergence challenges. The seaastcclearly reflects
the physics of the problem but is the most challenging tesdilyi Field-based ap-
proaches are the fastest but can suffer from unusual agifdren detailed radiative
transfer effects (such as shadowing) become important.

A second question is how much to specialize the code to thecpkar problem
of reionization. For example, the algorithm can either &itty incorporate multi-
frequency sources or focus only on counting ionizing phetdrhe latter is clearly
significantly faster, but the former allows for non-steléaurces and is necessary
to trace photo-heating accurately. Similarly, in many @siwysical contexts (in-
cluding LLSs) the ionizing photons emitted during reconations are important
sources, but during reionization such photons are typicdsorbed again almost
immediately and so get neglected.

Still, even with this sophisticated machinery numericalgiations are ultimately
limited by the same uncertainties that plague analytic risod@mely, the physics
inside high-redshift galaxies is so poorly determined that the et®dre descrip-
tive but not predictive, in the sense that they can accwyrgtedict the statistical
properties of reionization given a source model but canmnffirst principles
generate a source model. The most sophisticated modelyuske a star for-
mation prescription calibrated to reproduce some subsebsérvable properties
at lower redshifts. This often begins witiK&nnicutt-Schmidt layerescription for
star formationp, o« pg/tayn p‘:’,/ % constructed to reproduce observations in
which the surface density of the star formation rate scaléstive gas surface den-
sity in a similar fashionYspr o< Eé;;, over a wide range of scales in the local
Universe (although recently it has become apparent thairthyortionality is with
the molecular gas surface density, which participatesanfstmation, rather than
the total). This may be supplemented with a model for a npliise interstellar
medium, feedback within the galaxy (which may drive windwithe surround-
ing gas), or any other physics component. A variety of sudibi@dions exist for
lower-redshift simulations, but they have not been testédiigher redshifts.

A second problem is that these simulations cannot accynagetoduce the prop-
erties of photons sinks such as IGM clumping and LLSs, bexthey depend on
the hydrodynamics in and around galaxies as well as feedfsaok photoion-
ization. The most sophisticated models prescribe IGM clmgngrom higher-
resolution simulations (together with some assumptiormitithe distribution of
ionized and neutral gas and the relevant level of Jeans $nmgdtand/or prescribe
the distribution of LLSs based on a semi-analytic model.

The most important question is how these numerical appemcbmpare to the
analytic models described earlier. Given all the compiegjtthe answer — that
the analytic models fare extremely well — may be a surprisest\inportantly, the
simulations show large ionized structures, with sizes camaiple to those predicted,
throughout most of reionization. They confirm that the filifactor of the ionized
bubbles,Qui, is by far the most important factor in determining the mariolgy
and that the redshift is mostly unimportant. They also shuat the clustering of
the ionizing sources is the second most important factorthatdinhomogeneous
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recombinations have relatively little effect on the bubgitees until a threshold H
Il region size is reached.

8.7.2 Semi-Numeric Simulations

The general agreement between these disparate approashiaspired a set of hy-
brid “semi-numerical” algorithms that allow a compromistween the simplicity
of the analytic models and the power of a specific realizabibreionization. All
of these approaches follow the same general procedure:

o First, generate the initial conditions for a cosmologidaiidation box (usu-
ally > 100 Mpc).

e Second, linearly evolve the density field to the desiredh#dsOptionally,
low-order nonlinear corrections can be applied, such azZ#ieovich ap-
proximation.

e Third, identify the source (or dark matter halo) distrilautti This is typically
done by applying the excursion set approach to the specifisityefield of
the simulation in one of two ways. One option is to use lardis emd com-
pute the expected halo abundance in each one using theiaredgtirsion
set model. This is useful for particularly large volumes { Gpc) and/or
quick and dirty estimates. A second option, useful for magtaided work
and/or higher-resolution simulations, is to step througbhecell in the sim-
ulation volume and smooth the density field on progressiseigller scales,
identifying it as a halo whenever it crosses the spherichhpse threshold
density (or an improvement upon that criterion). This misnibe random
walk diffusion process used to generate the halo mass fambtit applies it
point-by-point to account for real fluctuations in that degnfield. The re-
sulting halo field does not match those of numerical simoifetiexactly but
provides a good statistical match.

e Finally, generate the morphology of the ionized regionsaiigthe density
field is smoothed on progressively smaller scales arounk pixel, and re-
gions are tagged as ionized if this smoothed field exceedsxbigrsion set
ionization criterion of equation (8.19), i.e. if the numiadionizing photons
generated within the region (according to some imposectsqurescription)
exceeds the number of hydrogen atoms.

e Optionally, a criterion for inhomogeneous recombinaticas also be in-
cluded by imposing a maximum bubble size or by weighting teksac-
cording to some estimate of the subgrid clumping and/orsdgklding.

These semi-numerical approaches thus represent a faidgtdmplementation
of the analytic model in specific realizations of the denB#id. Figure 8.5 shows
that the results closely match radiative transfer simatedj at least on large scales.
Clearly the broad-brush features are very similar, withZed bubbles appearing
in the same regions and growing to approximately the sangs sizeach model.
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Of course, the detailed shapes of the features are hardeptoduce, especially
when two ionized bubbles are near to or have just overlapptdeach other. In
these cases, however, basing the ionization calculatich@halo field does fare
significantly better.

Figure 8.6 compares four models in a more quantitative éaslihrough the
power spectrum of the ionized fractidp.,.(k), evaluated over the simulated vol-
umes; this is important for many of the observables we wakdss later on. At
very small scalesi{ > 8h/Mpc), the models disagree, but this is largely due to shot
noise in the various prescriptions. On moderate to largiesctéhe two radiative
transfer prescriptions agree extremely well, while the iseameric prescriptions
differ by ~ 30% late in reionization. This and other statistics show thathlbrid
approaches are adequate when accuracy of this order suffibest importantly,
the excellent agreement between this implementation djaceeionization mod-
els and the numerical simulations suggests that — at leagtilmaincertainties in
the source and sink populations — existing models for thenization process are
quite robust.

The hybrid approach provide many of the advantages of laogée simulations
(especially the detailed source distribution and cosmib tegology) with compu-
tational costs orders of magnitude smaller. However, itately has drawbacks as
well. One difficulty is that there is no a priori way to set theersion set parame-
ters, filtering schemes, and other details of the approashparison to simulations
has identified the best practical schemes, but the detattedadIgorithms matter at
the ~ 10% level. Another is that these prescriptions still invoke epeal filter-
ing in order to paint on the ionization morphology; while ttesulting configura-
tions are certainly not themselves spherically symmethiey do not account for
complex radiative transfer effects. Third, the “photonssting” methods we have
studied so far only work for specific classes of sources inctvlibnizing photons
are absorbed shortly after impacting neutral gas. Thesenseh have not yet been
extended to sources with harder spectra (such as quasac$, w discuss next).

Perhaps most importantly, the semi-numeric approach d¢deased to follow
the progress of reionization through time, because it de¢<onserve photons.
Instead, the global evolution @§y1;(z) must be prescribed externally; once that
is known a series of maps can easily be generated, but thepttren be used to
infer anything about the feedback of reionization on thersepopulation, for ex-
ample. AlthoughQuri(z) in radiative transfer simulations is ultimately determine
by an imposed source prescriptions as well, they at leasivadl self-consistent
interaction of the reionization morphology with those sms:.

8.8 STATISTICAL PROPERTIES OF THE IONIZATION FIELD

Figure 8.6 uses the power spectrum of the ionization fradiacompare the various
simulations. The power spectrum offers a convenient waysntjfy the statistical
properties of a reionization model, and it can be undersiatitively based on the
excursion-set model of reionization. One, relatively rigas, approach to compute
the power spectrum on a scalds to follow two random walks, correlated on all



THE REIONIZATION OF COSMIC HYDROGEN BY THE FIRST GALAXIES 233
z=8.49 z=7.56

McQuinn et al

Trac&Cen“ -

Figure 8.5 Comparison of radiative transfer and semi-nigabmodels of reionization. The
three columns show three different times during reion@ativith the filling fac-
tor of ionized bubbles (here labeléd) of 0.25, 0.51, and 0.72. The top two rows
show two different radiative transfer schemes (both baseddaptive ray trac-
ing). The bottom two rows use semi-numerical schemes: thdatbeled “FFRT”
uses the analytic excursions set model to predict the halod#mce, while the
one labeled “FFRT-S” uses the simulated halo field itselfl félr rows use
exactly the same simulation volume; note the excellenteagemnt between the
radiative transfer schemes and the close match with the semerical schemes
on moderate and large physical scales. The maps are 14%Mpuadss and 0.6
Mpc deep. Figure credit: Zahn et al. (2010).
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Figure 8.6 Comparison of the power spectrum of the ionizefield in the radiative transfer
and semi-numerical models of reionization. The three Eaceirespond to the

columns of Fig. 8.5, and the curves correspond to the fouratsagshown there
as well. Note the close match in the predictions of all fourdeie on scales
k < 8h/Mpc, although the semi-numerical schemes do overpredict thepo
on very large scales in the late stages of reionization. Tfferences att >

8h/Mpc are due to shot noise, which differs between the schemesrd-igedit:

Zahn et al. (2010).
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scales’ < k, and determine the probability distribution of their faiteside ionized
bubbles. This provides a reasonably good match to the naaiaimulations.

However, we will take a simpler, approximate approach hbket is informed
by the simulation results. In particular, the ionizatioadtion is not a typical cos-
mological field, because it is strictly bounded to lie betweero and unity. Thus
we expect the joint probability distribution of the ioniz&dction at two different
points to take the form

(wi(r1)zi(r2)) = Qfmy + (1 — Qun) f(r/Re), (8-33)
wherer = |r; — ry| and R. the characteristic bubble size. Hefds an unknown
function containing the physics of the problem, with theitgry — 0 for r > R,
andf — Qumr asr — 0. This equation has a simple physical interpretation: if
two points are separated by a distance much smaller tharizthefsa typical H 11
region they will either both be ionized by the same bubblehwirobability Qur,
or both be neutral. But if > R, they must reside in distinct H 1l regions and the
probability approache9%;, with a small enhancement due to the clustering of the
bubbles. The correlation function is thép, = (z122) — Q%

The second restriction arises because of the finite rangeedbhized fraction:
if Quir = 1, every point must be ionized (an, = 1 everywhere); in that case the
correlations must vanish. Thus we neggd = 0 when eitheiQx = 0 or 1.

The challenge lies in constructing the functipnwhich expresses how bubbles
encompass two different points separated by a fixed distaFive correlated ran-
dom walk approach implicitly computes this factor withonyayeometric assump-
tions about the bubbles. We will instead use the bubble massibndn,,/dm,
which necessitates some assumption about their strudtbeesimplest is of course
spherical symmetry; unfortunately, this leads to an unaysuppression in the
ionized fraction neaR.. Because the excursion set formalism determinegtive
imumbubble size for which any point is a part, it does not allow dol further
overlap of the bubbles. If they are all spherical, it thendmees difficult to pack
them in such a way that they ionize all space — this is simpdes¢e in the limit in
which every bubble has the same size, where reionizatidreis$imilar to packing
a crate with oranges. The gaps between the oranges are iilvipassremove in
this situation. In reality, of course, the bubbles deforio inon-spherical shapes to
fill the gap, but that is difficult to model analytically.

We must therefore sacrifice rigor in order to build a simpledeldhat approx-
imates the final results. To do so, we split the problem into tegimes. When
Qun < 0.5, the neutral gaps are large and so reasonably well-modelated
spherical approximation. Then, taking inspiration frone tialo model, we can
explicitly build the joint probability distribution by caidering separately (1) the
probability that a single bubble ionizes both points — thection P, we have al-
ready discussed, and (2) the probabilitythat the two points are ionized by sepa-
rate bubbles. In the latter, because the bubbles are miatmall at this stage, the
correlations betweeg them must be included. We then have

Pi(r) = / dm%‘fl(m,r) (8.34)
dnb

f d
Pg(r):/dml—/dsrl/dmgd—::;/d%g[l+§bb(r|m1,m2),(8.35)

dm1
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whereV; (m, r) is the volume in which the center of a sphere of massan lie
while simultaneously ionizing two points separated/b@nd &, (r|my, ms) =~
b (m1)buar(m2)&(r) is the bubble correlation function.

Late in reionization, whe®) 1 > 0.5, we setf = P; in equation (8.33): while
this does not include large-scale correlations, by thisfbie bubbles are so large
that the excess correlation on scales beyond the bubbléssiegligible. By doing
this, we are ignoring the “two-bubble” term entirely. Thigams that our expression
does not asymptote to a form proportional to the dark matteretation function
at late times¢,.. ~ b%;£. However, at these late times this limit is only reached
at extremely large scales, well beyond the sizes accedsitdéher observations
or simulations. At more moderate scales, the Poisson fltiohgof the discrete
bubbles dominate.

Finally, we have

. _ [ Pi(r)+ Pa(r) Qmum < 0.5,
(i) (r) = { (1 = Qum)Pi(r) + Q%HI Qum > 0.5,

The solid curves in Figure 8.7 compare this simple exprestiahe correlation
function found in a semi-numeric simulation (including ptte linear theory evo-
lution in a100~~! Mpc box) at three different bubble filling fractions. Noteeth
very good agreement at small and moderate scales, whickestggtpat this simple
approach provides good intuition about the properties efidinization field.

Also of interest is the cross-correlation between the iedifraction and the un-
derlying density. Again, it is relatively straightforwatd construct a reasonable
analytic approximation for this because the excursion sgnélism is used for
both the halo distribution (which via the halo model desesilthe density field)
and the ionized bubbles. To evaluate it in detail, we canragaé some simple
tricks. First, suppose that the point where we evaluate émsitl lies inside a bub-
ble. Then we already know the mean density of the bubble maafequal to the
excursion set barrierg). We can therefore approximate this part of the correlation
as

(8.36)

P (r) = / dm%%(m,r)[l +op(m)], (8.37)

because the; field is unity only inside of bubbles, where the mean densitysi
(thus the correlation vanishes in neutral regions!).

If on the other hand the point is outside the bubble, we cameeqipates,;, ~
b(mp)buir(m)&, using the linear theory expression because the distarlaegis.
The contribution from these pairs is

dnb

d
Pt (r) = Quirt — / dm SV (m, ) + / dmy / ey bné (), (8.38)

where we have used the fact that the mean halo bias is alwitysaiperform the
integral overm;,. Here the first two terms are the fraction of space that iszieahi
(so that({x;0) is non-zero but not contained i ); thus the second term iRy
cancels the first term i#%,. The third term contains the correlations. As before,
this term is not accurate whe@yy; is large, becauséy; encounters difficulty
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Figure 8.7 Comparison of the autocorrelation function efittnized fraction (solid curves)
and the cross-correlation function of the ionized fractaond density (dashed
lines). In each case, the thick lines show our analytic apprations of egs.
(8.36) and (8.39), while the thin curves show results forraissumeric simula-
tion in a110h~! Mpc box. The two methods are in quite good agreement at a
wide range of ionized fractions. Figure credit: McQuinn, &.al. 2005, ApJ,
630, 643.
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there; however, at these times the bubble radius so largganthat the term can
be ignored. Thus we have the net approximation

. _ _ Rn + Pout - QHH QHH < 057
(2:6) (rp — 1) = { Po(r) — Pu(r) oS 0a

In other words, whem®y; is small, we must include correlations from both the
bubble atr, and from its neighboring bubbles (and in particular the esc&rre-
lation from their clustering). Whe®y; is large, we need only include the former
effect. Subtracting thé’, andQur; terms in each case isolate the excess correla-
tions.

Figure 8.7 compares this approximate treatment of the aros®lation with a
semi-numeric calculation (thick and thin dashed curvespeetively). Again, the
simple model does a rather good job over a range of ionizedidms, though it
tends to underestimate the small-scale correlations Isecaaverages over each
bubble.

The important point of this simple model is that the excursset model not
only reproduces the gross properties of the bubble populdiit also their spatial
distribution with respect to the density field. The speciune of the ionization
field simplifies many of these calculations, helping to degpéhtuitive models that
explain the simulation results. Moreover, the correlatioan mostly be understood
in terms of the average properties of the bubble populabenause the individual
H Il regions are so large that nonlinear effects tend to bened®ut anyway.

(8.39)

8.9 REIONIZATION BY QUASARS AND OTHER EXOTIC SOURCES

To this point we have focused on stellar sources of reioinatargely because
galaxies seem to dominate the ionizing photon budget-ats. However, quasars
present an interesting alternative reionization sourcgelst because they have
much harder (nonthermal) ionizing spectra than even thiesiostars. Thus, some
of their photons can travel much larger distances through®@M, and the mor-
phology of the ionized and neutral gas will be much smoothantthe sharply-
defined bubbles that we have discussed.

8.9.1 How Important are Quasars to Reionization?

There are, unfortunately, very few constraints on the abuaod of highs quasars.
The census of very luminous~ 6 quasars is now fairly well-determined, and their
abundance seems to decline rapidlyat 4. Although constraints on the shape
of the luminosity function are quite weak, the total iongziphoton emissivity that
comes from this population of quasars appears to fall a fadtb0-50 short of that
required to maintain reionization at that time, usifig= 3 and the arguments in
$8.6.2.

Nevertheless, it is relatively easy to imagine that muchlenéalack holes —
in particular those characteristic of the small galaxieswown at high-redshifts
— could play an important role in at least partially ionizitige IGM. At lower
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redshifts, it is now clear that black holes are both ubiqustand closely related
to their host galaxies. The data are consistent Wity o o4=% oc M,-337167,
whereo is the velocity dispersion. It is not clear how this relatievolves with
redshift, so this scaling cannot directly be applied to thiemization era. For the
purposes of a simple estimate we will simply scilgy; to the total halo masa/,,,
so that the (comoving) mass density in black holesgis = fsu feonps. We will
scalefpy to its local value in massive galaxies,10~4. Because the mass function
of the large dark matter halos hosting galaxies is so stekjghtedshifts, taking a
single value at any given redshift is reasonable, althouglsiould recognize that
it could easily either increase with redshiét (x (1 + z)'/2) or decrease as the
characteristic mass decreases.

Now let us consider how largési must be in order to significantly ionize the
IGM. These ionizations come from two sources: primary plustizations from the
quasar photons themselves, and secondary ionizationgHfieenergetic secondary
electrons. For a hard non-thermal spectriin o< v~ 1, the latter dominate and
deposit (very crudely) a fraction of the enerdy ~ xy;/3 in ionizations. If the
black holes have a radiative efficiency (relative to thestmmass); and emit a
fraction fyv of their energy above the ionization threshold of which. , escapes
the host galaxy, the expected number of ionizations perdgeir atom is

7 fuv feon fBH fi
Nion ~ 0.5 fese,q (ﬂ) (W) (0.01) (104) (1/3) ' (8.40)

Thus the local black hole-halo relation makes a plausilgament for a substantial
contribution of quasars to reionization. Note, howeveat the secondary ioniza-
tions become less and less commom:asdecreases, so the lower-energy photons
(either from quasars or stars) are still necessary to caimpégonization.

Note that, unlike for stars, the escape fractfoq  is likely to be quite high for
quasars. Because all the quasar ionizing radiation eméa@esa single source, it
is much more likely to carve transparent channels in thesteéar medium of the
galaxy. Moreover, much of the ionizing energy comes fromtre¢ly high-energy
photons that have an easier time traversing their host gal#hout interacting.

The unresolved X-ray background offers a constraint onshenario, because
such a high-redshift quasar population would produce hardys > 10 keV) that
free stream until today. Approximatedy +3% of the SXRB has been resolved; the
best estimate for the unresolved componedkis~ 0.3-1x 10" 2 ergs~! cm ™2 deg 2
in the 0.5-2 keV band.

Suppose that black holes produce the high-redshift X-raykdpeund at a me-
dian redshiftz, emitting a fractionfuxg of their energy in the0.5-2](1 + z) keV
range. The flux received at earthds= (c¢/47)puxr/(1 + z), whereppxg is the
comoving energy density in hard X-rays produced by thisyggeheration of black
holes. Thus

1/3 N 10

~1 —13 _‘1 fHXR/fUV ion —1 —92 92

Jx =10 esc.q <70.2 7 05 ) \155) eres om deg™*,
(8.41)

where fuxr/ fuv and(E) are appropriate for a spectrum with, oc »~! ranging
from 13.6 eV to 10 keV.
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Interestingly, this is just comparable to the presentlgesiied unresolved com-
ponent. Thus, the X-ray background required if quasdosereionized the Uni-
verse probably violates observed limits, but it could stilke a substantial contri-
bution to the ionization budget; thus it is certainly usdfuktonsider scenarios in
which quasars drive or affect the reionization processllé@tmass X-ray binaries
could also contribute to the X-ray production.

Moreover, it is relatively easy to imagine scenarios in vatitack hole accretion
plays a much larger role. One possible way to evade thesdraons is with a
population of “mini-quasars” built from smaller black helthat may form through
different channels than the very bright observable quadarsuch mini-quasars,
most of the UV ionizing photons may come from an accretiork,dighile hard
X-rays instead come from synchrotron/inverse-Comptonssion. The relative
contribution of the two components is extremely uncertaind if the non-thermal
tail is relatively insignificant the X-ray background comént would be weak.

8.9.2 lonized Bubbles Around Quasars

The primary difference between quasars, which typicallyehaon-thermal spec-
tra in the UV and X-ray regimes, and stars (which are neasyrttal and so have
very few high-energy photons) is that one cannot simply mesthat all the ioniz-
ing photons are absorbed in a narrow region around the ibaiz&ont; instead,
the higher-energy photons can propagate large distanomsgi the intergalactic
medium. The comoving mean free path of an X-ray photon witrgnF is:

—2 3
1 B
Axmm-c;/f( ”) ( > Mpc; (8.42)

10 300 eV

thus, photons with > 1.5[(1 + z)/15]1/25311{/13 keV propagate an entire Hubble

length before interacting with the IGM. Many of the soft Xysatherefore escape
the ionized bubble but deposit their energy (as ionizatiwhlzeat) in the surround-
ing gas, “pre-ionizing” and “pre-heating” it before the imation front itself reaches
the gas.

In this case where photons leak past the “ionization frordtking the boundary
between the mostly-ionized and mostly-neutral gas, thégrhoounting arguments
implicit to §8.2 are not sufficient. Instead we must more carefully exantlire
radiative transfer of ionizing photons through these ragio For simplicity, we
will consider a model universe composed entirely of hydrggecluding helium
complicates the equations but adds no essential new physica photon travels
away from its source, it encounters absorption that dependse local ionized
fraction as well as the photon energy. The total optical lepiperienced by a
photon with frequency that has traveled from a source to a radius

T(v,rt) = /OT om1)(V)nur (r, t)dr’ (8.43)

whereny is the local H | density (which may evolve either through thermall
density or the neutral fraction) and where we have expjicidted the time depen-
dence, since the ionized region will grow as more and mordgstsoare pumped
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into it. We have also assumed that ¢/H (z), so that we can ignore the cosmo-
logical redshift. The ionization rate at this position igth

© du Lye~7wrt) E — Ey
r = —_ 1 - " Vf(E-E ,
(T, t) /UHI hv 4mr? UHI(V) |: " ( EHI ) f( HI):|
(8.44)

whereL, = (dL/dv) is the monochromatic luminosity (per unit frequency) of the
source, By = 13.6 eV is the ionization potential of H Il — Eyy is the energy
of the photoelectron, anfl(E — Euy) is the fraction of this energy that goes into
secondary ionization as the electron scatters throughritd@esnt medium. This
last factor describes the fate of the high-energy electritns small for photons
near the ionization threshold and (very roughly) approaghe~ zy;/3 at high
energies. A comparable fraction of the energy goes intdsioflal excitation of
line transitions; the remainder goes into heating (seevelihese fractions have
been computed much more precisely using basic atomic physic

The ionization rate at each position is then governed by

dZ:H =I'nur — ap(T)nenm, (8.45)

wheren, = ngir = nyg — nygr. We assume case-B recombination (i.e., local
absorption of the recombination photons) for simplicitgherwise the radiative
transfer equation must include a source function for thésstgns as well. The
“on-the-spot” approximation is usually a good one, howgeherause the recom-
bination photons are emitted near the ionization thresholtiso have short mean
free paths. Note that we have left the clumping factooff of equation (8.45), be-
cause integrating the ionization front evolution over gpaltows one to include the
detailed density profile. However, it can easily be incogted into the last term to
account for clumping below the resolution of the calculatiwid.

Because the recombination rate depends on temperat{aad often because
the temperature is of intrinsic interest), one must alscetiigs evolution,

dT - zdln(l + 5) _ Tdhl(Z — Z‘HI) i 2 (Q _ A) (846)

o - T dt 3kBMtor
where( is the total radiative heating rate ands the total radiative cooling rate.
These terms describe adiabatic cooling due to the Hubblereskpn, adiabatic heat-
ing or cooling due to local density inhomogeneities, theosecaccounts for the
change in the total particle density due to ionizations awdmbinations, and the
fourth describes radiative cooling.

At high redshifts, radiative heating and cooling are typicdominated by pho-
toheating and inverse Compton cooling, respectively. Dneér is

0 Lue—f(u,r,t)
Qo= [ v ™ o) (B~ ) fu(E - Ba), (847)
VHI

472

wheref,(E — Emi) is the fraction of the photoelectron energy that goes intt-he
ing. It is large for photons near the ionization threshold &wery roughly) ap-
proachesf, ~ 1 — 2xu1/3 at high energies. The Compton cooling ratg,..,, is
given by,
2 Acomp o 1-—- THI (TCMB - T)
3kpnet 2 — THr te

, (8.48)
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Figure 8.8 Example ionization and temperature profilesrdaurelatively bright quasar at
z = 10, with L = 10° L. The source is assumed to emit steadily after it turns
on, and the different curves take= 10°, 105-°, 107, 10™°, and10® yr after
ignition. The calculation assumes an initial IGM temperatof 7' = 10 K and
a uniform IGM at the mean density (including helium); notattbistances are
measured in proper units.

wheret, = (3me.c)/(8crucmp) is the Compton cooling time, angy is the
Thomson cross section, angyp o< TéMB is the CMB energy density. The first
factor on the right hand side accounts for energy sharindlidye@ particles.

Figure 8.8 show some example ionization and temperatufégearound a rel-
atively bright quasar at = 10 with Lz = 10° L. The source is assumed to emit
steadily after it turns on, and the different curves take 106, 105, 107, 1072,
and10® yr after ignition. The calculation assumes an initial IGNgerature of
T = 10 K and a uniform IGM at the mean density. As expected, the &iitn
front sweeps outward over time. Behind it, the gas lies irization equilibrium,
with zy1 oc 2. The ionization front itself — which we will define to be thestince
between whicld.1 < zy; < 0.9 is narrow, but residual ionization (and heating,
which can be substantial) extends several comoving Mpc flanfront itself. The
gas here isiot in ionization equilibrium, as the ionization front will ctinue to
sweep outward if the source remains luminous, and the gasdeutvill steadily
increase in both temperature and ionized fraction.

In particular, because the recombination time in this otggion is so long (at
least while the ionized fraction itself is small), the relaty low level of heating
and ionization contributed by each quasar is cumulativaerAhany generations
of AGN, the gas that remains outside of H Il regions gradublgomes more
and more ionized, potentially until the ionized fractiorilsates at~ 0.5 when
secondary ionizations become inefficient.

This gradual ionization and heating of the otherwise unbeddayas provides one
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of the key difference between stellar and quasar reiominatDthers are primarily
driven by differences in the source luminosities and abunds: to the extent that
gquasars are rarer and more luminous than star-forming gelathey will produce

larger, rarer ionized bubbles in the IGM, in which the iomiZeaction and density
field are less correlated. We will discuss some of the obsiena signatures of

these differences in the later chapters.

8.9.3 Helium Reionization

So far we have focused purely on the reionization of intexgiét hydrogen. The
first ionization potential of helium, 24.4 eV, is sufficignttlose to that of hydro-
gen that helium is almost definitely singly ionized at the saime as hydrogen.
However, stripping the second electron requires 54.4 e\¢hwis well beyond the

blackbody peak of typical hot stars (although very massietatrfree stars can at
least partially ionize helium). We therefore expect a digantly different ioniza-

tion history for He II.

Nevertheless, many of the same tools we have already dexclcgn be used
to follow the creation of He Ill. Helium can easily be incorpted into the for-
malism 0f§8.9.2 by adding a multi-species network that traces theutiawl of He
Il and He lll. In practice, most high-energy photons are absd by He I, but
(because helium is relatively rare) the secondary eledtiirdeposits most of its
energy as heat or in ionizing and exciting H I. The effects lom ibnization and
heating profiles (as in Figure 8.8, which does include heJiare modest and do
not qualitatively affect the results.

Similar calculations for stellar sources show that onlywverassive metal-free
stars can produce He lll, although in optimistic models tteelH fraction rarely
rises to unity. Moreover, once these stars fade away, thelapidly recombines
into He Il because its recombination time is much shorten tthet for H Il (see
§4.4.4) and therefore the age of the Univerge

+B . N 3/2
fic_’;%o.z<1+z) . (8.49)

Thus, there may be a brief phase of ionized helium during ¢senic dawn, but it
likely ends with the death of these stars.

However, radiation from quasars could provide a more sasthsource of high-
energy photons. We have already seen that these sourcetacaibly ionize hy-
drogen; can they do the same for He 11? The primary differdnmea our earlier
calculation is that fast secondary electrons producedeéridhization process do
not efficiently ionize He Il, because its collisional ionima cross section is- 10
times smaller than that of H | (and when hydrogen is fully &md the energy loss
rate to other electrons is also much more rapid). Withoubsdary ionizations,
the crucial parameter is the mean photon energy per iooizéfi;). If L, oc v—!
from 54.4 eV to 2 keV (beyond which the IGM is optically thirihjis energy is
(E;) ~ 200 eV. Assuming that all of the high-energy photons ionize Heather
than H | (e.qg., if stellar sources ionize the latter first), fivel that the number of
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ionizations per helium atom could be

7 JuvHe \ ([ feoll fBH 200 eV
Nion,He ~ 0.6fesc,q (m) ( 0.1 ) (m) (10_4) ( <E7> ) (850)

Here fuv ne IS the fraction of the quasar’s luminosity emitted abévet eV. Of
course, given the rapid recombination time these earlyaysase unlikely to main-
tain more than a low level of He 11l in the IGM.

Despite this estimate, just as for H | tebservedquasar high-redshift quasar
population produces far fewer He ll-ionizing photons. Intfastimates based on
the measured quasar luminosity function predict that Heibrrization must wait
until z ~ 3, near the peak of the quasar era. Indeed, a number of linesdgree
indicate that the event occurs at roughly this time, thoughenare as yet defini-
tive. We list these efforts here because they make an ititegesomparison to the
constraints on H | reionization that we discuss later:

e The mean optical depth of the He Il Lymanforest appears to increase
rapidly beyondz ~ 2.8. In §4.6 we argued that an apparently similar in-
crease in the H | forest optical depthat~ 6 could not be interpreted in
terms of reionization. But the case for helium is more secberause the
atomic number density of helium is smaller and its recomtidmarate is
faster, its Gunn-Peterson optical depth is only 140 _y4(1+2/4)%/2,
wherel i1, —14 is the He Il ionization rate in units afd~'4 s~1. Thus, He
Il becomes transparent in the late stages of reionizaticreover, it does
not have an opaque damping wing that can conceal highly-iomegidns.
Additionally, reionization is accomplished by rare, briglources whose il-
lumination can create large (many Mpc) ionized bubbles &efore the pro-
cess completes. Together, these factors imply that the Haribhn-« forest
is a much cleaner probe of reionization than for H I.

e Moreover, the He Il forest shows substantial fluctuations at 2.8, from
being nearly opaque to very transparent. Such regions Hireuttito arrange
if the IGM is highly-ionized, because they would require ardle of quasars
over several hundred comoving Mpc, which is very unlikeiynfattunately,
the enormous optical depth of the H | forestzat- 6 masks the analogous
fluctuations, and so this test is much more difficult to rep@tt hydrogen.

e A number of measurements of the H | forest show a peak in the i&hper-
ature atz ~ 3. The most natural interpretation is photoheating fromurali
reionization (se§8.10).

e There is some evidence for a hardening in the metagalactiziig back-
ground atz ~ 3, as measured by the ratios of some metal lines. For exam-
ple, C IV has an ionization potential just above that of Hewlhile Si IV
has its potential just below that point. Once He Il is ionizedl the IGM
becomes transparent to photons above 54.4 eV, we expedbtinel@nce of
C IV to decrease as well. Some (but not all) measurements shiolv an
decrease. At ~ 6, the analogous process at the H | edge should show an in-
crease in higher ionization states, e.g., C 1V, relativeot ilonization states,
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e.g. O (se€4.5). Tentative evidence for such evolution does exist, but
the scarcity of metal line systems at> 5 and their likely positions inside
highly-overdense systems complicates their interpi@tdti this case.

Clearly, He Il reionization is at best an imperfect analodnyolrogen reioniza-
tion, but it does allow us to test a number of the same ideasticplarly those
relating to the ionizing background and its interactionhatihe IGM. It does have
the key advantage of occurringat- 3, where measurements of the H | Lyman-
forest offer a much clearer picture of the IGM. Helium remation may therefore
offer a testbed for understanding hydrogen reionization.

8.9.4 Exotic Reionization Scenarios

It is also possible that much more exotic processes — suclarksneatter decay
or annihilation, or primordial black hole evaporation —ed (or even completed)
the reionization of the IGM. Any such exotic process thatjuwes photons with
E > 13.6 eV to which the IGM is opaque can also contribute to ionizingd
possibly heating) the IGM. For example, dark matter decayen evith a timescale
many times the present age of the Universe — could in priacigibnize the entire
IGM, so long as> 1078 of the total rest energy of the dark matter particles went
into ionization.

Although such models are quite speculative, they would pecedrery different
patterns of reionization and so are interesting from a phewlogical perspective.
For example, dark matter is fairly uniformly distributedragh redshifts, so decay
would cause a nearly uniform ionizing background and henoearly uniform
ionized fraction (moderated only by inhomogeneous recoatimns and possible
escape of the decay products from the source region). Alatidm would provide a
clumpier source distribution but would still cause much sther reionization than
stars or quasars.

8.10 FEEDBACK FROM REIONIZATION: PHOTOHEATING

As described ir4.3.1 and§8.9.2, (some of) the excess energy deposited in the
photo-electron is transformed to heat through scatteririgs heating can be sub-
stantial: for a spectrum typical of a star-forming gala&y” ~ 12, 500-30, 000 K
(see§4.3.1), while for quasar sources one might havE ~ 10° K. We have seen
that the IGM temperature is rather uncertain before remtion, but this photo-
heating almost certainly increases it by nearly an order afmitude, which has a
number of important consequences.

8.10.1 Photoheating and the IGM

If reionization were uniform, this dramatic heating woutdVe the IGM essentially
isothermal. However, we have seen that in fact the procedsiien by large-
scale density fluctuations, with overdense regions (fuljaltxies) reionized first
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Figure 8.9 IGM temperature-density relation following Helgnization. All curves assume
z = 6 and take a post-reionization temperaturelf = 20, 000 K. The solid,
long-dashed, short-dashed, dot-dashed, and dotted csetebe reionization
redshift atz, = 6, 7, 8, 9, and10, respectively.

and underdense regions (devoid of galaxies) reionized(¢ast the bottom right
panel of Fig. 8.2). This translates into systematic IGM terafure fluctuations
because, once reionization ends, the rapid photoheatasgsdconstrained by the
recombination rate within the IGM gas). Thus the overdeeg@ns begin cooling
earlier and have systematically cooler temperatures at later t{gess the bottom
center panel of Flg. 8.2).

Figure 8.9 shows this quantitatively via the IGM temperatdensity relation.
We show this relation at = 6 computed from the excursion set reionization model
of §8.5 for a variety of scenarios in which reionization endsas#nz, = 6 and
10 (thus the different curves do not represent a sequencedne model but rather
a sequence of different reionization models, with the tirhelservation held con-
stant). Immediately following reionization (solid curyé)e low-density voids are
systematically hotter than gas near the mean density, gibgtause the former
were the last to be ionized and so still lie near the postaigation temperature.
(Note that overdense gas is hot as well, due to the adiabasitirty from ongoing
structure formation in our model.)

This kind of invertedtemperature-density relation is strongly characterisfic
“inside-out” reionization, where large-scale overdemsitire ionized first, because
it is characterized by the underdense voids being ionizsid lmside-out models
are generic to stellar reionization, because its morphotdgsely traces the un-
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derlying cosmic web. (Note, however, that this does not nmteahsmall-scale
overdensities are ionized last — in fact these LLSs typfa@linain neutral until the
very late stages.) If, on the other hand, rare, luminouscgsufsuch as quasars)
drive reionization, the ionized bubbles correlate lessragty with the density field
and the associated temperature inversion weakens (or ésegopears — as appears
to be the case with helium reionizationzat- 3). Obviously, the IGM temperature-
density relation provides a good test of the morphology wimization.

As time passes, the expansion of the Universe causes gaslansities to cool
adiabatically. However, because underdense voids expamnd rapidly than av-
erage, this cooling occurs fastest at low densities, griydeeasing the initial (in-
verted) temperature-density relation as time passes.UBecadiabatic cooling oc-
curs over an expansion time, the characteristic coolingsirale is the Hubble time.
Thus, the interesting observational signature of insider@ionization fades after a
relatively short time, and the temperature-density refatipproaches the universal
asymptote in which photoheating following recombinatibatances the adiabatic
cooling.

Of course, reionization is also stochastic, with regiona gfven density having
many different reionization histories (driven by the ngahlalo population). Thus,
the temperature-density relation is imperfect, with sradf ~ 30% at a given den-
sity. This scatter (and its dependence on density) alsoraispen the reionization
model, with rarer sources inducing more scatter.

Photoheating from reionization not only increases the I@Mperature but also
affects its structure: the accompanying thermal pressucesases the effective
Jeans massM; « T%/2), evaporating existing small-scale structures and pre-
venting accretion onto small dark matter clumps. In theuddf IGM, this effect
is usually interpreted as a decrease in the clumping factowhen M ; is small,
before reionization, very small dark matter halos can retléir baryons, causing
a great deal of small-scale structure; after reionizatibis, gas evaporates add
decreases. Fortunately, this smoothing is relativelyrigdize to the precise post-
reionization temperature, because (in most models) pleatiiy to any reasonable
temperature already increases the temperature by a vewy/factor.

Unfortunately, following this evolution in detail requseuite sophisticated nu-
merical simulations that (a) resolve the small-scale IGMatre and (b) include
coupled radiative transfer and hydrodynamics. To dateftassonly been possible
in relatively small volume simulations that do not fully acmt for the large-scale
morphology of reionization; fortunately, the insensityvof the resulting clumping
evolution to the details of the reionization process sutggist these results — in
which the clumping factor can decrease by nearly a factowofdue to photoheat-
ing — are robust.

Directly observing photoheating is a challenge, espegcéliery high redshifts
in which the Lymane forest is nearly saturated in absorption. In addition to the
Jeans smoothing itself (which smooths out small-scale paowthe forest), heat-
ing also increases thermal broadening (which smooths @ulinles themselves).
These manifest themselves in both statistical measuréedbtest (like the power
spectrum, where small-scale structure is erased) and imté®ethemselves (whose
shapes broaden, leaving less curvature in the spectrurtjoddh these techniques
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have not yet been feasible at high redshifts, they are easigoderate redshifts
(z ~ 3) around the time of helium reionization and have been ag@igensively

there. Both methods have provided measurements of theteolof the mean

temperature with redshift and show heatingzat- 3, of roughly the magnitude
expected if quasars are responsible for the event.

However, these methods have not yet offered strong conttran the temperature-
density relation, primarily because the forest is mostlysitd/e to only a narrow
range of densities at any one redshift. One interesting wawbid this problem
and extend it to high redshift is by comparing constraintsrfrmultiple Lyman
lines. With their weaker oscillator strengths, Lymarand Lymans sample differ-
ent parts of the density field.

8.10.2 Photoheating and Virialized Objects

Photoheating affects not only diffuse IGM gas but also ga&lenof virialized ob-
jects. If such a halo has,;, < 10* K, photoionization will heat the gas above
the escape velocity of the halo, allowing the baryons to exate. Moreover, once
IGM gas is heated, it will ignore small dark matter potentialls, preventing the
accretion of gas onto existing galaxies and suppressingesutent star formation.

The Jeans mass in the IGMlig; ~ 10° M.,if the gas simply cools adiabatically
after decoupling from the CMB. This is far below the atomioliog threshold
(Tvir ~ 10* K corresponds te- 107 Msun), so although these dark matter clumps
can accrete baryons they cannot go on to form stars; insteag will remain as
dense clumps sprinkled through the IGM. Moreover, becausertass function is
so steep at high redshifts, this population can contain atglkeal of the collapsed
mass — from~ 10% atz ~ 15to ~ 30% atz ~ 8. Such objects are known as
minihalos, and their large overdensities may make them an importastophsink
through the early stages of reionization.

However, these objects have shallow potential wells. Ascoaization front
reaches the halo, it heats the gasstal0* K > T.;.. Because the thermal pres-
sure then exceeds the gravitational binding force, thelminigas escapes into the
IGM through a strong evaporative wind. This escape typjoadicurs on roughly
the sound crossing timey c,ryi; ~ 30(M},/107 Mogor)™/® Myr at z ~ 10, which
is much shorter than the corresponding cosmic time.

One way to parameterize the effects of the minihalos on izédion is by sup-
plementing the clumping factor with an averaggn = (n?) / (n)? over the mini-
halo density profiles. However, the rapid time evolutionidgrevaporation makes
application of this enhanced clumping factor difficult, base one must include
each minihalo for only a finite time. A simpler parameteriaatis with the total
number of ionizing photons consumed (per minihalo atomijndpthe entire evapo-
ration process. Over this time period, detailed numericalations show that this
process typically consumes 3-5 ionizing photons per minihalo atom, as the high
internal densities of the halos cause relatively rapid mggioations:tZ_ ~ 2 Myr
for avirialized object at ~ 10. Given the fraction of collapsed mass in these mini-
halos, this increases the number of photons per hydrogemratguired to complete
reionization by about 1, potentially making minihalos agpartant a photon sink
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as the clumped IGM itself. Fortunately, although these haitds will be clustered
and so induce inhomogeneous recombinations, numericallaiions show that
treating them as approximately uniform does not introdugesagnificant errors.

Once a region is ionized, later formation of minihalos i®egly suppressed —
even if the gas cools and recombines, because the photaimmiz{or indeed any
other substantial heating event, such as X-rays) drantigtinareases the entropy
of the IGM. In this context, the quantity

T T _2/3 1+Z -2
K= __ — — g V cnt 51
573 760(104K)( +9) ( 10 ) evc (8.51)

is usually referred to as “entropy,” although the thermaayic entropy is actually

S « In K. Conveniently,K is conserved for any adiabatic process, including
Hubble expansion flow or slow accretion; only strong shock=adiative processes
modify it. Clearly, the heating that occurs during reiotiiaa also dramatically
increases the entropy; typical values, even after a sutist@eriod of cooling and
entropy release via recombination dte.;., > 100 eV cn? atz ~ 10.

If this entropy is much larger than that generated by gréeital accretion onto
a dark matter halo, the finite entropy “floor” will prevent glsem collapsing to
high densities — essentially preventing accretion ontohéile. It is convenient
to parameterize this process in terms of the entropy geseiay the accretion
shock at the virial radius, which providesy.., ~ Tyir/n?/3(ryi;). Interest-
ingly, Keion/Knato ~ 10(Tyir/10* K)~1 for an NFW profile; thus the photoheat-
ing from reionization significantly suppresses accretiotodalos even somewhat
above the usual atomic cooling threshold: numerical cattahs of gas profiles
(assuming hydrostatic equilibrium within the virial shyahow that only~ 50%
of the gas is able to accrete Whéf}eion/Knalo ~ 1, decreasing rapidly for less
massive halos.

The efficiency with which photoheating suppresses acareticurs because this
process typically affects the gas while it has a small dgresid so efficiently im-
parts a large entropy to the gas. In fact, any other phototgeat even from a
modest X-ray background generated by rare quasars — catastibBy affect the
IGM entropy, preventing the formation of minihalos evendrefthey are ionized.
We can use the estimate of equation (8.40) to examine thslplity as well: if a
fraction f;, of the energy goes into heating (rather than ionization)hesse

7 fov\ [ feonl fBH In
Tigso ~ 20,000 fose.q (ﬂ) (W) (o.m) (104) (1—/3> K, (8.52)

so substantial heating is clearly plausible. Evefijf, ~ 1000 K — with a very
modest accompanying ionized fraction — the arguments asloow that minihalo
formation would be almost completely suppressed.

Figure 8.10 shows some of these effects quantitatively. bidiem panel illus-
trates how the entropy suppresses the collapse of gas orkkonddter halos. The
uppermost solid curve shows, in this model if no excess entropy is introduced,
including only minihalos withl;; < 10* K. The dotted curves add” = 1 and
10 eV cn? (upper and lower, respectively). Even these modest legelsaef.;
by a factor of a few to even an order of magnitude. The loweildstlirve, la-
beledKicm(z) shows aminimalsuppression due to reionization, in which the gas
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Figure 8.10 Effects of the IGM “entropy floor” on gas clumpifrgm virialized miniha-
los (top pane) and the collapse fraction of gas onto dark matter habogt¢m
panel In each panel, the uppermost solid curve show the modellegicn
with no entropy injection. The lower solid curve, label&dzn (2), shows the
effect of a numerical calculation of entropy injection vilgpoionization and
subsequent recombination (which decreaethrough radiative cooling). The
two dotted curves show estimates for entropy injection a&dfibevels (perhaps
by an X-ray background). Figure credit: Oh & Haiman 2003, MASR 346,
456.)

is actually allowed to recombine for roughly a Hubble timeafdatically decreas-
ing its entropy at high redshifts through recombinationlgwy). This essentially
eliminates minihalo formation.

The top panel shows an estimate of the effective clumpintgfa€ = (n?) / (n)?,
when only gas inside of minihalos is included. (Thus it uedémates theotal
clumping factor that must include gas outside of virializggjects, but it more
clearly shows the effect on these objects.) Again, evenadively modest entropy
injection dramatically reduces the contribution of thebgots as photon sinks dur-
ing reionization.

The suppression of accretion onto halos above the atomiingoiinreshold is
important for understanding high-redshift star formatidn detail this threshold
depends on (1) self-shielding of gas within the potentidl (wehich in turn depends
upon its internal structure); (2) collisional recombimetiand cooling inside the
halo; (3) the amplitude of the ionizing background that ing@s on each halo; and
(4) the relative timing of gas accretion onto the halo anditiseappearance of the
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ionizing background.

Fortunately, simple arguments provide an estimate fordahge of halos in which
accretion is eventually suppressed. Halos larger thanglesImass in the heated
medium are essentially unaffected; this is usually paranesd by a halo circular
velocity threshold}; (see eq. 3.32), with

Tiam \'*
Vy=81(-—o kms™ . 8.53
! (15, 000 K) e (8.53)
However, the dark matter halo itself actually has an avedsgesity~ 200 times
the cosmic mean, so inside of it the gravitational force graiis larger than in
the mean density IGM. The Jeans mass evaluated with thisrldemsity then de-
termines the smallest halo that can acceatggas, parameterized by the limiting
circular velocity

Vi = 34 [ —11GM_ " km s} (8.54)
tm =25\ 15,000 K e '
Halos in the range fronv};,, to V; are able to accrete some, but not their entire
complement, of gas. The point at which halos are able to secbadf the expected
mass is roughly the filtering mass, or time-averaged Jeass (sa€3.2). This is
somewhasmallerthan the Jeans mass itself because the thermal pressuneeis lo
before reionization, allowing the early phases of assertbproceed rapidly.
Nevertheless, the effects of photoheating on high-retighifixies themselves
are considerably weaker than these simple estimates dufgeause it takes time
for the suppression to set in. Gas already close to accrétistijl able to do so,
because at the higher density characteristic of gas neatds,tentropy injection is
less efficient. This means that photoionization feedbackifests gradually over
a timescale comparable to the collapse time of dark matieshaessentially the
Hubble time. Indeed, detailed simulations show that soter af given region is
ionized, the suppression only affects halos with circukdouitiesv. < 10km s™1.
Becausd/; typically lies above the atomic cooling threshold for stamfation,
reionization willsuppresghe formation of stars inside small galaxies. In principle
this provides another test of reionization models, althoag described above this
suppression actually occurs gradually over a timescalepeoafle to the Hubble
time, so it will be difficult to separate from the many othectfars that affect the
cosmic star formation rate. If, however, reionization ighly inhomogeneous and
extended over time, the differing reionization historiedifferent regions of the
Universe may induce variations in stellar populations vehalsservable effects per-
sist to the present day. It may also have implications foreusi@gnding the wide
range in stellar populations of Milky Way satellites with< V7, if some accreted
gas (and formed their stars) before reionization and sotee af






Chapter Nine

Galaxies at High Redshifts

The study of the first galaxies has so far been mostly themadetut it is soon to
become an observational frontier. How the primordial casgas was reionized
is one of the most exciting questions in cosmology today. tNfeesorists associate
reionization with the first generation of stars, whose vitket radiation streamed
into intergalactic space and broke hydrogen atoms apartlirbdbbles that grew
in size and eventually overlapped. Others conjecture t@eéon of gas onto low-
mass black holes gave off sufficient X-ray radiation to ienilze bulk of the IGM
nearly simultaneously. New observational data is requicetest which of these
scenarios describes reality better. The timing of reiatdredepends on astrophys-
ical parameters such as the efficiency of making stars okl#lates in galaxies.

Let us summarize briefly what we have learned in the previbapters. Accord-
ing to the popular cosmological model of cold dark matteradvgalaxies started
to form when the Universe was only a hundred million years @dmputer simu-
lations indicate that the first stars to have formed out ofttimordial gas left over
from the Big Bang were much more massive than the Sun. Ladiéagy elements
to cool the gas to lower temperatures, the warm primordial gzauld have only
fragmented into relatively massive clumps which condensedake the first stars.
These stars were efficient factories of ionizing radiatiOnce they exhausted their
nuclear fuel, some of these stars exploded as supernovadispetsed the heavy
elements cooked by nuclear reactions in their interiors the surrounding gas.
The heavy elements cooled the diffuse gas to lower tempesatind allowed it to
fragment into lower-mass clumps that made the second gimei@ stars. The
ultraviolet radiation emitted by all generations of staverually leaked into the
intergalactic space and ionized gas far outside the boiesiairindividual galaxies.

The earliest dwarf galaxies merged and made bigger galagigme went on. A
present-day galaxy like our own Milky Way was constructedrososmic history
by the assembly of a million building blocks in the form of thest dwarf galax-
ies. The UV radiation from each galaxy created an ionizedl®im the cosmic
gas around it. As the galaxies grew in mass, these bubblemdep in size and
eventually surrounded whole groups of galaxies. Finalyy@re galaxies formed,
the ionized bubbles overlapped and the initially neutraligebetween the galaxies
was completely reionized.

Thus, it is galaxies — distant ancestors of our own Milky Wathat formed
the building blocks of large-scale structure during th@m&ation era (and likely
most of the cosmic dawn). In this chapter we will examine ¢helsjects in some
detail, from both theoretical and observational perspesti Although the above
progression of events is plausible, at this time it is onlyajecture in the minds



254 CHAPTER 9

of theorists that has not yet received confirmation from oleg@nal data. The
exploration of the reionization epoch promises to be onb@htost active frontiers
in cosmology over the coming decade. We are now in a positiamtierstand the
first pillar of these efforts: direct observations of galgpgpulations.

What makes the study of the first galaxies so exciting is that & work in
progress. Scientific knowledge often advances like a bgrfriont, in which the
flame is more exciting than the ashes. It would obviously hearding if our
current theoretical ideas are confirmed by future obsesuatibut it might even be
more exciting if these ideas are modified. In the remainirgiges of this chapter,
we describe the basic tools that can be used to understanol¢hef high-redshift
galaxies during the cosmic dawn.

9.1 TELESCOPES TO OBSERVE HIGH-REDSHIFT GALAXIES

9.1.1 The Hubble Deep Field and its Follow-ups

In 1995, Bob Williams, then Director of the Space Telescogier® e Institute, in-
vited leading astronomers to advise him where to point thietheiSpace Telescope
(HST) during the discretionary time he received as a Dingegthich amounted to a
total of up to 10% of HST’s observing timeEach of the invited experts presented
a detailed plan for using HST's time in sensible, but compbdserving programs
addressing their personal research interests. After mbiteoday had passed, it
became obvious that no consensus would be reached. “WHaivghdo?” asked
one of the participants. Out of desperation, another ppait suggested, “Why
don’t we point the telescope towards a fixed non-speciattior and burn a hole
in the sky as deep as we can go?” — just like checking how fast yew car can
go. This simple compromise won the day since there was ndeesas for choos-
ing among the more specialized suggestions. As it turnedloist“hole burning”
choice was one of the most influential uses of HST as it proditfteedeepest image
we have so far of the cosmos.

The Hubble Deep Field (HDF) covered an area of 5.3 squarediantes and
was observed over 10 days (see Figure 9.1.1). One of its @ibnefindings was
the discovery of large numbers of high-redshift galaxiestiine when only a small
number of galaxies at > 1 were known. The HDF contained many red galaxies
with some reaching > 6. The wealth of galaxies discovered at different stages of
their evolution allowed astronomers to estimate the viaain the global rate of
star formation per comoving volume over the lifetime of thmeverse.

Subsequent incarnations of this successful approachdedlthe HDF-South
and the Great Observatories Origins Deep Survey (GOODS)ctian of GOODS,
occupying a tenth of the diameter of the full moon (equivbteri1 square arcmin-
utes), was then observed for a total exposure time of a mileconds to create the
Hubble Ultra Deep Field (HUDF), the most sensitive deep figldge in visible
light to date’ Red galaxies have been identified in the HUDF image up to a red-

_fTurner, E. private communication (2009).
"In order for galaxy surveys to be statistically reliablegytmeed to cover large areas of the sky.
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Figure 9.1 The first Hubble Deep Field (HDF) image taken in5L9%he HDF covers an area
2.5 arcminute across and contains a few thousand galaxitssgfew candidates
up to a redshift ~ 6). The image was taken in four broadband filters centered
on wavelengths of 3000, 4500, 6060, and 831,4>®ith an average exposure time
of ~ 0.127 million seconds per filter.
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shift of z ~ 8, and possibly even higher, showing that the typical UV luosity
of galaxies declines with redshift at> 4. Most of the data we will discuss in this
chapter ultimately comes from the HDF and HUDF.

9.1.2 Future Telescopes

The first stars emitted their radiation primarily in the UVnok but because of
intergalactic absorption and their exceedingly high réftisineir detectable radia-
tion is mostly observed in the infrared band. The successtintd Hubble Space
Telescope, the James Webb Space Telescope (JWST), wildimeln aperture 6.5
meters in diameter, made of gold-coated beryllium and desigo operate in the
infrared wavelength range of 0.6—2& (see Figure 9.2). JWST will be positioned
at the Lagrange L2 point, where any free-floating test olg&ats in the opposite
direction to that of the Sun relative to Earth. JWST’s largeraure and position
outside the Earth’s atmosphere makes it particularly \seited to detect the faint,
compact galaxies we expect to exist during the Cosmic Dawlrpassibly discover
“smoking gun” signatures of Population Il stars, such asrgl UV sources with
no metal lines or strong He Il recombination lines (§6&t).

Several initiatives to construct large infrared telesspe the ground are also
underway. The next generation of ground-based telescojlebave effective
diameters of 24-42 meters, roughly three times larger tlmenlargest existing
optical/near-infrared telescopes; examples include th®fean Extremely Large
Telescopé? the Giant Magellan Telescope,and the Thirty Meter Telescopé,
which are illustrated in Figure 9.3. Along with JWST, theylvde able to image
and survey a large sample of early galaxies.

Additional emission at submillimeter wavelengths from swmlles (such as CO),
ions (such as C Il), atoms (such as O 1), and dust within the dataxies would
potentially be detectable with the future Atacama LargdiMiter/Submillimeter
Array (ALMA). 3 This array will contain sixty six 7 to 12 meter antennas posi-
tioned at very high altitudes in Chile, in order to see pastdtrong atmospheric
absorption at millimeter and submillimeter wavelengthss lperfectly positioned
to observe emission from dust and heavy elements in the Hailyerse.

Many other instruments are under development, complemgttie direct views
of the galaxies that one can obtain with these telescopes. eXample, given
that these galaxies also created ionized bubbles duringiggition, their locations
should be correlated with the existence of cavities in tretrithution of neutral
hydrogen. Within the next decade it may become feasible poex the envi-
ronmental influence of galaxies by using infrared telessdpesoncert with radio
observatories that will map diffuse hydrogen at the samshiéig (see§11 and
12.3).

Counts of galaxies in small fields of view suffer from a largsmic variance owing to galaxy clustering.
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Figure 9.2 A full scale model of the James Webb Space TelestByST), the successor
to the Hubble Space Telescope (http://www.jwst.nasa)galWST includes a
primary mirror 6.5 meters in diameter, and offers instruimsensitivity across
the infrared wavelength range of 0.6+28 which will allow detection of the
first galaxies. The size of the Sun shield (the large flat scieéhe image) is 22
meters<10 meters (72 £ 29 ft). The telescope will orbit 1.5 million kilometers
from Earth at the Lagrange L2 point.
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Figure 9.3 Artist’'s conception of the designs for three fatgiant telescopes that will be
able to probe the first generation of galaxies from the grouth@ European
Extremely Large Telescope (EELT, top), the Giant Magellate3cope (GMT,
middle), and the Thirty Meter Telescope (TMT, bottom). lreagredits: the
European Southern Observatory (ESO), the GMT Partnerahipthe TMT Ob-
servatory Corporation.
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Figure 9.4 “Windows” in the/-band night-sky spectrum. The black line indicates thestran
mission of the night sky (scale on right). The two lines atltoétom show the
night-sky spectrum at two resolution® (= 1000 and300; scale on left). The
vertical shading shows regions where the emission is less 13 of the mean
value. Figure credit: Barton, E. J. et é\strophys. J.604, L1 (2004).

9.2 METHODS FOR IDENTIFYING HIGH-REDSHIFT GALAXIES

Much of the baryonic mass in the Universe assembled intofgtaring galaxies
after the first billion years in cosmic history. Consequgntthe highest-redshift
galaxies are a rarity among all faint galaxies on the sky. Ahwoe for isolating

candidate high-redshift galaxies from the foreground pafien of feeble lower-

redshift galaxies is required in order to identify targeisfbllow-up studies.

9.2.1 Lyman- Emitters

One technique makes use of narrow-band imaging to idengfsoges for which
highly-redshifted line emission falls within the selecteand. An object that is
bright in the narrowband but faint (or, for these applicaipusually invislble) in
nearby broadband measurements can be identified as a littereffhis method is
typically applied to the Lymarnx line, which is often very strong because most ion-
izing photons absorbed by the galaxy’s interstellar medilBM) are reprocessed
into Lyman+ line photons through recombinations. However, it is algfhhyi sen-
sitive to the gas geometry and kinematics and can be exthgdiby dust. The
galaxies detected by this technique are teringdan« emitters (LAES) The pri-
mary challenges with this approach are:

e The infrared night sky:Terrestrial telescopes suffer from substantial atmo-
spheric absorption and strong night-sky lines in the igfddsands (primarily
from OH ions and water vapor). Figure 9.4 shows the night skihe rel-
evant spectral range, including both atmospheric absor@ind night-sky
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emission lines. The vertical shaded columns show “windowkére the
emission lines are below 1/3 of the average. The dark antldégfions take
moderate and high resolution bands, respectively (\&ite= A/AX = 300
and 1000). These open bands cover only 16% and 27% of thelbleadpec-
trum, respectively, indicating that this technique carydrd used in particu-
lar redshift ranges. So far, the most commonly utilized area 6.6, 7, 7.7,
and 8.5.

e Contamination from lower-line emitters: Galaxies have many other emis-
sion lines, of course, some of which can be very strong. Gfqdar concern
are Hx, [O Ill], H 3, and [O 11] lines. Such contaminants can be ruled out by
identifying other emission lines (unlikely to be possibbe & true LAE, but
very plausible for the lower-redshift interlopers) or by asering the contin-
uum emission (obviously very difficult for a faint sourcef.ohly a single
line is visible, the shape can help determine whether theobli§ truly an
LAE: as shown in Figure 9.5, observed Lymarlines in galaxies nearly
always have asymmetric profiles, with a sharp cutoff on the lside (due
to IGM absorption) and a long tail to the red side (due to rtgkaransfer
effects). Metal lines, on the other hand, are generally sgmgmetric.

e Interpretation and followup:Finally, although this method efficiently finds
galaxies at high redshifts, it provides little direct ploadiinformation — only
a single line luminosity, which as we will see in chapter 1hésavily de-
pendent on dust, the ISM clumpiness and dynamics, and theit@iation
state. Even deep followup observations typically deteatielor no stellar
continuum emission.

To date, LAE surveys have detected many higdeurces, but their interpretation
is still debated. We will return to the Lymam-ine as an important cosmological
probe in chapter 10.

9.2.2 Lyman-Break Galaxies

The second observational technique adopts several broals baestimate the red-
shifts of galaxies based on the strong spectral break grisom absorption by
intergalactic (or galactic) neutral hydrogen along thes{of-sight to the source.
As we saw in chapter 4, the IGM is optically thick to Lymanphotons at high
redshifts. Thus, little or no flux should be detectable shartl of 1216\ (1 + 2)
(irrespective of the history of reionization). For example identify a galaxy at
z = 6 one needs two filters: one above and the other below the Lymlareak at

7 x 1216 = 8512A. The relevant bands até (centered at- 9000A) and 2’ (cen-
tered at~ 80007—\) of HST, as illustrated in Figure 9.6. This method was firs¢d
at lower redshifts; ~ 3—4, where the intergalactic HI column density is smaller
and so the related Lyman-limit break at ¥@as instead adopted to photometri-
cally identify galaxies. The 9¥break is not observable at source redshifts 6,
because it is washed out by the strong Lymaabsorption at lower redshifts. The
sources detected by this techniques are terbyeaan-break galaxies (LBGS)
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Bunker, A. et al., preprint arXiv:0909.1565, (2009).
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The key challenge of observers is to obtain a sufficientlylsiginal-to-noise ra-
tio that LBGs can be safely identified through the detectitmsingle redder band.
Figure 9.6 illustrates how a color cut ¢f — 2')Ap > 2.3 is effective at select-
ing sources at redshifts> 6. The reliability of this dropout technique in rejecting
low-redshift interlopers can only be tested through spesttopic observations. The
/-drop spectra typically show a single emission line at thmap« wavelength,
with no significant continuum; as in Figure 9.5, the linestgpcally asymmetric
and can indicate clearly the source redshift. However, anfisaction of galaxies
have Lymane lines and spectroscopic followup is often difficult.

The NIRSpec spectrograph on JWST covers observed wavakeimgthe range
0.8 — 5um and is ideally suited for the task of identifying the redishof distant
galaxies. This instrument will have the sensitivity to detie rest-frame UV and
optical continuum emission over the full range of emissioies from Lymane
(12164) to Ha (6563A) for galaxies at: ~ 6. Analogous studies of galaxies at
z ~ 3 with HST have produced a detailed understanding of thenatgroperties
of these galaxies.

9.2.3 Finding Faint Galaxies With the First Gamma-Ray Burst

Traditional methods of finding galaxies, including both tht&E and LBG tech-
nigue, select galaxies above a given luminosity threshottsa are biased toward
identifying the brightest galaxies. However, as we will $eow much of the
activity at high redshifts likely occurs in faint galaxiesrfbelow the luminosity
threshold of even extremely deep observations like the HU®there any way to
find more typical galaxies?

Remarkabely, the best way is to find individual sources retien the collective
emission of galaxies. Explosions of individual massivessfauch as supernovae)
can outshine their host galaxies for brief periods of timéhe Drightest among
these explosions afeamma-Ray Bursts ( GRBgpserved as short flashes of high-
energy photons followed by afterglows at lower photon emsr@as discussed in
§5.6). These afterglows can be used to study the first stagsttlir To date, GRBs
have been discovered by ti@wift satellite out toz = 9.4, merely 540 million
years after the Big Bang, and significantly earlier than @imghiest known quasar
(z = 7.1). Itis already evident that GRB observations hold the psanaif opening
a new window into the infant Universe.

As discussed ir£5.6, long-duration GRBs are believed to originate from the
collapse of massive stars at the end of their lives (Figutd)5. Since the very
first stars were likely massive, they could have produced &RB so, we may
be able to see them one star at a time. The discovery of a GRBlftv whose
spectroscopy indicates a metal-poor gaseous environcmuly potentially signal
the first detection of a Population Ill star. The GRB redshédh be identified
from the Lymane break in its otherwise power-law UV spectrum. A photometric
detection can then be followed up with spectroscopy on @l&tpscope. Various
space missions are currently proposed to discover GRB dateti at the highest
possible redshifts.

In addition to individual source detections, GRBs are elguto reside in typical
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small galaxies where massive stars form at those high ri¢gls@ince the transient
GRB afterglow fades away, observers may search for the wiaatdveaker emis-
sion from its host galaxy. High-redshift GRBs may therefeseve as signposts of
high-redshift galaxies which are otherwise too faint to tenitified on their own.
Importantly, GRBs are expected to trace the star formatistoty in a different
way than galaxy surveys, since they can reside in galaxiesvitbe survey detec-
tion threshold (although other biases, such as metallicigy be important).

Moreover, standard light bulbs appear fainter with inchegisedshift, but this is
not the case with GRBs, because they are transient eventadieavith time. When
observing a burst at a constastiservedime delay, we are able to see the source
at an earlier time in its own frame. This is a simple consegaai time stretching
due to the cosmological redshift. Since the bursts are teight earlier times, it
turns out that detecting them at high redshifts is almoseasible as finding them
at low redshifts, when they are closer to us. It is a forturat@cidence that the
brightening associated with seeing the GRB at an intritigiearlier time roughly
compensates for the dimming associated with the increadistance to the higher
redshift, as illustrated by Figure 9.7.

9.3 LUMINOSITY AND MASS FUNCTIONS

The luminosity function (LF) of galaxieg,(L)dL, describes the number of galax-
ies per comoving volume within the luminosity bin betwdeandZ + dL. Itis the
most fundamental observable quantity for galaxy surveys segreat deal of effort
has gone into measuring it in both the nearby and distantusgv Figure 9.8 shows
measurements at= 4-8 of the rest-frame ultraviolet galaxy luminosity funetjo
with the most distant taken from the HUDF data. In this figuine, observed flux
per unit frequencydf /dv.ps) at an observed wavelengiy,s = (¢/vobs) IS trans-
lated to an equivalent AB magnitude using the relation,

(df/dyobs)

ergs~tecm~2 Hz !

MAB = —2.510g10 [ :| — 48.6. (91)

A popular fitting form for a wide range of galaxy surveys is yided by the

Schechter functign
L\ ¢ L
¢(L) = ¢u (L_*) €xXp (_L_*> , (9-2)

where the normalization, corresponds to the volume density at the characteristic
luminosity L., and« is the faint-end slope which controls the relative abunéanc
of faint and bright L > L,) galaxies. The total number density of galaxies is
given by,ng. = fooo ¢(L)dL = ¢,I'(a + 1), and the total luminosity density is,
Ugal = f0°° ¢(L)LdL = ¢, L.I'(a+2), wherel is the Gamma function. Note that
at the faint endpng, diverges ifa < —1 andug, diverges ifo < —2. (In reality,

the integrals converge anyway because there is a minimurimdsity for galaxies,

set by a combination of the minimum halo mass for gas aceretia the minimum
halo mass in which gas can cool.)
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Figure 9.7 Detectability of high-redshift GRB afterglows a function of time since the
GRB explosion as measured by the observer. The GRB afteffjiavin Jy) is
shown at the redshifted Lymamwavelength (solid curves). Also shown (dotted
curves) is a crude estimate for the spectroscopic detethi@shold ofJWST
assuming an exposure time equal to 20% of the time since tH2 &Rlosion.
Each set of curves spans a sequence of redshifts’5, 7,9, 11, 13, 15, respec-
tively (from top to bottom). Figure credit: Barkana, R., &&lo, A.Astrophys. J.
601, 64 (2004).
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press (2011).
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The curves in Figure 9.8 show fits of this form to the data; iyethis simple,
empirical structure does an excellent job of matching treeokations. Three points
emerge from these fit§1) the characteristic luminositl, declines toward higher
redshift;(2) the space density of galaxies/at also decreases; aii8l) the faint-end
slope may steepen at> 7 (though the evidence for this is still tentative). In lighito
typical models for structure formation, in which these géa are associated with
dark matter halos, this is hardly surprising: at higher héftis, fewer halos have
formed, and in any hierarchical model those that have foravedpreferentially
smaller. The interesting physics involves the mapping ftbenhalo mass function
to luminous baryons, which we discuss below.

The particular physical insight provided by a galaxy surdeypends upon the
selection technique and waveband used. In general, @sefultraviolet measure-
ments (such as those shown in Fig. 9.8) depend exclusivelyobistars able to
produce the observed UV photons. Because these high-naassast short-lived,
the UV luminosity is tied to the star formation rate (SFR) lod galaxies, although
there is an uncertain correction that depends on the IMFasEstin fact, there
are several ways to estimate SFRs from other measurementdlgthe following
conversions assume a standard Salpeter IMF):

e The rest-frame UV continuum (1250—1500,5\) - provides a direct measure
of the abundance of high-mass 5M main-sequence stars. Since these
stars are short lived, with a typical lifetime 2 x 108 yr(m, /5Mg) =25,
they provide a good measure of the star formation rate, with

L,
1028 erg s—1 Hz—1

SFR~1.4 < ) Mg yr~t. (9.3)
The primary uncertainty in this determination is extinatidia dust, though
that can be estimated from the spectra or from other obsensat

e Nebular emission lines such as K and[Oll], measure the combined lu-
minosity of gas clouds which are photo-ionized by very massitars ¢
10M). Dust extinction can be evaluated from higher-order Balfimes,
but this estimator is highly sensitive to the assumed IMIFtRe Milky-Way

IMF,
L(Ha) _

and
- L([O11]) -1

e Far-infrared emission (10-300m) - measures the total emission from dust
heated by young stars,

L(FIR)

SFR~ 045 ————
(1043 ergs™!

) Mg yr~ 1. (9.6)
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Figure 9.9 The star formation rate density (left verticalsvor luminosity density (right
vertical axis) as functions of redshift (lower horizontalis) and cosmic time
(upper horizontal axis), for galaxies brighter than an ABgmigude of -17.7
(corresponding t®.05L, atz = 3). The conversion from observed UV lu-
minosity to star formation rate assumed a Salpeter IMF fer dbars. The
upper curves includes dust correction based on estimatectrap slopes of
the observed UV continuum. Figure credit: Bouwens, R., et pieprint
http://arxiv.org/pdf/1006.4360v4 (2010).

e Radio emission for example at a frequency df4 GHz — measures the
synchrotron emission from relativistic electrons prodiizesupernova rem-
nants. The supernova rate is related to the “instantangmosiuction rate
of massive starsX 8M), because these have a short lifetime, giving on
timescales longer than 108 yr,

L,(1.4GHz)
1028 erg s~ Hz !

Integration of the luminosity function of galaxies with arkel that measures
their star formation rate yields the star formation rate g@noving volume in the
Universe. Figure 9.9 shows a recent determination of this lbased on the UV
luminosity function as a function of redshift for all galasibrighter thar.05 L,
at z = 3 (corresponding to an AB magnitude of -17.7). Most of thes@asnee-
ments are made from UV data, so the correction for dust etkdinés particularly
important (shown by the upper set of measurements here), e must note that
this is alower limit to the true star formation rate density, because ibigs feeble
galaxies below the detection threshold.

One obvious omission from our list of star formation ratei@adors is the Lyman-
« line, which as we discussed is useful in detecting highhédgalaxies. How-
ever, as we will see in chapter 10, the interpretation ofénigssion line is fraught

SFR~1.1 ( > Mg yr~t. (9.7)
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with uncertainties about the galaxy’s dust content, ISMdtire, outflow proper-
ties, and environment. Therefore, the Lymarine is not a good star formation
rate indicator. However, one can still construct a lumityo&inction of emission
in this line; Figure 9.10 shows recent determinations irréashift range ot = 3—
6.6. In contrast to the luminosity function of photometligaselected LBGs, LAES
do not appear to change in comoving number density betweeBs—5.7, although
their density appears to decline rapidly beyond that. Thégy ine an indication
of changes in the galaxy environments — and possibly redioiz — though that
interpretation is very controversial.

Meanwhile, the mass budget of starszat 5—6 can be inferred from their rest
frame optical and near-infrared luminosities, which arechaloser to measuring
the total stellar content than ultraviolet light, becausg-mass stars emit in these
bands. Measuring this total stellar content is more phylgigateresting than the
star formation rate density because the cumulative depsayides a census of
stars that were made in faint galaxies below the detectimstiold and only later
incorporated into detectable galaxies. Moreover, it pilegisome information on
thepasthistory of star formation (though still subject to uncentgiwith the IMF).
Figure 9.11 shows some recent measurements of the growtk tftal stellar mass
density in the Universe. Note in particular that only a snfi@ttion of the stars
present at < 2 formed atz > 6, though this is subject to an unknown correction
from undetected galaxies.

9.4 THE STATISTICS OF GALAXY SURVEYS

Measurements of the statistical properties of galaxiexhatienging, and in this
section we will discuss strategies to constrain their privge including “one-point
functions” like the luminosity or stellar mass functionsvasll as spatial correla-
tions. The former generally provide insight into the bargophysics of galaxy
formation — how dark matter halos accrete gas and transfoimhol stars — while
clustering provide insight into the dark matter halos thelvess.

9.4.1 Estimates of Galaxy Clustering

We have already described our primary tool for understaptlie spatial distri-
bution of galaxies, the power spectrum, §B.7.5, where we developed it through
the halo model. In this representation, it contains two terthetwo-haloterm,
which describes the correlations between distinct darkenaalos, and thene-
halo term, which describes the distribution of galaxies withmiadividual dark
matter halo. At high redshifts, where halos are small andbaloty host only one
“galaxy” (at least as we would define them observationatly®, latter likely dis-
appears in most halos. Thus, in the languagé3of.5, we will adopt N |m) = 1
for all halos above a minimum mass set by accretion or feddbag,;,,, and zero
otherwise.

The key additional input that we need is some way of mappiegtiserved lu-
minosity (in some photometric band or emission line) or othieservable to halo
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Figure 9.10 Luminosity function of LAEs from = 3-6.6. The light solid circles show
the measured luminosity function at= 6.6, while the lighter solid circles
show the same for = 5.7. The solid line show Schechter function fits to
these as well as the best fitat= 3.1 (lightest curve). The LAE density drops
substantially fromz = 5.7 to z = 6.6, much faster than that of LBGs. Finally,
the open symbols show the number densities measured in ¢hsui+fields of
the z = 6.6 survey, illustrating the substantial variance betweenl$ieFigure
credit: Ouchi, M. et alAstrophys. J723 869 (2010).
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mass. One framework for doing so is tbenditional luminosity functiorinvolving

a functiong(L|m) which parameterizes the luminosity distribution of haldghw
a given mass. We will describe the complex physics behirglfimction in the
following sections; for now we assume that it can be constdifrom some the-
oretical or empirical arguments. As a crude example, howeve could suppose
that galaxies are luminous for a fractigia,., of the time but that there exists a
one-to-one relationship between luminosity and mégs;), while they are “on.”
In that case,

G(LIm) = (1 = fauty)0(0) + fautyd(L[m]). (9.8)
Assuming only one galaxy per halo, and given a minimum olzs@eduminosity

Ly, the predicted galaxy power spectrum will be
2

Pk, 2) = Pin(k, 2) [/ dmwmm,z)beﬂv(Mm,z) . (9.9)
obs
where
(> Lmin|m):/ dL $(Lm). (9.10)
Lmin

Comparison to equation (3.85) shows that we have droppéuitloeprofile (under
the assumption that each halo contains only one galaxy)epidaed N |m) with
f(> Lmin|m), which is the probability that a halo of masshosts an observable
galaxy — clearly, these are two different ways of expres#iegoccupation fraction
of dark matter halos. One can then define a mean bias for tieigygsampleb. (k)
by averaging over all the observable galaxies, S0 Batobs ~ best (k)% Pin (K, 2);

in the limit of linear fluctuations, this mean bias is indegent of scale and can be
predicted using the excursion set formalism in equatiob53.

Because this effective bias depends on the underlying nfdbg galaxy halos
— a property of the population that is otherwise nearly ingilue to measure — the
galaxy power spectrum is of fundamental importance. We algid see in the next
section that it can shed important light on reionization &l.wwWe will therefore
next describe how it can be measured and the errors that aywpea doing so.

Let us suppose that we have a survey over some finite voldmEor now we
will assume that the three-dimensional locations of thexjak are known through
some spectroscopic survey. Let us define the galaxy ovetgddos a modek;
through the Fourier transform of the galaxy density field,

3
o(k;) = dva(x)ég(x)eiki'x, (9.11)
whereWV (x) is thewindow functionwhich is non-zero only inside the survey vol-
ume and is normalized so thfiti*=W (x) = V, the total survey volumé. We
then write

(6(ki)d(k;)) = Cj; + Cf (9.12)

170

iii'|n practice, we can incorporate any other selection functguch as the likelihood of detecting
a galaxy at a particular redshift given some photometriect&n criterion, into the window function.
Such practical considerations make the analysis more @aipit do not change the basic methodology
we describe.
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whereC? is thesignal covariance matriandC" is thenoise covariance matrix
Here the angular brackets denote an average over the derigs in the Universe.

Substituting equation (9.11) inté(k; )4 (k;)), this average operates on the galaxy
overdensity terms; from equatiof??), this gives the correlation function of the
galaxy field:

1 , _—
Cf;. =73 /d3x 3’ W(X)W(x')fgal(x — x/)ezk’?'xe_zkj'x . (9.13)

However, the correlation function is simply the Fouriemsform of the power
spectrum (see eq. 2.15), so we can write

3 Vik: — V*(k: —
Cj = / %Pg‘“(k)w(k’ k)VV;/ &~k (9.14)

where W (k') is the Fourier transform of the window function. Comparigon
equation ??) shows that this closely related to the variance in the flatidms over
the volume of the survey.

To gain some intuition for this expression, let us considens concrete choices
for the window function. First, suppose that we observe aegphl volume of
radiusR around some central poist.V Then

W(k; —k) = / A3 etk (9.15)
|x—xo|<R

In the limitthatR — oo, this is proportional to a Dirac delta function, so we would
have
C; ~ (2m)* P(k;)s” (ki — k;), (9.16)

which matches our original definition of the power spectraqg. 7). A finite R
broadens the delta function, so that the Fourier transfoas d non-zero width
~ (2m)/R. This means that the measured signal will be a weighted gearall
modes withk — k;| < (27)/R. Modes with wavelengths larger than the survey
volume will be unobservable — they have such smalk to be washed out; those
with k& > 1/ R will be essentially unaffected.

At least for the time being, a more realistic survey geomistey “pencil-beam:”
a narrow angular region (a few arcminutes across for HST a8 JYWith a large
depth in the radial direction, corresponding perhaps to&grbreak selection within
a particular filter set. In that case, the volume may reasgrabapproximated as
a long with radial depti\z and transverse widthAz and Ay, such thatAz >
Az, Ay. For a rectangular box, the window function is

W (k) = Wag (ke)Way (k) )Wa (k.), (9.17)
with (kg, ky, k) the Cartesian components of the wavevector, and
sin(k,Az/2)

v Choosing the central point to be the observer would cormedpo a volume-limited sample of
galaxies around us. However, for high-redshifts, the centt¢he survey would naturally lie at some
distant point.
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and similarly forWwa, andWa.. This function also is~ 1 for k, < 7/Az

and falls off atk, ~ =/Ax. The anisotropy of the window means that the mode
sampling depends on their orientations. Modes transvergeetline of sight must
havek, , < 2r/Ax in order to be sampled cleanly, but modes along the line of
sight must only havé:, <« 1/Az. Even these modes, however, are subject to
aliasing from short-wavelength transverse modes, siiyitarthe Lymane forest
power spectrum discussedia.3.4.

The noise termCY arises from the finite number of galaxies. This so-called
shot noiseterm is inevitable in any experiment that samples a disqoefgula-
tion of objects. Let us assume that the number of galaxidsnvé given volume
obeys Poisson statistics with the mean expected chudetermined by the un-
derlying density field. The probability of findingy galaxies in a region is then
p(N) = NNe=N /NI, with (N) = N and(N?) = N(N + 1). For this dis-
crete shot noise component, the average in equation (9d@)nes(d;é;) =
N=2((N; = N)(N; — N)) = N~'if i = j and zero otherwise. This expres-
sion replaces the power spectrum in equati@®).(Finally, we assume that we can
choose regions sufficiently small so that each one is eithgatg or contains at
most one galaxy; in that casé = 7, the galaxy number density. Finally, by anal-
ogy to equation??), we define theshot noise power spectruas P**°t (k) = 1/7,
or
) K

Ashot(lﬂ) = 271’27_L. (919)
This is an inevitable source of noise in any galaxy surveytufmately, provided
one has a good estimate forit can be accurately removed. Shot noise therefore
only poses a significant problem whens small, for example if the survey targets
extremely bright galaxies witlh > L, which are rare.

The power spectrum is by far the most common measure of cingteowing
to the relative ease with which it can be observed. Howevesnly measures
the variance (as a function of scale) of the underlying iistron; higher-order
correlations, like skewness, must be measured in other.waparticularly simple
approach to test for these is wittounts-in-cellsin which one divides the survey
volume into small cells and examines the distribution obgglcounts in the cells.

Another complication arises if the radial locations of tteaxies are not avail-
able, for example if the galaxies are found through the Lyiherak technique
without precise redshifts. In that case, clustering cdhlsti measured along the
plane of the sky. Thiangular correlation functior{or its counterpart the angular
power spectrum) was traditionally the best measure of efirgy, even at low red-
shifts. Intuitively, the angular correlation function Wsimply be the projection of
the three-dimensional form onto the plane of the sky. Follsamgular separations,
this is easy to do; we will discuss it in more detaikih?.2.

We also note that, whenever redshift is used as a proxy feartie (as in a
spectroscopic galaxy survey), peculiar velocities in takgy field will distort the
redshift-distance mapping. Fortunately, the velocitgef§ can be isolated, because
they do not affect positions across the plane of the sky: wesfore expect a dif-
ference in the clustering measured along the line of sigtitedong the plane of the
sky. Because these peculiar velocities themselves traagitherlying matter distri-
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bution, the correspondimgdshift-space distortionsan themselves be particularly
useful. We will discuss them farther §11.5.1.

9.4.2 Measuring the Luminosity Function

In addition to its intrinsic interest as a measure of halosnekistering also affects
the statistical uncertainty in number counts of galaxiethiwisurveys of limited
volume, the so-calledosmic varianceThis is crucial to understand for estimates
of luminosity and stellar mass functions, because it datezathe precision of such
measurements. By analogy to equati8f)( the fractional variance in an estimate
of the galaxy number counts is the integral of the signal amidenpower spectra
over allk-modes, weighted by the survey window function:

o2 dk W(k)?

<Z;E7>t2 = / ? [Agal(k) + A?}oise(kﬂ % (920)
The cosmic (or sample) variance, which is the first term orridjet hand side of
equation ??), results from the survey field sometimes lying in a regiorhigh
galaxy density and sometimes lying in an under-dense regianvoid.

Figure 9.12 compares the contributions from cosmic vagaartd shot noise as
calculated by linear theory for a mock survey as a functioitbpening angle,
0 = a./x(z). This plot can be used to estimate the effectiveness ofdigurveys
with large fields of view. Here we have used a simple model sigaduminosities
to dark matter halos, takingq.., = 0.25 and a star formation efficiency, =
0.16. Note how the shot noise is only important on small scalesnekiough the
fluctuations from gravitational clustering also decrea#é the opening angle of
the survey.

According to linear theory, the probability distributiofi the count of galaxies
is a Gaussian with variance given by the sum of the cosmic aigs& compo-
nents, so the power spectrum provides a complete representdlowever, non-
linear evolution in the matter field induces non-Gaussiauncsiire; because bright
high-redshift galaxies are so rare, these nonlineariggstave important effects.
Figure 9.13 shows this in the context of a pencil-beam suofeyalaxies (with a
3.4' x 3.4 field of view, as for the HUDF) in the redshift range= 6 — 8. When
compared to numerical simulations, the galaxy count skedigre well approxi-
mated by the linear-theory expressions at the low lumigadsitits.

However, for brighter galaxies linear theory begins to.fathe upper solid curve
in the top panel of Figur@? shows the variance calculated from numerical simula-
tions that include nonlinear evolution. These are largentthe analytic prediction
(shown by the lower solid curve) for halo masses> 10'° M. With the simu-
lations, one can investigate how this happens. Sh@vness

3
(N =(n)*) ot
83 = W. (9.21)
The skewness as a function of minimum luminosity is preskimtéhe bottom panel
of Figure 9.13. It is large at/;, > 10'° M, (the seemingly large amplitude vari-
ations in the skewness at low luminosity for= 6-8 are due to small nhumerical
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Figure 9.12 The theoretically predicted contributions e total variance (equatio®?;

solid lines) in Lyman-break galaxy dropout surveys as a sticogmic variance
(dashed lines) and Poisson shot noise (dotted lines) batittihs. The top and
bottom panels show results for surveys extending ftom 6—8 andz = 8-10,
respectively. Thin lines assume a luminosity thresholdgh, =29, while
for thick ones, the cut is atss0, aAg=27. Figure credit: Munoz, J., Trac, H., &
Loeb, A.Mon. Not. R. Astron. Sq&#05 2001 (2010).
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Figure 9.13 Upper panel: Predicted relative contributions to the fractional vadarin
the number counts of galaxies as a function of UV luminosityaia emis-
sion wavelength of 150&within a Lyman-break dropout survey spanning the
redshift intervalz = 6-8 with a 3.4’ x 3.4’ field-of-view (matching HUDF
and approximately that of JWST). Solid lines show the totiance, while
long-dashed and dotted lines show the contributions frosméo variance and
Poisson noise, respectively. The upper curves show thésdsum numerical
simulations, while the lower curves were calculated aiedjly based on lin-
ear perturbation theory. Vertical lines bracket the regidrere the variance is
higher than expected due to the skewness of the full coutatitty distribu-
tion but is not Poisson-dominated. The middle and top hotelaaxes translate
the monochromatic luminosity te-band AB magnitude and host halo mass,
respectivelylLower panel:Skewness of the full galaxy count probability distri-
bution calculated from a numerical simulation based on egu#9.21). Figure
credit: Munoz, J., Trac, H., & Loeb, AMon. Not. R. Astron. Sqa205 2001
(2010).
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fluctuations around the near-zero skewness from numeiicalations, plotted on
a log scale). The numerical simulations indicate that tlodability distribution of
massive halos (and hence presumably bright galaxies) hag-&aussian shape.
Deviations between the analytic and simulation values@ttimple variance grow
when the skewness becomes significant. This behavior is #estation of non-
linear clustering on the small scales probed by the narreg/inéthe survey skewer.

9.4.3 Measuring the Galaxy Power Spectrum

We have now shown how to estimate the galaxy power spectrahhew its fluc-
tuations affect number counts of galaxies (and hence thibsity function). As a
final step, let us briefly discuss the errors on a measurenfi¢imé @ower spectrum
itself: how large of a survey is necessary in order to reliabéasure the clustering
of a galaxy sample?

Given that real galaxy surveys have complex selection fanst the best way to
answer this question is of course with detailed simulatiofithe survey strategy.
The next best way is with thigisher information matrix , which provides a robust
lower limit to the errors on a given set of parameters in anyeexnent. We will
consider this latter approach here. Suppose one wishesdeureethe amplitude
of the power spectrum over a range of wavenumbiéré + Ak) in a survey of
volumeV (these are known dsand powerks Ignoring boundary effects from the
finite survey volume, the minimal error on the band powers is

AP(k) 2 1+ aP(k)
o)~ PN aranw [ AP (k) ] ' (©-22)

This expression is straightforward to understand. Reball the power spectrum
guantifies the variance in the density field amongst a set afesio Suppose we
have N independent estimates of these mode amplitudes. From etaryestatis-
tics, the mean squared error on an estimate of the variance this dataset will
be (AP)? ~ o0?/N, whereo is the variance of the measurements: in our case,
P + 1/n. We thus only need determine the number of independent ssnopthe
density field in a given power spectrum bin. First, let us evthie Fourier space
volume of in a binned measurement of the power spectrubra$A kA, where
1 is the cosine of the angle between the bin’s central waveveatd the line of
sight. (As mentioned briefly if9.4.1 and more extensively §11.5.1, peculiar ve-
locities induce an anisotropy with respecftoFor a crude measurement, however,
we can average over all modes with a single amplitude, soAhat= 2 and the
volume corresponds to a spherical shelkigpace.)

The final question is how many samples lie within this Fousigace volume.
Recall from§9.4.1 that the finite survey volume mixes all modes closeettogr
than~ (27)3/V. However, the reality of the density field imposes a constran
its Fourier transform, relating pairs of modes wkhand —k to each other. Thus,
the number ofndependensamples isV ~ 2rk?AkApu x [V/(27)3] x 1/2. The
prefactor in equation (9.22) is simply'v/N.

This approach provides a reasonable estimate for the voteméred to mea-
sure galaxy bias from a survey. In the regime where shot nsismimportant
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(i.e., P > n~!), a measurement with 10% precision requires a volume-of
10*(k/0.1 Mpc~1)~3 Mpc®. High-k modes evidently do not require particularly
large volumes, but related surveys run into shot noise dtighs unless they go
very deep; even the faintest HUDF galaxies have 0.01 Mpc™? (see Fig. 9.8).
Shot noise compromises modes witF? < 1. In that case, it is generally advanta-
geous to construct a deeper, rather than wider, survey.

9.5 THE PHYSICS OF GALAXY EVOLUTION

Attempts to reproduce the evolution in the luminosity fuoetof galaxies over cos-
mic time require various mechanisms of feedback from reiation, supernovae,
and gas accretion onto a central black hole. A comprehensigierstanding of the
physical details of these feedback processes (often usaaniranalytic models of
the luminosity function as a function of redshift) is lacginNevertheless, we can
at least identify the important processes that drive théutiom of galaxies. In this
section, we will briefly describe these ingredients, detiticaspecial attention to
how they might affect models and observations at high rétshi

The starting point for understanding the abundance, aingteand other prop-
erties of galaxies is the dark matter halo distributio(;:). We wish to understand
the mapping from halo mass to luminosity (in many differeamds or lines), stellar
mass, metallicity, star formation history, velocity dibtrtion, and any other physi-
cal properties of interest. Of course, there is nothing toaied that this mapping is
one-to-one, or even that these physical properties depaasévely on halo mass,
as they could also depend on the halo’s larger-scale ermigot, mass accretion
history, etc. The challenge of research on galaxy formadiush evolution is to un-
derstand which factors are most important, and how all aftiveeract to produce
the objects we observe.

On the coarsest scale, galaxies are machines that transfterated material
(whether acquired through smooth accretion or mergers)stars and black holes.
The crucial complication is feedback, which can both préyas from accreting
onto a halo in the first place and expel material that is alrgadsent (prevent-
ing it from forming stars, or providing potential fuel fortkxr accretion episodes).
Because this feedback is generated on the smallest sdatesadh stars or black
holes), understanding galaxy evolution requires a modshsmg a large range of
physical scales and processes.

Theoretical astrophysicists examine many of these probliacividually (and
hence generally in isolation from each other). Their resiaftorm coarser models —
including both “semi-analytic” approaches that rely oratilely simple models for
the many processes involved, as well as numerical simasijaohich rarely span
the required dynamic range and so also contain simple pptisers for at least
some of the processes). For the sake of brevity, we will folilbe latter approach
and aim only to parameterize the important processes angbstigome intuition for
the underlying physical processes. This is by no means a i@drapsive treatment
but should give a flavor for the “less” exotic processes tlffacagalaxy evolution
even at the present day and that are described in many o#tieotks (seé-urther
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Readingfor related resources).

The very simplest model involves two free parametéjghe fraction of baryons
converted into stars within a host halfy,; and(ii) duty cycle of vigorous star for-
mation activity during which the host halo is luminous and #tars are formed.
This model defines the star formation timescalg,as the product of the star for-
mation duty cycleepc, and the cosmic timeg(2) = 2/3H(z) at the redshift of
interestz. The star formation rata/, is then related to halo magg as follows
e x (/) x M
= 0 .
Within the context of this simplest model, the physics ofagés determines the
values off, andt, (which may depend on halo mass as well, and presumably have
some scatter between different halos at the same mass).ddorglex models are
obviously necessary to track more detailed propertiesegthurces as well. Some
of these ingredients are described below.

M, (M) (9.23)

9.5.1 Gas Accretion

The fuel for star and black hole formation inside galaxieprisvided by gas ac-
cretion onto the halo, either in a relatively slow, steadydmar in a stochastic,
“merger” mode. The first is relatively easy to model. Firshsinler a spherical sys-
tem. Provided that the gas accretes supersonically — a8 if thie halo has a virial
temperaturél’;, larger than the IGM temperature — we would generically ekpec
an accretion shock to form, at a radius comparable to thalvadius of the halo.
However, such a shock is only stable if the hot gas behinchitscgport the shock.

If, on the other hand, this gas can cool rapidly, the shocksink inward until it
stabilizes very near the galaxy when the sound-crossingtim~ r/c, becomes
smaller than the radiative cooling time per proton,

; 31 kT

cool = 3 )
2 pmy, p(r)A(T, 2)

wherep?A is the radiative cooling rate per unit volume. It is domimblbyy Comp-

ton cooling (at very high redshifts) and atomic line traiosis, and it therefore

depends sensitively on the metallicity and temperatur@efgas. In more detalil,
the condition for virialization shock stability is

AT, Z
rMTZ) g 19, (9.25)
H

(9.24)

udum
whereT is the postshock value andis the infall velocity.

The transition between these rapid and slow cooling regidggsends on the
halo mass and redshift. Crudely, halos with masses abosecttiical threshold
M.o01 Will have hot “atmospheres” that cool slowly. Gas will aderento these
atmospheres rather than the galaxy; in that case, the raaeaétion onto the
galaxy itself will be limited not by cosmological processes by cooling within the
atmosphere. On the other hand, halos with messc M., will be limited only
by the cosmological infall rate (and feedback from the galéself; see below).
This critical threshold occurs at 10'* M, for gas with primordial composition,
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or ~ 102 M, for gas with solar composition, with only a mild dependenoe o
redshift (the left-hand side of equation (9.25)0is pryi; A /u® o< (1 4 z)Y/2A).
This is sufficiently large that most high-redshift galaxiedl be fed through the
rapid-cooling regime and so be limited only by the rate offigokgical infall.

Recently, high-resolution simulations have shown thatfilaenentary geome-
try of the cosmic web changes this picture slightly; the fdapooling” regime is
generally fed by accretion along filaments that reaches #haxg's star-forming
region without any shocks at all. Theseld flowsprovide the primary fuel supply
for small galaxies, but the filamentary structures can peisilarger galaxies as
well. The transition between these two cooling regimes ésdfore not an abrupt
one.

The overall growth of halo mass can be tracked with analytigiaents and
simulations. In particular, the extended Press-Schedbtaralism described in
§3.5.2 provides a mechanism to estimate this, which mataln@erical simulations
reasonably well. In the standard cosmology, this appro&dy

M/MNQS M 0.15 1+ 2 0.75 (9 26)
H(z) ~ 77 \10% M, 7 ’ '

which illustrates how rapidly accretion occurs at theseyv@gh redshifts. (In
absolute terms, 80'° M, halo atz = 7 accretes gas at a ratedf Mg, yr—1.)

Before discussing the fate of the cold flow gas in the smab$iatost important
for high redshifts, we will briefly describe a long-standipgpblem for halos in
the slow-cooling regime) > M,q01, that motivates much of the work on galaxy
evolution. Although gas in this regime does indeed cool Bipitvis still relatively
fast by cosmological standards. Thus, high-mass galaxiesvaredshifts should
still have accreted most of their baryons and formed stam fthem. However,
observations show an exponential decline in the numberityersfsgyalaxies (with
L, comparable to the Milky Way luminosity) at mass scales welbty the expo-
nential cutoff inn(m) (which occurs near galaxy cluster scales) at the presert tim
Evidently, then, some mechanism must prevent gas in maksies fromover-
coolingonto their central galaxies. This is likely to be feedbadther operating
within the halos themselves or in the surrounding gas.

9.5.2 Halo Mergers

A second channel for adding mass to a galaxy is through a meiitfe a nearby
halo. These merger rates are also described (roughly) byextended Press-
Schechter formalism, and equation (9.26) implicitly ird#s such growth in the
overall accounting. However, the dynamics of such merg#ferdyreatly from
smooth accretion.

Mergers are often divided into two classes, depending omtass ratio of the
merging systems. Considet; andms being the masses of the two systems, with
my > mg. Major mergersare usually defined to have a mass ratig/mq <
4. Such an interaction is quite dramatic, with so-called leid relaxation” (due
to time-varying gravitational potentials during the irgetion) largely determining
the structure of the resulting merger remnant, which may heaesemblance to
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the merging galaxies. (Indeed, the classical picture ferfétmation of elliptical
galaxies is through major mergers of spiralsjnor mergers on the other hand,
havem, /ms > 4. The second system then makes only a small perturbatioreon th
first, and the remnant retains the overall structure of theemuassive object.

In particular, gravitational tides raised by mergers digitooth the stars and gas
inside the individual systems. The former can mix freelyt, the latter collide via
shocks, possibly triggering massive star formation overtstimescales (typically
a few dynamical times of the interacting galaxies). Ssiarburstscan be closely
studied in nearby galaxies, and indeed often show evidantrbng gravitational
perturbations. The rapid growth of high-redshift galaxias/ely suggests that such
starbursts may be very common in the early universe. Howewergers are dif-
ficult to model analytically, so they have most often beenligith with numerical
simulations. These show that equal mass mergers can rodghble the star for-
mation efficiency over isolated systems when averaged beemerger time.

9.5.3 Disk Formation

As halo gas cools, it loses the pressure support holding @gginst gravity and
contracts to higher densities. This contraction continurgs the gas reaches rota-
tional support owing to its angular momentum.

The net angular momentuth of a galaxy halo of mas8a/, virial radiusry;,,
and total energy, is commonly quantified in terms of the dimensionless spin
parameter,

A= J|E[V2GT M2 (9.27)

Expressing the halo rotation speedias, ~ J/(Mryi,) and approximatingy| ~
MVZ2 with V2 ~ GM /ryiy, we find A ~ Vit / Ve, i.€. X is roughly the fraction of
the maximal rotation speed above which the halo would brgak u

After cooling the gas settles to a rotationally-supportesk.d Let us write the
disk mass as a fractiom, of the halo mass and let the disk angular momentum
be a fractionj, of that of the halo. The scale radius of the disk is set by iatai
support. As a simple estimate, let us take an isothermallprfofi the dark matter
halo and neglect the self-gravity of the disk. We furtheuass that the disk has an
exponential surface density profile,

S(R) = %o exp(—R/Rq), (9.28)

with R, the disk scale radius. The total disk mass is thén = 273, R>. Be-
cause the circular velocity of an isothermal sphere is @nisthe total angular
momentum of the disk is

Jg=2m / V.S(R)R%*dR = 2M4R,V,. (9.29)

Setting this equal to a fractiofy of the total angular momentum of the halo as in
equation (9.27), we obtain an expression for the disk sealgth:
1

Fa=—5 (3—(1) Ayi - (9.30)
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Note that the factoy, /g is simply the specific angular momentum of the disk
material. The assumptions behind this simple expressiergaestionable: the
self-gravity of the disk likely cannot be ignored once itlapkes to a small size,
the dark matter profile is not exactly isothermal (and it magpond to the gravity
of the disk as well), and finally the disk may not have orgathizgelf into a simple
exponential profile. We also require some way to calibrate gpecific angular
momentum of the disk material and the spin parameter. Thereed distribution
of disk sizes in local galaxies suggests that the specificlangnomentum of the
disk is similar to that expected theoretically for dark reattalos, and so we assume
Jja/ma = 1. The distribution of disk sizes is then determined by thedis&ibution

of spin parameters and halo masses. N-body simulationsatelihat the former
approximately follows a lognormal probability distribati,

1 In?(A/A)] dx
p(A)dA = Ukmexp { 2072 ] 3 (9.31)
with A = 0.05 andoy, = 0.5.

Despite these difficulties, the simple model shows the explescaling of the
disk sizes with redshift: the size of a disk at a fixed halo nisgxpected to scale
asR, o (1 + 2)~L. Observations do indeed indicate that the luminous cores of
galaxies follow this expected trend over the wide redslaifige of2 < z < 8, as
illustrated in Figure 9.14 (though note that these galaaiedinned by luminosity
rather than mass).

For high-redshift galaxies, the primary lesson is that -ned@ugh the angular
diameter distancdecreasesvith z at high redshifts — the small masses and rapid
cooling of the halo gas likely mean that the sources are exlgcompact. Figure
9.15 shows the extrapolated relation between galaxy sideatshift, calibrated by
current data on the size distribution and luminosity funictdf high-redshift galax-
ies. It implies thattWSTwill only be able to resolve galaxies at an AB magnitude
limit map < 31 out to a redshift ok ~ 14. The next generation of large ground-
based telescopes will resolve all galaxies discovered WHMST but only if they
are sufficiently clumpy to enable detection above the brilgétmal sky.

9.5.4 Star Formation in Galaxies

Once the gas has cooled and collapsed to high densitiespataation can com-
mence. Determining the conversion efficiency of gas to $safe most important,
and most challenging, aspect of galaxy formation. Nevéeztse theorists and ob-
servers have made enormous strides over the next decadeslénstanding the
relevant processes, at least in the local Universe.

Traditionally, the star formation rate per unit arBa has been calibrated em-
pirically as a function of the total gas surface density,;. Observationally in the
local Universe, these gquantities correlate reasonablyavelr nearly seven orders
of magnitude in surface density, with

DINED ) (9.32)

wheren ~ 1.4 &+ 0.1. This so-calleKennicutt-Schmidt relationan also be inter-
preted in terms of a fixed fraction of the gas being convenméa stars per orbital
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Figure 9.14 Observed evolution of the mean half-light radiftigalaxies across the redshift
range2 < z < 8 in two bins of fixed intrinsic luminosity: (0.3-D).(z = 3)
(top) and (0.12-0.3)..(z = 3) (bottom), wherel..(z = 3) is the characteristic
luminosity of a galaxy at = 3 (Eqg. 9.2). Different point types correspond to
different methods of analysing the data. The dashed lindisate the scaling
expected for a fixed halo mass ((1 + z)~!; black) or at fixed halo circular
velocity (x (1 +z)*3/2; gray). The central solid lines correspond to the best-fit
to the observed evolution described &y(1 + z)~™, withm = 1.12 £ 0.17
for the brighter luminosity bin, aneh = 1.32 + 0.52 at fainter luminosities.

Figure credit: Oesch, P. A., et &strophys. J709, L21 (2010).
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Figure 9.15 Theoretically extrapolated relation betweataxy size and redshift for four
values of apparent AB magnitude. Theft and central panels show the
physical R..1) and apparent angular sizes. ), respectively. The thick grey
lines indicate the resolution of telescopes with diametersesponding t&éi1ST
(2.5 m), JWST(6.5 m) and a ground-based extremely large telescopELdr
(30m).Therightpanel showstheaveragesur facebrightnesswithinagalaxyscaleradiusasafunctionofred
29 mag shows th68% range of uncertainty on the mean. Figure credit: Wyithe,
J. S. B., & Loeb, AMon. Not. R. Astron. Sod.13 L38 (2011).
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time in the associated galactic disks. Despite the appatatess of this simple
idea, as an empirical relation it must still be tested in ovironments, and it is
unclear whether star formation would obey the same relatidhe low metallicity
and low initial magnetization of the gas within the first gades.

Thus, a deeper understanding of star formation is highliralele. As a first step,
note that stars in the local Universe form in molecular ckudne might therefore
expect a more fundamental scaling of the star formation étie the density of
molecular(rather than atomic) gas. We wrife;, for the fraction of molecular gas.
Furthermore, local observations show that molecular cdduth a constant fraction
eg =~ 0.015 of their gas into stars per free-fall time. This suggestdatimn

px = € fu,p/ta (9.33)

for the star formation rate. This relation then requires stingate of the molecular
fraction and the star formation efficiency parameter.

The derived relation is significantly more challenging thla@ analogous calcu-
lation in §5.1, because enriched gas has more channelsfdothation (particu-
larly on the surface of dust grains), a much more complexatéxth field (owing
to the embedded star formation), dust shielding, and a tembuinhomogeneous
ISM. The physical picture that emerges is one in which mdbaagas is confined
to the interiors of cold high-density gas complexes. We ntlush determine(1)
the relative mass of the cold phase, &2ythe fraction of the cloud able to go fully
molecular. The latter is determined by balancing the ratidpformation on dust
grains with photodissociation by the (dust-extinguistradljation field, similar to
the calculations presented in chapter 5.

The fraction of gas in the cold phase is determined ultinydbgl the feedback
from hot stars and supernovae. The canonical picture assamalltiphase ISM,
with a “hot” phase of diffuse ionized gas and a cold phase nédetar-forming gas
(and likely an intermediate warm phase of atomic gas thabedagnored). Crudely,
gas is exchanged between the phases (as well as the stetipooent) through
three basic processegg:) star formation (from cold gas to starg®) cooling in the
diffuse ISM (from hot to cold gas), an8) supernovae (from stars and cold gas
to hot gas). The last process includes not only the supergjeesa itself but also
cloud evaporation from conduction through the surroundioggas.

Radiative cooling is challenging to model in the ISM unldss galaxy is fully
resolved, because the density (and possibly composigdnyhly inhomogeneous.
For example, simply assuming a uniform cooling rate (evdraeoed by a clump-
ing factor) throughout the entire galaxy would not allawy gas to cool to very
low temperatures. In reality, cooling is highly inhomogeuns and subject to var-
ious thermal instabilities: because the cooling is mosidrap densest gas, this
material will quickly cool and become neutral, while the lo@nsity gas will re-
main hot. Fortunately, the simple assumption of a two-pmasdium, each with
a characteristic temperature, appears to provide a reaoapproximation to the
full physics: in this case, the radiated energy determihestiass flow rate from
the hot to cold phase.

Meanwhile, giant molecular clouds have much higher presstinan the sur-
rounding ISM (at least in local galaxies), suggesting thairtproperties are set
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by internal feedback processes rather than by couplinged$iM. In particular,
H 11 regions from embedded stars appear to provide the mgspitant feedback
mechanism. Because they are internally regulated, theepiiep of these clouds
do not vary much between galaxies, which explains the appaoastancy og —
though, of course, the conditions within high-redshiftegéés may be very differ-
ent (in particular, the ambient ISM pressure will of courepend on its density).

Numerical simulations have shown results consistent wiflagon (9.32), ex-
cept thatn ~ 2 for massive galaxies and ~ 4 for dwarfs, as required by recent
data.

An alternative approach to this “bottom-up” view (which ismlamentally based
on understanding the details of star formation) is to tréat formation within a
global context. The basic idea is that star formation cagy ontur if some sort of
global instability allows fragmentation to higher deresiti The condition for this
to occur is theToomre criterion(see$5.2.3),

CsKe

Q= G, <1, (9.34)
wherer, = (2Q/R)d(2R?)/dR is the epicyclic frequency for an angular fre-
quency of rotatiod2(R) = v/R at a (cylindrical) radius? within the disk. How-
ever, once fragmentation begins, feedback from star faonatill heat the gas,
slowing further fragmentation. On the other hand, if stanfation does not occur,
the gas will cool rapidly, decreasin@. The expectation (which appears to be re-
alized in nearby galaxies) is therefore that galaxies wilri stars sufficiently fast
to maintain@ ~ 1. With a model for the feedback effects of stars, this proside
alternative method to determing,.

The two most obvious feedback mechanisms are radiatiorsyredrom stars
and supernovae, which “puff up” the disk and support the g@snast the vertical
component of gravity. Focusing on radiation pressure dugMghotons for con-
creteness, we can write (c.f. the momentum injection ratafradiation ing6.4.1)

Prad ™~ (]- - fesc)ez*ca (935)

wheree = 10 3¢_3 is the fraction of the baryonic rest energy converted to pho-
tons. (In nearby galaxies, supernovae produce a compgvedssure, but at high-
redshifts the elevated ambient densities make them lessriarm.)

Again let us take the simple model of an isothermal densibfilerwithin the
halo with a 1D velocity dispersion, and assume that the disk contains a fracfipn
of the total matter. The fractiofy, is likely to be much larger thafl, /©2,,,, because
the baryonic component has already cooled and collapsediidisk. Assuming
a thin disk, the vertical component of hydrostatic equilibr can be written as
h ~ ¢;/Q, where) is the rotation rate. Writindgc, = 2ph, equation (9.34)
provides an expression for the gas density inside the disth these two relations
andc? ~ p/p, we can solve equation (9.35) for the required star fornmatade to
hold up the disk:

) Q o\’ o 4 7100 pc > B .
£, ~ 10 (m) (0—55) (soe=t) ( > ) My yr-1 kpe?,
(9.36)
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where we have scaledto the appropriate circular velocity fori@'® M, galaxy
atz =7.

This particular estimate ignores the contribution fromexunpvae to the pressure
and a possible enhancement in the radiation pressure frbared emission by
dust, but it gives a sense for how the global self-regulatiiterion can be used to
estimate the large-scale properties of galaxies. Such lmtgecally connect more
closely to the cosmological input parameters (the mass acretion rate onto the
dark matter halo). For example, givéti one can integrate the star formation rate
inwards and determine the gas fractigpn at each radius self-consistently. The
advantage of this approach is that it does not require aredilim to local galaxies
and so is more robust to any unknown changes in the smakl-gtalsics of star
formation at high redshift; the disadvantage is that it nsakgong assumptions
about@), the structure of the disk, and the relation between stanébion feedback
and the disk properties (ignoring other sources of pressupgort like turbulence,
for example).

However, the above relation does produce a surface-ddasitgonsistent with
local models. Definingsgr via 3, = esrrRYE (2, whereQ is the angular velocity
(comparable to the dynamical time, and roughly the growté o global instabil-
ities in disk galaxies), self-regulation & ~ 1 via radiation pressure yieldsrr
of a few percent for moderately large galaxies, with a prediscalingsr o X,.

9.5.5 Black Hole Growth in Galaxies

As described in chapter 7, it is now well-established thatriyeall present-day
galaxies with spheroids also have supermassive black hold®ir centers. Be-
cause the properties of these black holes correlate witin iost galaxies, it is
natural to include them in models of galaxy formation andetion. (We will also
see below that they may be important sources of feedbacknie gralaxies.)

Black holes may be fed smoothly and relatively slowly dutimg normal growth
of a galaxy: some small fraction of the accreted gas may dirtkeway through
the galaxy and be swept into the black hole. Thi@imal accretion rate is given
by the Bondi estimate fror§5.2.1, Mgy ~ G M3y p/c2, where the density and
sound speed; are evaluated at the accretion radias.. ~ GMpy/c?. However,
this generally produces slow accretion.

A more efficient method of feeding black holes is through a ma@ism that
channels gas toward the black holes. This can include arbaginstability (such
as bars or spiral waves), but in the cosmological contextxgamergers are often
identified as the most likely mechanism. As described prestig the torques gen-
erated during such mergers can be large, and a fair fracfitiisogas can be fed
toward the center of the remnant according to numerical Eitimns. Dimension-
ally, such strong torques will produce an inward radial eélpthat is some fraction
of the local sound speed-(0.2 for spiral waves).

However, the fate of this gas is difficult to determine aniabjty, because it is
of course also subject to star formation and feedback. Gltis models (as de-
scribed in the previous section) can in principle follow tees toward the galaxy’s
center, but a more phenomenological approach is often thikemssuming that
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the Mpp—o relation holds for all spheroidal galaxies and using iagsigna total
accreted mass following a merger. As usual, one must woroptlwhether this
relation holds during the earliest phases of galaxy foramefand in particular how
it extrapolates with redshift).

Of course, ifboth galaxies in a merger have black holes, the resulting system
will likely host a binary black hole. The fate of this mergisgstem is described in
§7.4, and it may have interesting signatures even beyontteheagnetic radiation.
If the binary does not coalesce before the next merger, & tfgp higher multiple)
system would form, from which the lightest black hole may jeeted at a speed of
thousands okm s~!. Due to the increase in merger rate at high redshifts, nlaltip
black hole systems are expected be more common in earlyigalax

9.5.6 Feedback and Galaxy Evolution

Feedback from stars and black holes is crucial for galaxyutiem models in at
least three respects. First, as we have already seen, itditin setting the prop-
erties of the star-forming gas within the galaxy itself,adiagh radiation from stars
and mechanical energy input via supernovae. Second, ttewithe gas, changing
its dust content, cooling rates, and stellar propertiesalfyi, winds (whether driven
by radiation pressure or supernovae) offer another end jgoiher than stars) for
accreted gas: it can be ejected entirely from the halo.

Modeling these different aspects is clearly very challaggand often it is pa-
rameterized in simpler fashions. For example, we have dyrsaen that the “in-
ternal” feedback regulating star formation can be imglditicluded in star forma-
tion laws with relatively simple phenomenological preptions like the Kennicutt-
Schmidt law or its more recent modifications (though, agaime must always
worry whether such prescriptions can be extrapolated thbtesthe high redshifts
of interest to us).

Chemical enrichment is the most straightforward of thefeces to model: given
an initial mass function, the rate at which material is eémeit and returned to the
ISM is straightforward to calculate. The ejecta are tygicabsumed to mix effi-
ciently with the ISM, so that future generations of starsehaonotonically increas-
ing metallicity. The major uncertainties in chemical exa@nu are the properties of
the gas accreting onto the galaxy (whether it is pre-endrhad the fraction of the
ejected metals entrained into winds and carried out of tiexga

Perhaps the most significant aspect of feedback is massHomsgh winds,
which can dramatically affect the overall star formatioficééncy in small galax-
ies. We have already discussed the complex physics of wingg.4. We expect
feedback to be most importantin the small gravitationa¢ptial wells of low-mass
galaxies. The most crucial question is how the wind efficjevaries with galaxy
mass, which depends largely on the underlying physics thementum-driven or
energy-driven). For example, suppose that the supernag@gaccelerates a frac-
tion of ISM material (at a raté/,,) to the escape speed of the dark matter halo.
Then we havell,, x M,wsn/v2.. If, on the other hand, much of the energy is
lost through cooling so that the momentum input of the supeaa or radiation
pressure from the stars drive the wind, thiel, o M*/vescn a significantly gentler
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dependence oty o< M1/3,

We note that beyond this overall scaling, the mass loadirtgefvinds is also
highly uncertain, because the total matter content of windsfficult to observe.
So far, the best evidence comes from redshifted metal Imgalaxy spectra, which
at best provide a velocity and column density of the matewéhout the distance
of the absorbing material from the galaxy, the total mas#fiedlt to assess. Typi-
cally, however, the mass loss rate is assumed to be roughbl &mjthe star forma-
tion rate.

Finally, winds not only entrain gas but can also preventwitgalactic gas from
accreting onto the galaxy by heating it. This reduces theuwnfate onto the galaxy.

Given the basic energetics of the process, the prevailipgeation is that su-
pernova feedback may suppress star formation in small gaand help explain
the relative dearth of low-luminosity galaxies comparedhe number of small-
mass halos. This is consistent with local observationsyevtie total stellar mass
is oc M?/3 for M < Myt ~ 3 x 10'° Mg, and constant above it. Assuming that
Esn o« M,, and that star formation continues until supernovae clearalo of
its remaining baryons by injecting an energy comparablé¢obinding energy of
the gas, we would expedtl, /M o« V2 o M?/3. If this explanation applies at
lower redshifts as well, we would expect a similar supp@sshere, in galaxies
with V, < 100 km s~ 1.

We should also consider feedback from black holes duringetion episodes of
guasar activity. This is primarily important in driving @atic winds. As we have
described irg??, the energy input from quasars can exceed that from stargdorm
tion, although the coupling of this energy to the ISM is not yaderstood. (In
some cases, such as jets from radio quasars, the energy oapedbe galaxy in
narrow channels without clearing all the gas.) On the otlaeidhthe tightV/gg—o
relation is highly suggestive of a fundamental relatiopghétween the growth of
black holes and their host galaxy’s stars. Because (ateastly) this relationship
suggests that the black hole mass scales superlinearlyhaithmass, this feed-
back channel isnoreeffective in larger galaxies and is often invoked as a paént
solution to the “overcooling” problem in massive, low-radsgalaxies.

Given the common “merger models” for AGN growth, one plalesiphysical
picture is that the merger funnels large quantities of gastd the remnant’s center,
triggering a starburst. Some of the gas continues to fallaimwand is accreted
by the black hole, which drives a wind outward into the galasdnce the black
hole grows large enough, this wind unbinds the remainingagakhalts the star
formation episode, at least until another major accreti@meoccurs. This scenario
naturally explains many aspects of the low-redshift Uréegsuch as the relation of
black holes to spheroids rather than disks), but its aptidindo very high redshifts
— where spheroids may or may not even exist, and the much rapid growth
of galaxy-sized halos likely prevents active black holesrfrentirely halting star
formation — is far from clear.
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9.5.7 From Galaxy Model to Stellar Spectra

In addition to the raw star formation rate, most observatkgsend on the initial
mass function (IMF) of the stars. We have already discudsisdn SS5.2.4 and
5.3.3, where we described how local measurements are temsigith a (broken)
power law in the stellar mass range©f0.1-100 M. Once true galaxies form,
with reasonably enriched gas, the IMF likely approachesfitrim, though (as we
argued before) the characteristic mass may increase atigtishifts owing to the
higher CMB temperature.

An additional issue that appears to be important for geimgraealistic stellar
populations is the finite mass of the gas clouds from whictsgtam, as it now
appears that most stars form in groups (though they maydéigperse). The range
of allowable star cluster masses is called thaster initial mass functionlocal
observations show are consistent with a power-law disiobwf number per unit
mass of slope- —2 (reflecting an equal amount of mass per logarithmic mass bin)
between a few tens te 10° M. This is important because the total fuel mass
may limit the maximum stellar mass that can form in that emwminent — in other
words, even if the underlying stellar IMF stretches smopthlvery high masses,
a dearth of high-mass gas clouds will cause a dearth of higésmstars. More
accurate stellar population models can be stochasticathpting the cluster initial
mass function to generate a set of star clusters and thehastiically sampling
the stellar IMF (taking into account the maximum stellar maldowed within each
one)Y

Given a metallicity and following this procedure for a setstdirs forming at a
particular instant, one can then calculate how the lumigasid spectrum of the
population evolve with time using libraries of stellar mtgleAlthough isolated,
non-rotating stars are well understood, there remain sonp®iitant uncertainties
in this modeling. The fundamental challenge is that theziowgj luminosity comes
from only a small fraction of the stars (those with the highreasses). Thus, small
variations in their formation efficiency or properties caause substantial uncer-
tainties in the models.

For example, the ionizing flux of stars cannot be observegkctlr and instead
must be modeled from their feedback effects on surroundirgregions. Mean-
while, the massive stars responsible for these photons &iavespheres that are
out of local thermodynamic equilibrium and often undergbstantial mass loss
through line-driven winds. These so-calMIf-Rayet starpresent particular chal-
lenges to models.

As a second example, most (75%) stars are born with neighbors (as binaries or
even larger multiple systems) in the local Universe. Bityaran dramatically affect
the evolution of the component stars. For example, supposétbe more massive
star) reaches its supergiant phase first. It expands rapiittysome of its envelope

VIt might seem more natural to a cosmologist to define the IMEhaset result of this process,
since that is the galaxy-wide initial mass function of stadtswever, in order to measure the stellar IMF
one must find a population of stars that formed simultangoush other words, a single cluster. Thus,
the canonical stellar IMF — measured long before the impegaf the cluster IMF was recognized — is
only part of the “real” mass distribution of stars.
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Figure 9.16 Spectral synthesis models of stellar populatiga) Spectra for an instanta-
neous burst of star formation with/, = 10° M. (b) Spectra for a constant
star formation rate withZ, = 1 My yr~'. Both panels show predicted spectra
for populations10°, 107 108, 10°, and 10*° yr after the onset of star forma-
tion. The calculation assumés = 0.05 Z, includes binaries, and ignores
nebular reprocessing in all cases. It adopts an IMF with peslaf —1.3 for
0.1-0.5 My and—2.35 for 0.5-120 M, and does not account for the finite
mass of star-forming clouds. Generated using the BPAS Slatigo synthesis
code (http://www.bpass.org.uk).

passing the Roche limit and escaping. The “naked” surfadhisfmore massive
star will then become hotter, producing more ionizing pinsto Meanwhile, the
neighbor may accrete some of this additional mass and lisefme more massive
(and hence hotter) and possibly gain angular momentum aatertaster (which
also tends to make it hotter).

Overall, stellar models vary by a factor of a few in their ining flux, even at
a fixed metallicity and stellar IMF. They are generally moaasistent with each
other atlonger wavelengths, but the differences can tilfriportant. Nevertheless,
several general trends are apparent:

e Stellar age: Because the most massive stars have the shortest lifetimes,
the spectrum (particularly at high frequencies) is extrigmsensitive to the
elapsed time since a star formation episode. Figurea®@sh®ws this ex-
plicitly. After only 1 Myr, many stars have not yet evolvedantheir hot
phases, and so the ionizing flux is relatively small. TheZong spectra
harden shortly afterward and then rapidly fade away as thestaws die.
Meanwhile, the continua also fade steadily as more stareégpn super-
nova.

e Star formation history: A corollary of the previous point is that spectral
measurements can determine the star formation history aflaxg There
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is, however, the important possibility that star formatioay not be instan-
taneous. If it instead continues at a constant rate for atiomg period (i.e.,
much longer than the age of the most massive stars), thedrghgy pho-
tons will still be sensitive to the high-mass, short-livedrs (and hence the
current star formation rate), but the lower-energy photsiisdepend on the
integrated population of low-mass stars and so measuretiestellar mass.
Figure 9.1® shows spectra with ongoing star formation over timescafes o
108, 107, 108, 107, and10'° years (from lower to upper curves). Note how
the spectra roughly converge after long times, only indrgpat very long
wavelengths as the galaxy continues to accumulate more arsllow-mass
stars.

However, we should emphasize that the starburst and carsséafiormation
rate histories are only simple examples, and of course netagldd observa-
tions can constrain more complex histories. For the higkh#ts of interest
to us, where galaxies grow extremely rapidly, the so-callegonential”

histories, where SFR e~*/*+, may also be appropriate.

Metallicity: In general, the higher opacities of heavy elements leadighbti}
cooler stellar atmospheres and hence redder spectra. @fe;athey also
change the spectral lines substantially. Figure 9.17tites this for low
and high metallicity models (see al§6.4 for a comparison to Population Il
models). Although the long wavelength tail is nearly unayeh increasing
the metallicity decreases the ionizing flux by a factor of agéveral. The
non-trivial differences amongst these spectra indicaaé ttie metallicity is
an observable quantity given high-resolution spectra. éi@g one must
bear in mind that metallicity is likely to evolve as star fation proceeds,
since it is the stars themselves that enrich the medium.

Binaries: Finally, we have already mentioned that the inclusion ofabjn
evolution can substantially modify the far-ultraviolet¥as of stellar popu-
lations. Figure 9.1 shows this explicitly. Binaries change only slightly the
long-wavelength flux but increase the ionizing flux signifitg

9.6 OBSERVATIONAL SIGNATURES OF THE ISM

In the previous section we saw how “synthesized” galaxy spexan be created
given information about the star formation history and gndies of the stars them-
selves. Of course, the other major component of the galaxy FSM — also has
important observable consequences that can affect botbkberved continuum
of the stars and, especially, the galaxy’s spectral linedirrA understanding of
these effects is necessary to understand the stellar canpdout it also allows

us to learn about the diffuse component of the galaxy andé@aduel supply

and feedback processes. Here, we will briefly outline thetrmegortant of these
effects.
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Figure 9.17 Spectral synthesis models of stellar populati(a) variation with metallicity;
(b) contribution of stellar binaries (assumiag= 0.05 Zy). Both panels show
predicted spectra for a constant star formation ratée 8 yr=*, 10® yr after
the star formation began. The calculation ignores neb@pracessing in all
cases, adopts an IMF with a slope-ei.3 for the stellar mass range 6f1—
0.5 Mg and a slope of-2.35 for masses betweem5-120 M. It does not
account for the finite mass of star-forming clouds. Generagng the BPASS
population synthesis code (http://www.bpass.org.uk).



294 CHAPTER 9

9.6.1 Nebular Emission Lines

The raw stellar spectra computedsi@.5.7 likely do not reach an observer without
substantial changes from their surroundings. The most idiateis the interaction
of ionizing photons with the local ISM: presuming that tharstform in dense en-
vironments, many of those photons will be absorbed by logdtdgen or helium
atoms. In chapter 8, we parameterized the fraction thatpestizeir host galaxy
with f.s. and saw that this is at most a few percent in low redshift gataxThe
remaining photons ionize atoms in their host galaxy, whieéntundergo radia-
tive cascades, reprocessing the energy originally coadkimionizing photons into
emission lines at longer wavelengths.

Figure 9.18 shows two examples of this reprocessing, fordifferent assumed
metallicities (note that the solar metallicity curve hasshifted down by a factor
of 100 for clarity of presentation; its continuum amplitudén reality just slightly
smaller). The strengths of these recombination lines areraéned by ionization
balance in the H Il regions. Assuming that they are Stromgggheres, the total
number of recombinations per second is determined by tte¢ totmber of ion-
izations and so it measures the ionizing luminosity. Thathet strengths of the
hydrogen (and helium lines, for very low metallicities anak Istars) depend on
atomic physics and so provide a measure of the temperattine gfas.

However, metal lines can also be important diagnostichidf tdo exist. These
are usually collisionally excited forbidden transitiossich as [O 1], [O I1I], and
[N 1I]; they are important because such ions have excitagomperatures- 10* K,
comparable to the expected temperatures of stellar H Ibregi The ratios of the
strength of these emission lines to those of hydrogen depettte (gas) metallicity
and can be used to estimate it; this has proven to be veryldawer redshifts,
though it is not yet possible at> 4.

Nebular emission lines also offer a useful probe of the eséegrtion, because
their strength is proportional tol — f.s.). Reprocessing shifts photons from the
short wavelength tail to longer wavelengths and so can eivange broadband col-
ors (i.e., a significant fraction of the energy measured iariqular observational
filter may actually be contained in emission lines rathentttee raw stellar con-
tinuum). For example, suppose one estimates a spectrat ifidex A~° from
the average broadband colors. The difference between ébililar reprocessing
and full escape corresponds to a rang@in 2.2-3.1 for very young stellar pop-
ulations & 3 Myr), though the difference falls te- 0.1 for older populations
(> 100 Myr). However, even whef... ~ 1, photons withA < 912 Awill not be
directly observable, because they will quickly be absofethe intervening IGM
atz > 5.

9.6.2 Dust

The most obvious effect on the stellar spectrum comes frost, dehich absorbs
stellar photons (especially those with short wavelengthsts up, and ultimately
re-radiates that energy in the infrared or submillimetardsm The effects of dust
depend on its total mass, its composition, and the relata@rgptry of the stel-
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Figure 9.18 Effects of host galaxy absorption on stellacspe The curve extending to
short wavelengths is the raw stellar spectrum (identicéth&curve with bina-
ries in Fig. 9.11). The other two curves show the spectrum assuming that all
ionizing photons are absorbed by the galaxy ISM and repseckisito emission
lines at longer wavelengths. The upper curve assuhes0.05 Z; the lower
curve assumes solar metallicity for both the stars and 1S, [atter is shifted
down by two orders of magnitude for clarity of presentati@enerated using
the BPASS population synthesis code (http://www.bpagaiky.
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lar and dust components of the ISM. The total dust mass detesnthe overall

extinction of the gas, while the composition of the dust datees the relative ex-
tinction across different wavelengths. Unfortunatelys tho-calledextinction law

is found to vary even amongst nearby galaxies, particufarghort wavelengths.
Given that high-redshift galaxies are much earlier in tisgar formation history,
one would also expect that their dust may have very diffecempositions from
those in the present-day Universe. Moreover, if the duskepeatially surrounds
star-forming regions it will have a larger effect on youngt ktars than on the low-
mass stars that may have wandered far from their birth sithss, predicting the
dust absorption from early galaxies is rather difficult.

The dust emission is equally interesting. The dust will asglthermally, though
the spectrum will not typically be a true blackbody, becadsst in different en-
vironments may have different temperatures (locally, mgdrom ~ 20—-40 K in
the low-density IGM up to several hundred K in star-formiegions) and because
of the range of dust particle sizes (the blackbody approtionds not valid for
wavelengths smaller than the particle radius). In a simpeeh the dust emission
spectrum can be parameterized by two quantifigsthe dust temperatufg;, and
(2) the dust emissivity, qust.

The dust temperaturé; is set by balancing the incident energy with the dust
emission. In the simplest model, we assume blackbody emnissid write,

Ty~ Téyp + T + T + Tagns (9.37)

where the four terms account for the CMB radiation field, madiative energy in-
put (via cosmic rays or supernovae), the stellar radiatigld fiand any energy input
from AGN (which appears to be important in some galaxies)e Hst two quan-
tities presumably scale with the surface density of stamfiion and black hole
accretion rate, respectively, though locally they appeasaturate at- 60 K and
~ 150 K, respectively. The CMB contribution is rarely importani@v redshifts,
but it will become much more significant at higher redshifts.

The dust emissivity is often approximated as a power k() « v, with
6 ~ 1 at high photon frequencies(in order to match observations) agd— 2 at
long wavelengths from standard scattering theory. If thet dkioptically thin, the
spectrum will follow f,, qust X €., dust B, @and the normalization will be determined
by balancing the input luminosity (from stars or AGN) withiglthermal emission.
At low and moderate redshifts, some very rapidly star-forggalaxies have such
high dust content that nearly all of their emission comesminfrared and sub-
millimeter bands. Whether more distant analogs for thes& éxso far unknown
and depends primarily on how quickly galaxies can buildéattgst columns.

Although it is clearly difficult to predict from first princigs, this dust emis-
sion has one very important property from an observer'sgetve: the spectra of
dusty star-forming galaxies are such that, in the sub-méter band, the observed
fluxes will be nearly independent of redshift well into thesgac dawn. This occurs
because the peak of the blackbody spectrum usually liesvialukof the observa-
tional bands, so it moves into the observed bands as theygataxishift increases.
Such anegative K-correctiormakes sub-millimeter observations potentially ex-
tremely powerful for observing distant galaxies. Figur&®illustrates this for a
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Figure 9.19 Observed flux density as a function of redshithiee sub-millimeter bands,
for several different fiducial dust temperatures. The sdliotted, and dashed
lines assume observations in tR&0, 450, and 175 um bands, respectively.
The three curves within each set take different dust tentpess, 7" = 20, 40,
and 80 K, from thick to thin lines. All assume dust emissivitgh 3 = 1.5.
Figure credit: Blain, A. W. et alPhys. Rep369 111 (2002).

model galaxy based on a local composite of dust-dominatéakigsa. It shows
how the observed flux for galaxies in three different bandsl taking three dif-
ferent fiducial dust temperatures, varies with redshiftefestingly, at the longest
wavelengths and/or lowest dust temperatures, the flux hamrties with redshift:
if a telescope (such as ALMA) can detect a given galaxy pdjratz ~ 1, it
may be able to detect similar galaxies all the way te 10.

9.6.3 Interstellar Absorption Lines

In addition to metal emission lines from H Il regions ($g26.1), metals in the
ISM will also cause absorption lines in a galaxy spectrumprinciple, these are
interesting for measuring the gas-phase metallicity ofl8d; however, in lower
redshift galaxies the strongest lines tend to be saturatemhéasured by the relative
strengths of doublet lines), which makes such a measuresmgneimely difficult.

Instead, these absorption lines are useful for measurm@hperties of galac-
tic winds. Interestingly, although many of the lines appssturated, they doot
completely attenuate the starlight. The depth of the altiwortherefore tells us the
covering fraction of the high-metal-column gas. Meanwhtese absorption lines
are nearly always redshifted, as would be expected for gagipout of the galaxy
along the line of sight toward the observer. These lineseftogr with Lymane,
which we will discuss in chapter 10) provide the best diragtlence for galactic
outflows at lower redshifts. However, their interpretatiemains extremely diffi-
cult because they provide no information on how far the gasttzaveled from the
galaxy.



298 CHAPTER 9
9.6.4 Radio Emission Lines

Another important tracer of the gas phase is emission frortecutar and atomic
lines: these provide a significant fraction of the coolingiasion that escapes
galaxies, especially in star forming regions. We will calesitwo important exam-
ples here: CO, which is an excellent tracer of star formaitiotine local Universe
(and at moderate redshifts), and the [C I1] fine structure (imith a rest wavelength
of 157.7um), which contains~ 0.1-1% of the bolometric luminosity of nearby
star-forming galaxies. Table 9.1 lists many other posdiialesitions, together with
their approximate (local) relation between luminosity atat formation rate.

CO has a ladder of rotational levels— (J — 1) with frequencies; = Jvco,
wherevco = 115.3 GHz, which corresponds to an excitation temperature of a
Tco = 5.5 K. This low temperature means that CO is excited even in the, co
dense molecular clouds out of which stars form. Moreovecabse carbon and
oxygen are relatively abundant, it is by far the strongedame in such regions.
At low to moderate redshifts, there is a tight correlatiotveen CO luminosity
(here expressed in the 1-0 transition) and the star formadite,

3/5
SER ) (9.38)

LCO(170) =3.2x 1O4L® (W
As usual, it is not clear if this relation can safely be extfaped to high redshifts.

To predict the CO luminosity on more physically motivatedgnds, we need
to know the molecule’s abundance as well as its excitatiomptgature. The lat-
ter is set by the cloud’s dust in equation 9.37). The abundance may not be as
important as it seems: in local galaxies, giant moleculands$ are optically thick
in CO, so decreasing the CO content does not (at first) dextbasoverall lumi-
nosity. However, note that the dust temperature in equ#€@v) does implicitly
depend on the metal content, because once a cloud beconielpphin to the
stellar photons the dust temperature decreases. Thisnatlirn decrease the CO
luminosity. In fact, nearby low-metallicity galaxies fallell below the relation in
equation (9.38), though the much more compact high-redghiéxies may have
very different characteristics.

Moreover, becauséqo is so small, many individual levels could be excited and
so many transitions could be visible. In local thermodyraegjuilibrium, the line
ratios just depend on temperature, but at different tempera and densities the
higher levels may not be thermalized. Ideally, one wouldhtliee to observe a
wide range of lines in order to fully characterize the molacelouds.

An alternative bright probe is the fine-structure 1541 line of [C 1], which
is much less sensitive to the chemistry of the molecularadourhis line, which
arises from a?Pg/2 —2 P, /5 electronic transition, has an excitation temperature
set primarily by collisions with free electrons and interans with CMB photons,
so it can be predicted much more robustly: the primary uadet is simply the
mass of atomic carbon, or the metallicity of the gas. For 6, the [C II] line is
redshifted into the sub-millimeter or millimeter range amdy be observed with
the ALMA observatory.
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Table 9.1 Prominent interstellar emission lines in stamiiog galaxies, along with their
typical ratio R between the luminosity and star formation rate (in units of
Lo /(Mg /yr)). For the first 7 linesk is measured from a sample of low redshift
galaxies; the other lines have been calibrated based onalla@ygM82. Table
credit: E. Visbal & A. LoebJCAP11, 16 (2010).

Species | Emission Wavelengtiym] | R[Le /(Mg yr—1)]

Cll 158 6.0 x 10°

ol 145 3.3 x 10°

NIl 122 7.9 x 10°

olll 88 2.3 x 106

ol 63 3.8 x 10°

NIl 57 2.4 x 108

olll 52 3.0 x 10°

12C0O(1-0) 2610 3.7 x 10°

12Cc0O(2-1) 1300 2.8 x 10*

12C0O(3-2) 866 7.0 x 10*

12CO(4-3) 651 9.7 x 10*

12CO(5-4) 521 9.6 x 10*

12C0O(6-5) 434 9.5 x 10*

12CO(7-6) 372 8.9 x 10*

12CO(8-7) 325 7.7 % 10*

12C0O(9-8) 289 6.9 x 10*

12C0(10-9) 260 5.3 x 10*

12C0O(11-10) 237 3.8 x 10*

12CO(12-11) 217 2.6 x 10*

12C0O(13-12) 200 1.4 x 10*

Cl 610 1.4 x 104

Cl 371 4.8 x 10*

NIl 205 2.5 x 10°
13CO(5-4) 544 3900
13CO(7-6) 389 3200
13CO(8-7) 340 2700
HCN(6-5) 564 2100
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9.7 GRAVITATIONAL LENSING

Another approach adopted by observers benefits from maggiélevices provided
for free by nature, so-called “gravitational lenses.” Rahisters of galaxies have
such a large concentration of mass that their gravity bemeltight-rays from any
source behind them and magnifies its image. This allows wbseto probe fainter
galaxies at higher redshifts than ever probed before. Ttighiét record from this
method is currently associat®dwith a strongly lensed galaxy at= 7.6. As of
the writing of this book, this method has provided candidgtiaxies with possible
redshifts up taz ~ 10, but without further spectroscopic confirmation that would
make these detections robdét.

The chance alignment of a foreground object along the lirgéghtt to a high red-
shift source could result in the magnification, distortiangd potentially splitting of
the source image due the deflection of its light rays by theigrigonal field of the
foreground object. The probability fgravitational lensinggrows with increasing
source redshift, due to the increase in the path length o$dluece photons. Al-
though the lensing probability is only of anecdotal sigrifice of< 1% for sources
atz < 2, its magnitude could rise by an order of magnitude and affexstatistics
of bright sources during the epoch of reionization.

Assuming that the gravitational potential of the lens is-nelativistic|®/c?| <
1, the effect of spacetime curvature on the propagation bf ligys is equivalent to
the effect of an effective index of refraction

n=1- 32 . (9.39)
(&

This follows from the deviation imparted to the phase of tleeomagnetic wave
by the potential of the lens (relative to a flat spacetime itletiThe lens potential

® is negative and approaches zero at infinity. As in normal gadoal optics, a
refractive indexn > 1 implies that light travels slower than in vacuum. Thus, the
effective speed of a ray of light in a gravitational field is

c
v=—

2
~c— . (9.40)

The total time delayAt, so-called th&hapiro delayis obtained by integrating over
the light path from the observer to the source:

observer

At = / % |D|dl . (9.41)
source &

A light ray is defined as the normal to the phase front. Sib@nd hence the phase

delay of the electromagnetic wave vary across the lenshariéy will be deflected

by the lens as in a prism. The deflection is the integral albedight path of the

gradient ofn perpendicular to the light path, i.e.

- - 2 -
&= —/VLndl =5 /V@dl. (9.42)

In all cases of interest the deflection angle is very small.céfetherefore simplify
the computation of the deflection angle considerably if wegrateV | n not along
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the deflected ray, but along an unperturbed light ray witlstirae impact parameter
(with multiple lenses, one takes the unperturbed ray frasrstiurce as the reference
trajectory for calculating the deflection by the first lenise tdeflected ray from
the first lens as the reference unperturbed ray for calogdtie deflection by the
second lens, and so on).

The simplest lens is a point magd,, with a Newtonian potential,

GM
(b2 + 22)1/2°
whereb is the impact parameter of the unperturbed light ray, amadicates dis-

tance along the unperturbed light ray from the point of ckébsgproach. We there-
fore have

D(b,z) = — (9.43)

GMb

vl¢(b) Z) = (b2+22)3/2 ?

(9.44)
whereb is orthogonal to the unperturbed ray and points toward thatpoass.
Equation (9.44) then yields the deflection angle

4GM
c2b

Since the Schwarzschild radiusi.,, = (2GM /c?), the deflection angle is sim-
ply twice the inverse of the impact parameter in units of tbbvarzschild radius.
As an example, the Schwarzschild radius of the S@mi5 km, and the solar radius
i$6.96 x 10° km. A light ray grazing the limb of the Sun is therefore deféetby
an angle8.4 x 1076 radians = 1.”7.

The deflection angle from more a complicated mass distobutan be treated
as the sum over the deflection caused by the infinitesimat puaiss elements that
make the lens. Since the deflection occurs on a sealevhich is typically much
shorter than the distances between the observer and th@ilehe lens and the
source, the lens can be regarded as thin. The mass distritaftihe lens can then
be replaced by a mass sheet orthogonal to the line-of-sigtit,a surface mass
density

2 [~
a== /VLCD dz = (9.45)
C

(€)= / p(€ 2)dz (9.46)

where{Ls a two-dimensional vector in the lens plane. The deflecéingle at
position¢ is the sum of the deflections from all the mass elements inldreep
4G [ (€-)nE
@ =28 [LE_EPE) g (0.47)
¢ 1§ = ¢
In general, the deflection angle is a two-component vectorthé special case
of a circularly symmetric lens, the deflection angle poirtward the center of
symmetry and has an amplitude,

ol

_AGM(€)

Erat (9.48)

a(§)
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Figure 9.20 Geometry of gravitational lensing. The lightpaopagates from the source S at
transverse distancgfrom an arbitrary axis to the observer O, passing the lens
at transverse distance It is deflected by an anglé. The angular separations
of the source and the image from the axis as seen by the obsee/ and6,
respectively. The distances between the observer and tlieesdhe observer
and the lens, and the lens and the sourcdareDy4, andDgys, respectively.

where¢ is the distance from the lens center ald¢) is the mass enclosed within
radius¢,

3
M) =2m /0 B de' . (9.49)

The basic lensing geometry is illustrated in Figure 9.20igAtiray from a source
S is deflected by the anglé at the lens and reaches an observer O. The angle
between some arbitrarily-chosen axis and the true sours#iqo is 3, and the
angle between the same axis and the image?] iBhe angular diameter distances
between observer and lens, lens and source, and observeparm are denoted
here asDq, Dgs, andDg, respectively.

It is convenient to introduce the reduced deflection angle

Dds =

d=—Jrd. (9.50)
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The triangular geometry in Figure 9.20 implies thal, = 5Ds— & Dqs, SO that the
positions of the source and the image are related througsitiy@elens equation

F=6-a@). (9.51)
The nonlinear lens equation allows for multiple imaé&ﬂ a fixed source position
3. In a flat Universe, the comoving angular-size distanceplyiradd up, with
Dds(l + Zs) = Ds(l + ZS) — Dd(l + Zd)-

Because of the equivalence principle, the gravitationfiedgon is independent
of photon wavelength. In addition, since the phase spacstgeri photons must be
conserved (Liouville’s theorem), gravitational lensimggerves the surface bright-
ness of the source and only changes its apparent surface Hneatotal flux re-
ceived from a gravitationally lensed image of a source isefuee changed in pro-
portion to the ratio between the solid angles of the imagethadsource. For a
circularly symmetric lens, the magnification facjois given by

0 df
"
An extended source is lensed as a sum over infinitesimal f{j@nsegments, each
centered on different sky coordinates and having its ownmifiggtion factor.

(9.52)

9.7.1 Special Examples of Lenses
9.7.1.1 Constant Surface Density

For a mass sheet with a constant surface densjtgquation (9.48) implies a re-
duced deflection angle of,

Dds 4G 4G X DdDds

a(f) = = —_—

D, ¢ (Bre?) = ) 0, (9.53)

where¢ = Dg#. In this special case, the lens equation is linear withg 6. Let us
define a critical surface-mass density

2 D D \ '
Yo = — ——— =0.35 -2 , 9.54

147G DaDay s (1 GPC) ©-54
where the effective distancP is defined through the following combination of
distances

DqDaqs

Ds
For a lens with = X, the deflection angle ig(f) = 6, and sos = 0 for all 6.
Such a lens focuses perfectly, with a single focal length.aRgpical gravitational
lens, however, light rays which pass the lens at differenqeiot parameters cross
at different distances behind the lens. Usually, lensels Wit> .. somewhere in
them, produce multiple images of the source.

D= (9.55)

9.7.1.2 Circularly Symmetric Lenses

For a circularly symmetric lens with an arbitrary mass pegfdquations (9.48) and
(9.50) give,
Dgs 4GM(0)
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A source which lies exactly behind the center of symmetnheflens g = 0) is
imaged as a ring. Substitutiriy= 0 in equation (9.56) yields the angular radius of
the ring to be,

AGM (05) Das 1*?
02 Dd .DS '

This so-callecEinstein radiuslefines the characteristic angular scale of lensed im-
ages: when multiple images are produced, the typical angafzaration between
the images imagesis 20g. Also, sources which are closer thardg, in projection
relative to the lens center, experience strong lensingérstnse that they are sig-
nificantly magnified, whereas sources which are located eglide the Einstein
ring are magnified very little. In many lens models, the Egirsting also repre-
sents roughly the boundary between source positions teahattiply-imaged and
those that are only singly-imaged. Interestingly, by corimgeequations (9.54) and
(9.57) we see that the mean surface mass density inside iseeti radius is just
the critical density:.., .

For lensing by a galaxy masd at a cosmological distande, the typical Ein-

stein radius is
M 1/2 D —1/2
=(0."4) [ —— - . .
b = (0 )(1011M®> (5Gpc> (0-58)

O = (9.57)

9.7.1.3 Point Mass
For a point masd/ the lens equation has the form,

B=0— % . (9.59)

This equation has two solutions,

0. = % (5 +4/8% + 49%) . (9.60)

Any source is imaged twice by a point mass lens. The two imagesn opposite
sides of the source, with one image inside the Einstein nrjthe other outside.
As the source moves away from the lens (i.e.fascreases), one of the images
approaches the lens and becomes very faint, while the atieeyé approaches the
true position of the source and asymptotes to its unlensgd flu

By substitutings from the lens equation (9.59) into equation (9.52), we abtai
the magnifications of the two images,

—1
Og 4 u? 42 1
e l (9i)] 2uvuZ+4 27 (0-61)

wherew is the angular separation of the source from the point maasiis of the
Einstein angley = 6951. Sinced_ < 0Og, p— < 0, and so the magnification of
the image which is inside the Einstein ring is negative inmgythat this image has
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its parity flipped with respect to the source. The net magatifie of flux in the
two images is obtained by adding the absolute magnifications
s | = 2
H= |+ H—| = ’LL\/U2—-|-4 .
When the source lies on the Einstein radius, we have 0, v = 1, and the total
magnification becomes

(9.62)

p=1.17+0.17=1.34. (9.63)

9.7.1.4 Singular Isothermal Sphere

A simple model for the mass distribution in a galaxy assurhasits collisionless
particles (stars and dark matter) possess the same isotreloicity dispersion ev-
erywhere. Surprisingly, this simple model appears to desaxtremely well the
dynamics of stars and gas in the cores of disk galaxies (wtaiaéon curve is
roughly flat), as well the strong lensing properties of spidal galaxies.

We assume a spherically symmetric gravitational potentlach confines the
collisionless particles that produce it. We can associateféective “pressure”
with the momentum flux of these particles at a mass depsity

p=po, (9.64)
whereo, is the one-dimensional velocity dispersion of the parickssumed to

be constant across the galaxy. The equation of hydrostatiiterium (which is
derived from the second moment of the collisionless Boltamaquation) gives

ldp  GM(r) dM(r)

pdr 12 dr
where M (r) is the mass interior to radius A particularly simple solution of
equations (9.64) through (9.65) is

=drrip, (9.65)

o2 1

=—< — 9.66
p(r) =553 (9.66)
This mass distribution is called tlstngular isothermal spher@nd will be abbrevi-
ated as SIS below). Singex 2, the massV/ (r) increasesx r, and therefore the
rotational velocity of test particles in circular orbitstime gravitational potential is
M
Vi(r) = GM(r) _ 202 = constant (9.67)
r

As mentioned, the flat rotation curves of disk galaxies atanadly reproduced by
this model.

By projecting the mass distribution along the line-of-gjgte obtain the surface
mass density,

o2

() ==2%- 9.68
©=35% (9.68)
where( is the distance from the center of the two-dimensional ofihe reduced
deflection angle from (9.48),

2 2
A v _ (11 Oy
& = 4m 7 = (1."16) (72001“571) , (9.69)
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is independent of and points toward the center of the lens. The Einstein raafius
the SIS follows from equation (9.57),

2
b = dm % b= =a (9.70)

Due to circular symmetry, the lens equation is one dimeradiokMultiple images
are obtained only if the source lies inside the Einstein.ritfgd < 0g, the lens
equation has the two solutions

0L =0+0g. (9.71)
The images af., the source, and the lens all lie on a straight line. Techigica
third image with zero flux is located ét= 0; this image acquires a finite flux if the
divergent density at the center of the lens is replaced byamgion with a finite
density.

The magnifications of the two images follow from equatiorb ),

0 O 0\ "
pe = 1+ 3 (1:F9i> . (9.72)
If the source lies outside the Einstein ring, i.egif> 0g, there is only one image
atd = 0, = ( + 0g. Searches for highly magnified images of faint galaxies at
high redshifts are being conducted near the Einstein ramfiokisters of galaxies,
where the magnification factor peaks.

9.7.2 Lensing Probability

A SIS lens has the simple property that the deflection afigéeindependent of the
impact parameter of the light ray. The condition for mukifinaging (and hence
strong lensing) is then that the source would lie inside thwstgin radius. The

probability that a line-of-sight to a source at a redshifpasses within the cross-
sectional area associated with the Einstein radius of SiSeker6?, gives a lensing

optical depth,

1673 [% D?(1 + z)? o dn
D=2 4 doy L 54 9.73
7(%) = /0 Z(Qm(1+z)3+QA)1/2/O T oy, Y (9.73)

where(dn/do, )do, is the (redshift-dependent) comoving density of SIS halitis w
a one-dimensional velocity dispersion betwegrando, + do,.

In calculating the probability of lensing it is important &low for various se-
lection effects. Lenses magnify the observed flux, and diftrses which are in-
trinsically too faint to be observed over the detection shadd. At the same time,
lensing increases the solid angle within which sources beeiwed so that their
number density in the sky is reduced. If there is a large veseof faint sources,
the increase in source number due to the apparent briglgtenitweighs their spa-
tial dilution, and the observed number of sources is in@dakie to lensing. This
so-called magnification bias can substantially increaseptiobability of lensing
for bright sources whose number-count function is steepe miagnification bias
for sources at redshift, with luminosities betweeh andL + dL is,

1 Hmax dyy dP dng(L)
B(l)= —F———F— —_— 74
() dnS(L)/dL/M podp  dL ©-74)

min
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Figure 9.21 Probability for multiple imaging of high redithjalaxies by an unevolving
population of SIS lensesPanel a lensing probability for obtaining multiple
imagest as a function of source redshiffPanel b magnification bias as a
function of the difference between the characteristic ntade of a galaxyM/,
(assuming a Schechter luminosity function) and the lirgisarvey magnitude
Mim. Three values of the faint-end slope of the luminosity fiorc{labeled
by a here) are shownPanel ¢ Contours of the fraction of multiply-imaged
sources as a function of source redshift éad, — M;,, ), assuming a faint end
slope for their luminosity function of-2. Figure credit: Wyithe, J. S. B., et al.
Nature469, 7329 (2011)

wherens(< L) is the density of sources with luminosity L anddP/du is the
probability for magnification:. For example, the brighter SIS image has a magni-
fication distribution(dP/du) = 2(u — 1) =3 for2 < p < oo.

A simplified model for the redshift evolution of SIS lenseddsuse the mass
function of dark matter halos that was deriveckBand identifyo, = VC/\/§ at
the virial radius. Another simplified approach is to adop tbserveddn/do,)
at z = 0 and assume no evolution in the comoving density of lenseg |diter
approach gives the approximate results shown in Figure 9.21






Chapter Ten

The Lyman-«a Line as a Probe of the Early

Universe

10.1 LYMAN- o EMISSION FROM GALAXIES

We saw in§9.2.1 that young star-forming galaxies can produce vegttidilyman-
« emission; indeed searching for bright line Lymariine emitters is one of the
most effective ways to find high-galaxies. Although the radiative transfer of these
photons through their host galaxies is typically very coeph good starting point
is a simple model in which a fraction of stellar ionizing pbies are absorbed within
their source galaxy; the resulting protons and electroes tecombine, producing
Lyman- photons. Assuming ionization equilibrium, the rate of gnescombina-
tions must equal the rate at which ionizing photons are pgeduHowever, direct
recombinations to the ground state (which oceut /3 of the time, from the ratio
of the case-A and case-B recombination coefficient®nda z) simply regenerate
the initial ionizing photon, so they do not contribute to tiet balance.

Because only hot, massive stars — which live for only severilion years —
produce ionizing photons, it is a good approximation to aesihat the rate at
which any given galaxy generates these photons is propaiftio its instantaneous
star formation ratel/,. The proportionality constant, which we will calNLya,
depends on the initial mass function (IMF) of stars, becdlgedetermines what
fraction of stellar mass enters these massive, hot stareeXeonple, a galaxy with
a constant star formation rate, a Salpeter IMF, a metalligit= 0.05 Z5, and no
binary stars produce¥,, = 4.3 x 105 ionizing photons per second p&f, yr—! in
stars formed. However, a top-heavy Population Il IMF hagaization efficiency
that is larger by more than an order of magnitude.

Finally, if we assume as usual that. of the ionizing photons escape their host
galaxy, then the intrinsic line luminosity of a galaxy is

L, = %thyaa — fose)M,. (10.1)
For context, a Salpeter IMF from 1 to 10d., with Z = 0.05Z has a prefactor
4.4 x 10%2(1 — fesc)erg s'1, if the star formation raté, is measured i/, yr—'.

Unfortunately, inferring physical properties about digtgalaxies from the Lyman-
a line is complicated not only by the uncertain factgts. and.V,, but also by the
radiative transfer of these line photons through the inédles and circum-galactic
medium surrounding each galaxy. Because the Lymdine is so optically thick
in both the galaxy’s ISM and the nearby IGM, these photondescaany times be-
fore they can escape the galaxy, and once they leave it thepeacattered away
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from the line of sight and vanish. This scattering can chamgfeonly the overall
brightness of the line but also its frequency structure adtion to the galaxy’s
continuum photons. Thebservedine luminaosity is then

. 2 . .
Lt = TSN TSN A (1 = fese) M., (10.2)

Ly« 3 a *Lya

whereT{5M is the fraction of Lymanx photons that are transmitted through the

galaxy's ISM andl{{$)" is the fraction transmitted through the IGM.

10.1.1 Radiative Transfer of Lyman<« Photons Through the Interstellar Medium

We will first consider radiative transfer within the galaxydiits immediate envi-
rons; we will defer discussion of IGM scattering urifil0.2. The important differ-
ence from continuum transfer is that line photons can scat#sy times (changing
both their direction and frequency) as they traverse the.ll@Nhe case of Lymara
photons, scattering cannot destroy them (unless colbsioix the2s and2p states,
which requires much higher densities than typical for th®l)ut dust absorption
can. Depending on the geometry of the ISM, the increased@agjth can increase
or decrease the brightness of the line relative to the cootm

Some simple toy models of radiative transfer help to devetmpe intuition for
this situation. We will generally assume that the absomptimss-section follows
the usualoigt profile o, = o¢¢y, which allows for both thermal broadening
(which causes gaussian broadening in the core of the lirdhatural Lorentzian
broadening in the wings (which comes from the finite lifetiofehe upper state).
This may be written as a convolution of these two mechanisms,

ov(v) = /_OO M(v)L[y(1 —v/c)]dv, (10.3)

where the integral is over the line-of-sight thermal velies of the particles. Here
M (v) is the Maxwell-Boltzmann distribution at a temperatiite

M(v)dv = —— ="/ gy, (10.4)
b2
with b = \/2kgT /m,, parameterizing the thermal broadening s the natural line
profile, which for Lymane is given by equation (4.8). This is often approximated

by a Lorentzian functiofi,

1 v
Ly ———n——

SR v EEwL
wherey = Aoy /(4m) is the decay constant. In this approximation, the Voigt peofi
can be written

(10.5)

oy (z)dx = % (Vja) V(x)dx, (10.6)

The Doppler parameter can include turbulence as well byragltiie turbulent velocity in quadra-
ture.

i However, in cosmology the optical depth can be so high traaymmetry of the full profile is
visible.
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Figure 10.1 Cross-section for Lymanabsorption, as a function of wavelength offset from
line center (bottom axis) or velocity difference (top axisye include thermal
and natural broadening generated by gas Witk 10 K. Figure credit: San-
tos, M.R. 2004, MNRAS, 349, 1137.

wherex = (v — v,)/vp is the normalized frequency, with a Doppler broadening
vp/ve = b/cand

_ Al 7 e’
V@) == /,oody[Bu)—y]uAQ(x)’ (10.7)

and finallyA(z) = (v/vp) x (vo/v) andB(z) = z(v/v,). An approximation to
the Voigt function makes the line structure apparent:
2 1 A

+—— =

T A% + B?

We will be particularly interested in the profile far from thee core (whereB >
1). There,oo ~ (v/vp)/(v/7x?) wherey/vpd.72 x 10747, /% and T, =
(T'/10* K). Figure 10.1 shows the absorption cross-section for abspdas with
T = 10* K (including the full line broadening); note the Gaussianecaith width
~ 10km s~! and the much weaker, but broader, damping wings.

V(z) ~e B (10.8)

e Homogeneous, static H | slab, moderately optically thiEkst consider a
Lyman- photon produced inside a homogeneous static medium of pure H
with total line-center optical depthy > 1; note that becauss is propor-
tional to distance in the medium, we can use it as a proxy fgsigial location
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within the system. So long as the photon remains in the Dogple of the
line, it barely diffuses spatially before being scattergdab atom. When a
line photon of frequency;,, is absorbed by an atom, it re-emits a line photon
of the same frequency in its own rest frame. However, in aees's frame
there will be a net frequency shift determined by the Loréramsformation
between the frames. To linear order, this is

Vg - kin Vg - kout

Zout = Tin — + + g(kin “Kout — 1)7 (109)
Uth Uth

wherev, is the velocity vector of the atomyy, = (2kgT/m,)/? is the
thermal velocity of the gas, and,, andk,,,; are the propagation directions of
the incoming and outgoing photons, respectively. The &st § represents
recoil; it is unimportant here, but we will revisit it ifil1.2.2. Typically, the
scattering atom will have the same velocity along the phstdinection of
motion as the atom that emitted it, but it can have a much tdogal velocity.

In that case, the scattered photon will be far from the lingee

If the medium is not too optically thick, so that the dampinigge are them-
selves optically thin, the resulting photon can escape 8g s it is pro-
duced at a frequency wheréx) < 1; for 7o = 103, this corresponds to
x ~ 2.6. We therefore generically expect that the resulting eroissiill
have a double-peaked profile: photons near line-center tiesuape; only
when they diffuse to large positive or negative velocity trey able to es-
cape. The Lymanr surface brightness distribution will also be compact,
because photons escape after a single scattering.

Homogeneous, static H | slab, very optically thitk:a moderately optically
thick medium, these escaping photons simply result from saatterings off
high-velocity atoms. If, on the other hand, the damping wiage optically
thick, 7o, > 103, so that once a photon is scattered into the wing the next
scattering is more likely to be from interaction with an atomthe wings

of its line than with an atom traveling at a matched veloditg problem is
more complicated, though the net result is easy to undeatstifne photons
must make it even farther into the wings to escape.

To do so, they must undergo a random walk of repeated scagtgrwhich
occasionally take them far enough from line center to escBpeause scat-
terings usually occur in the core, each one induces an rngsidrecy shift

x ~ 1, with a small bias-1/x toward returning to line center; a photon thus
typically undergoesV, ~ 22 scattering events before returning to line cen-
ter. Between scatterings, the photon traverses a pathh€imgdptical depth
units) of7®(z) ~ 1. Thus, over its entire random walk, it diffuses a distance
of 5™ ~ /N7 ~ |z|/¢v. If this distance exceeds the size of the system
(70 in these units), the photon can escape. In the wings of tleewimere
¢év ~ a/z?, this requires that the photon have a critical normalizeshpe
frequency

Tesc| ~ \ATO ‘ ~ a P .
13 ~ 30T, /2Ny {® (10.10)
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whereNo; is the column density of the system in unitsiof* cm—2. Thus,

in this highly-optically thick case, the photons must smafthr enough in the
wings of the line to physically escape the system befordestag) back to
line center. This, combined with the power law formggf in the wings, also
makes the blue and red emission peaks wider than than in tHenate opti-
cal depth case. The surface brightness of the line will bereded even if the
source is compact, because photons diffuse spatially dsawéi frequency
before escaping.

e Homogeneous H | slab, with velocity gradiete next consider a medium
with a velocity gradient. Such a gradient can either comesito expansion,
arising from winds (which we believe to be ubiquitous in thargorming
galaxies likely to host Lymai- emission lines), or contraction, from the
infall of surrounding material around the galaxy.

First consider an expanding medium. Then, according to temu&10.9),
scattered photons typically obtain a redshift: - k;,, is positive for photons
propagating outward, whilév,, - kout) = 0, SOzout < i, ON average. Pho-
tons withz < 0 are therefore moved farther into the line wings, facilitgti
their escape, while photons with > 0 are moved back toward line center.
So long as the expansion velocity is much larger than therthkevelocities,
this will prevent photons that experience large positiegtrency jumps from
escaping. Thus, we expectonly a single emission line oretthside. In con-
trast, in a contracting medium photons typically obtainwelshift, producing
a single emission line on the blue side.

In this case the frequency shift of the surviving line depemgbon the velocity
and density structure of the medium. The case of most pedcétevance is a
wind, in which a large column of H | occurs &tvyinq along the line of sight,
with negligible absorption elsewhere. In this case photbas begin their
escape toward the observer (i.e., through the blueshifted)are absorbed.
After their first scattering, photons that begin their escapward the far
component of the wind lie to the red side of the line. Those Htatter
back toward the observer are then far to the red of the (biftedhwind and
can continue to the observer. The observed velocity ofs#ienvy,ing and
provides a good diagnostic of the wind velocity.

e Homogeneous H | slab with dudttow we can add dust to a (static) medium
and see how it can destroy the Lymarphotons. We let théotal dust inter-
action cross-section, per hydrogen nucleusylaehis includes both absorp-
tion, with a cross-section, = €,04 = (04,21/107%! cm?) per hydrogen
atom, and scattering. For the well-studied dust in the MiNgy, 0, 21 =~ 1
ande,, =~ 0.5; of course this will depend on the metallicity and dust fotioa
mechanisms in high-redshift galaxies ($£e6.2). The average absorption
probability per interaction (with either dust or H 1) is tieéore

o, B

- x1Qv (x)oo + o4 ~ ov(z)’ (10.11)
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whereg = o,/ (zur¢py = 1.69 x 10*8T41/20a,21/a:H1 and we have assumed
that dust interactions are rare compared to H | scattering.

Now recall that, in order to escape the H I, the photon musdtdtatter far
into the wings of the line and then stay in the wings as it sfigitdiffuses
out of the system. During that process, the photon will scati; times;
the probability that it is absorbed is therefdPg,s ~ N.e ~ x*3/a in the
damping wing. This is near unity jf| > x.s, where

1/4
Fabs ~ (a/B)1/* ~ 12,9 (TZ;HIm) | (10.12)

A typical photon will therefore be unable to escapedf. > za.s; if the line
center optical depth exceeds a critical vatue- (a%)'/4, the emission line
will be strongly suppressed. This corresponds to a colunmsitieof only
Nopo = 0.08T,"*(zu1/04.21)%/%, well below the typical column densities
of galaxies (which are comparable to damped Lymaabsorbers [DLAS]).
Thus Lymane absorption can be very important inside the ISM. In general,
in a uniform medium the line photons are more affected by thest contin-
uum photons, because the many scatterings they suffersftineen to have

a much longer path length than continuum photons, providingich larger
opportunity for dust absorption.

Multiphase medium with dusEinally, we consider a medium in which both
the H I and dust are confined to optically thick, discrete diseparated by a
highly-ionized, dust-free “inter-cloud medium.” Here ttessults will clearly
depend on the geometry of the system, but some general epasahs do
apply. First, note that an inhomogeneous medium will alfoaretransmis-
sion than a homogeneous slab with identical column densitgotral gas,
because of the same arguments we saw for transmission inhamoge-
neous IGM (seg4.3.2). Moreover, the line photons can lessaffected by
dust than continuum photons, because the line photonescdttthe sur-
faceof the clouds, while the continuum photons plow through ttzerd can
encountemoredust.

Detailed calculations show that the frequency shift neargser dust absorp-
tion to dominate over resonant scattering in the line wings,, is similar

in magnitude to the homogeneous case. However, dust waspsotant in

that example because Lymanphotonsneededo diffuse in frequency in
order to escape the medium. This is not the case for a musi@heedium.
In this case, photons enter each cloud on their surface diet selatively

few scattering events inside each cloud before spatiaffusing back out.
They can then travel a large distance before hitting anatloerd, and spa-
tial diffusion through the inter-cloud medium provides rmokthe impetus
toward escape. Thus, dust absorption will be relativelykyg@vided that
the typical frequency shift before escape is less thap.

In this case, photons obtain frequency shifts both from tieerhal motions
of the scattering atoms and from the velocity dispersiowben the absorb-
ing clouds; if the latter is large (as would be the case if madsthe dust
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were buried in dense molecular clouds), it dominates thguieacy diffu-
sion, because — just as for a wind — each cloud is so optichitk tthat
in the observer’s frame the photon leaves each cloud withi@citg offset
corresponding to that cloud’s velocity. If the clouds havarge velocity dis-
persion, then dust absorption within each cloud will dorténaver resonant
scattering, because the photons will enter each cloud iwihgs of the line.

Although each of these toy models is obviously much simpianta real galaxy,
together they illustrate the complexity of the radiativansfer problem and the
many parameters that can dramatically affect the Lymdme’s amplitude and
shape, as well as the surface brightness of a line emittegeheral, even dis-
counting uncertainties from IGM transmission discussddvaethe Lymane line
is therefore typically very difficult to interpret and is n@tgarded as, for example,
a very reliable measure of the star formation rate. Howetgehrightness in many
galaxies makes it such a useful signpost that it is still thgext of intense study.

10.1.2 Other Emission Lines

Because it can be such a bright line, and because its ulleviEst wavelength
redshifts it into the optical or near-infrared in distaniayaes, the Lymanx line
gets the lion’s share of attention. But other emission licexs be as or even more
useful for certain diagnostics, and we briefly mention themreh This is of course a
very extensive field of research, and so we refer the intedasiader to the literature
and other textbooks for more information (see the Appendix)

1. Other hydrogen linesThe other Lyman-series lines are almost never visible
in high-redshift galaxies; after several scatteringss¢hphotons are “recy-
cled” via radiative cascades into either Lymamphotons or a pair of photons
from the forbidder2s — 1s decay (se€l11.2.2). However, Balmer-series
photons (and those beginning at even higher levels) areussful diagnos-
tics. They are initially generated through the same proesssymane: —
recombinations following ionizations near hot, massiast but because
such photons can only interact with atoms already inithe 2 state, they
are not subject to scattering in the interstellar medium eschpe galaxies
relatively easily (especially since they have relativelgd wavelengths and
so are less subject to dust absorption, e.g., thdiik lies at 6563&). They
therefore offer much more robust measures of star formattes, subject
only to the uncertainty in the IMF.

Unfortunately, although H is extremely important for low-redshift galaxies,
its relatively long rest wavelength has so far limited itgefugness for high-
redshift galaxies.

2. Helium lines: He Il has the same electronic structure as H I, but shifted
to four times larger energies. As a result, its ionizatiotepdial is well
beyond the cutoff of most stars — only rare Wolf-Rayet staes,(massive
stars undergoing rapid mass loss) and the most massive&iooulll stars
are hot enough to significantly ionize it. He 1l Balmephotons (with a rest
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wavelength of 164(5\) are therefore the most promising diagnostic of such
massive stars: they are produced through recombinatiaradas following
the ionization of He I1.

3. Metal lines: In nearby galaxies, many metal lines offer diagnostics ™ IS
characteristics like the density, metallicity, and tengtere of the nebulae
surrounding star-forming regions. As instruments improtese will no
doubt be just as useful for measurements of higialaxies, although (with
most of the lines having rest wavelengths in the opticaly tre less acces-
sible for the more distant sources.

10.2 THE GUNN-PETERSON TROUGH

We now briefly discuss the fate of photons that begin bluewétgyman- during
the reionization era. These photons will redshift through tGM; if they should
pass through the Lyman-resonance, they will experience substantial absorption
from that gas. The scattering cross-section of the H | Lymaesonance line is
given by equation (4.8), and we have already computed thédptical depth for a
photon that redshifts through the Lymarresonance as it travels through the IGM,
the so-called Gunn-Peterson optical depth in equatior8j4.The most important
aspect of this calculation is the enormous overall optiegtl in a fully-neutral
IGM, 7, ~ 6.5 x 10%zy; atz ~ 9. Thus we expect that, before reionization,
photons that redshift across the Lymaitransition will be completely extinguished
(and, indeed, the same will be true so far as the ionizedifraet < 10~3).

However, not all photons will redshift through the resoredaring the reion-
ization era. Suppose that a photon is emitted by a sourceetshiftz, beyond
the “redshift of reionization’,.;on, Which for the purposes of this calculation is
simply the last redshift along the particular line of sightrderest wherery; = 1.
(Note that this differs from the conventional definition bktend of reionization
as the moment of “overlap” between the ionized bubbles; gr@tions along dif-
ferent lines of sight can themselves contain interestingplysical information.)
For simplicity, we will further assume thaty; = 1 for all z > zeion. The cor-
responding scattering optical depth of a uniform, neut&Wlis a function of the
observed wavelength,,s,

dt
To(Dobs) = / dzcd—ZnH,oa 4 2)300 [Vobs(1 + 2)] . (10.13)

Zreion

At wavelengths corresponding to the Lymarresonance between the source
redshift and the reionization redshiftl + 2 eion)Aa < Aobs < (1 + 25)Aa, the
optical depth is given by equation (4.13). Singe~ 10°, the flux from the source
is entirely suppressed in this regime. Similarly, the Lysfaresonance produces
another trough at wavelengtlis + zyeion) A < Aobs < (1 + 25) A3, Wheredg =
(27/32)A\ = 1026 A, and the same applies to the higher Lyman series lines. If
(14 2z5) > 1.18(1+ zyeion) then the Lymanx and the Lyman3 resonances overlap
and no flux is transmitted between the two troughs. The sarius fior the higher
Lyman-series resonances down to the Lyman limit waveleafjth = 912A.
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At wavelengths shorter thak., the photons may be absorbed when they pho-
toionize atoms of hydrogen or helium, even if they do not hftlinto the Lyman
series lines. The bound-free absorption cross-sectiogdrdgen is given by equa-
tion (4.16); the appropriate parameters for He Il are give§4.4.4 as well. A
reasonable approximation to the total cross-section foixaume of hydrogen and
helium with cosmic abundances in the rangelofy o = 54.4 eV < hv < 103 eV
is opp = o0(v/vie) 3, whereog ~ 6 x 10717 cm?. The redshift factor in the
cross-section then cancels exactly the redshift evoluifdhe gas density and the
resulting optical depth depends only on the elapsed coSm& t(z cion) — t(2s).

At high redshifts this yields,

cdt

be(Aobs):/' 4= o1+ 2ot a1 + 2)]

Zreion

~ 15 x 102 [ Do 3 ! ! 10.14
~]l.oX (1001&) [(1 ¥ Zreion)g/g (1 + 23)3/2 ( . )
The bound-free optical depth only becomes of order unithéextreme UV to soft
X-rays, aroundhv ~ 0.1 keV, a regime which is unfortunately difficult to observe
due to absorption by the Milky Way galaxy.

Together, these effects imply very strong absorption oflyesdl photons that
begin blueward of\, (1 + z,.), except for a recovery at very short wavelengths
and the gaps between the Lyman-series troughs (thoughuhitbe blanketed by
the Lymane and other forests just below..;on, SO even they will be extremely
optically thick).

10.3 IGM SCATTERING IN THE BLUE WING OF THE LYMAN- « LINE

We now return to the fate of photons emitted within (or nel€) tymane line of

a galaxy or quasar. In this case, the relative velocity amadbening of the line
from bulk, thermal, or turbulent motions is very significabecause it determines
whether the photons pass through the Lynsaresonance — and so experience
the full Gunn-Peterson absorption — or remain redward af tienter, experienc-
ing much less absorption. We also must consider the envieonof the source:
whether it is embedded in completely neutral gas or in arzeshbubble, and the
surrounding velocity field. In this section we will focus ohgions emitted blue-
ward of, but still near to, line center.

10.3.1 Resonant Scattering Inside lonized Bubbles

Photons that begin slightly blueward of line center redshib the Lymane res-
onance near to their source. In most models, this nearbpmagill already have
been ionized, either by the source itself or by its neighlfibisis part of a much
larger ionized bubble). Thus it may seem that these photdhswwive their jour-
ney through the IGM.

However, if we recall that, > 10°zy; at these redshifts, it is immediately
apparent that even in highly-ionized media the absorptanmime substantial. In
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practice, the short mean free paths at high redshifts witrfikely prevent the gas
from becoming extremely ionized. We can estimate the rediduized fraction
inside an H Il region in which the comoving mean free path {gvhich could be
restricted either by the ionized bubble walls or by LLSs) Isgwaning ionization
equilibrium and a uniform emissivity (or in other words ttegtch bubble contains
many sources). The equilibrium condition is thEng; = agneny, with T' =~
eionomiA/ (1 + 2), €ion the proper emissivity of ionizing photons (by number), and
Fur ~ 2 x 10718 cm? the frequency-averaged cross-section. If we use the sgnhple
model for the ionizing sources, in which the rate of ioniziplgoton production

is proportional to the rate at which gas accretes onto gedaxie can write (see
equation 8.2kion = (feonnm. But we also knowQum = ¢ feon/(1 4 free),
wherefi,.. is the mean number of recombinations per atom. So we canteswri
the ionizing efficiency in terms of the overall ionized fraction and solve for the
resonant optical depth due to residual neutralgasinside the bubble:

res ~ (1 + 5)2 (10 MpC) ( fco]l )
To (5) ~ 40 QHH(l + 'ﬁrec) A dfcoll/dz ’ (1015)

where we have assumed that the IGM is isothermal for the rbamation coeffi-
cient. The factor involving the collapsed fraction is tygig of order a few.

Clearly the optical depth for these photons is large in sfialimodels; note,
however, that it is small enough that many of the radiatigasfer effects important
for photon escape from galaxies are not important, and tserakion from each
gas parcel will not have a large frequency width.

10.3.2 The Proximity Effect and Quasar “Near-Zones”

We have now found that an average location inside an ionigbtle is not likely
to be ionized strongly enough to allow significant transimis®efore reionization.
However, the region immediately outside the of an ionizingrse will be more
ionized than average thanks to photons from that source. dstemate redshifts,
this “proximity effect” is a useful measure of the ionizingdkground, and it is a
very attractive probe of the reionization era as well.

The profile of the ionization rate around a quasar at modeeatshifts is sim-
ple to understand. Suppose that there is a uniform metagaksmckground with
amplitudel',,. The central quasar with a luminosify, produces a specific inten-
sity J, < L, /R?, whereR is the distance from the quasar. Thus, we expect an
ionization ratel’, = ', o/ R?. Assuming ionization equilibrium, we then have

7(R) o< (Tpg + Tg0/R*) L (10.16)

A simple fit to the absorption profile as a function of distafroen the quasar is
sufficient for derivingl'y,,, especially if’; o can be estimated from the observed
luminosity of the quasar redward of the Lymariine. In practice, these estimates
are complicated by variations in the Lymanforest lines themselves and by the
biased environments of quasars: the quasar will only indudestantial changes
in the radiation field within a compact “proximity zone” amdithe quasar where
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I’y > T'yg. This corresponds to

1.277,/2 vL,
a+3 \10*ergs!

whereq is the quasar spectral index ang is evaluated at the H | ionization edge.
This places the proximity zone within the overdense envirent of the quasar’s
halo; the increased absorption from this excess gas partiahcels the effect of
the increased ionizing background, making the proximifeafmore difficult to
see.

Because the ionizing background is much smaller duringefmization era, it
may at first appear that the proximity effect will be easieobserve. However, in
reality the effect is much more difficult to interpret becatise IGM is so optically
thick. In this situation, the observable pattern near a hous source will be grad-
ually increasing absorption until saturation is reachedyufe 10.2 shows some
examples; the curves here have each been averaged ovalsegependent lines
of sight to reduce the scatter from the inhomogeneous IGMe ke horizontal
dotted line marks 10% transmission; this is conventionadlgd to mark the edge
of the transmission region.

The key point is that, during the reionization era, theretewe possible reasons
why such saturation can occur. The first is if the source (saajuasar) is still in
the process of ionizing its neutral surroundings. Thendhveitl be a sharp transi-
tion between the highly-ionized H 1l region and the nearlytnal gas at its edge,
which will manifest itself as a dramatic increase in the lamatical depth. The
second is more similar to the classical proximity effectept that the absorption
may saturate long before the local ionization rate reachestickground value.
Because the observed edge of the transmission does nosaglyesorrespond to
the classical proximity zone, this feature is usually refdrto as the “near-zone.”

In the first case, the size of the H Il region depends on theiogiluminosity of
the quasar (which can be estimated from the spectrum redefdrgman—<), the
age of the quasay, and the average neutral fraction before the quasar aptheare
Zui. The basic radiative transfer problem has already beereddlv SS8.2 and
8.9.2; for the purposes of a simple estimate, if recombamatican be neglected,
the proper radius of the H Il region is (c.f. equation 8.3)

. 1/3 1/3 —1
4.2 N to 142
~ Mpc,  (10.18
By e <2x1057sl> <1O7yr) ( 7 ) pc.  (10.18)

whereNQ is the rate at which the quasar produces ionizing photongvarithve as-
sumed that all the ionizing photons are absorbed but igreerslary ionizations.
Note thatR;, < (Ngto/Zm1)'/?, varying relatively slowly with these parameters.
However, the absorption can become saturated well befagdinfit is reached.
To estimate this, we suppose that the edge of the near-zaevieeie the transmis-
sion falls belowT;,,,, or the optical depth rises abovg,,. We adoptl;,, = 0.1

1/2
Rprox = ) proper Mpg (10.17)

il Here we ignore relativistic effects in the expansion, which important at early times. See equa-
tion (8.11) for a more accurate expression.
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Figure 10.2 Average absorption profiles near the Lymalire for quasars in three dif-

ferent redshift bins. Note that the Lymanemission lines have been fitted

and removed. The three redshift bins average over. (< z < 5.95), 9
(5.95 < z < 6.15), and 4 ¢ > 6.15) quasars. The horizontal dotted line marks
10% transmission, conventionally taken as the edge of the-zene. Figure
credit: Carilli, C.L. et al. 2010, ApJL, 714, 834.

as a fiducial value (comparable to existing observationskufing that the back-
ground ionization rate can be neglected (likely a good agsiom at these very
high redshifts), the transmission reaches this limitinlygat a proper radius
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where théel dependence enters through the recombination coefficiertri@ation
equilibrium. Note that this limiting radius is independefthe neutral fraction of
the material outside of the ionized zone, and it is slightlgrensensitive to the
quasar luminosityRy;, o Nclg/Q.
There are two caveats on these size estimates. First, equa.19) can only

apply if the quasar bubble has reached that size. This regjuir
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(Adding recombinations and clumping will increase thisleday a factor of no
more than a few.) Interestingly, this timescale is complerbthe canonical quasar
lifetime tg ~ 107 yr in fully neutral gas, but for quasars positioned near the @f
reionization (which are actually accessible to observesjdt is very short.

Moreover, our expressions fdt, and Ry, implicitly ignore the possibility of
LLSs or even denser regions in the IGM. If the quasar radiagizcounters a highly
overdense region that can maintair> 1 in ionization equilibrium, the ionizing
radiation will be highly attenuated at larger distanceghéligh these systems are
likely to be rare near the quasar (where the radiation fielgaigicularly strong),
they are difficult to identify in the highly saturated foresgectra found during
reionization, and they present an important systematiceonfor measurements
of “near zones.”

We therefore expect most quasar near-zones be limited bgrtheémity effect
rather than the bubble size. If so, these zones can telltiesdibout the ionization
state of the surrounding gas. In principle, this suppasitian be tested by examin-
ing the luminosity dependence of the near-zone size, ajintiue modest variation
between the two models, and the large scatter intrinsic yona@asurement in an
inhomogeneous IGM, has made differentiating them difficuilate. Figure 10.3
shows the measured near-zone sizes for a number of quasars at75. The left
panel shows the trend with redshift (here all the near-zaes$ave been normal-
ized to a common luminosity using the, o N,,'* relation), while the right panel
shows the dependence on absolute magnitude (with the meaohwith redshift
removed.

In the right panel, the dotted curve showls N5/3 (with arbitrary scaling);
this is not a fit but is shown only for illustrative purposede&ly the large scatter
in the near-zone sizes, even after a simple redshift caorectake it difficult to
distinguish this behavior from that expected for the moeessic proximity effect,
Ry Néﬂ_

Nevertheless, there is clearly a steady increase in thezuesr size as redshift
declines. One possible interpretation is a decreasg;inwith cosmic time; the
data would require a decline by 10 over the range = 6.4 to z = 5.8. However,
presuming that ~ 6 is the tail end of reionization, the proximity effect is more
likely to fix the near-zone size. In that case, the trend wéthshift is most likely
attributable to a rapid increase in the background ioniratate (by a factor of
> 3), which can substantially boost the total ionization rat¢hie outskirts of the
quasar’s proximity zone.

Currently, the most challenging aspect of this measurementher than find-
ing these quasars in the first place — is determining the qgdsaation. The
only tools we have are the redshifts of the source’s emidg@s. Unfortunately,
most quasars have strong internal motions and winds, whsghetes many of the
emission lines from the systemic redshift of the host. Thet lshoices are low-
excitation lines (such as Mg Il) or, even better, lines frdra host galaxy itself.
Any such lines in the optical or UV are overwhelmed by the quasown emis-
sion, so the most useful lines turn out to be those of CO, waretstrong in these
rapidly star-forming galaxies.
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Figure 10.3Left: Measured radii of near zones in a set of higljuasars; the symbols de-
note the method used to compute the quasar’s redshift. Al-nene measure-
ments have been scaled to a common quasar luminosity usngsthelation
in equation (10.18) to better illustrate the trend with tatts Typical errors in
the near-zone size are 1 Mpc. The two lines are fits to the trend with redshift.
Right: Dependence of the near-zone size on quasar absolute nadgyraluthe
data points have been scaled to a common redshift using the retion in
the left-hand panel to better illustrate the behavior wittminosity. The dotted
line showsR, Né“ with arbitrary scaling; note that it is not a fit but is
merely meant to guide the eye. Figure credit: Carilli, C.Lak 2010, ApJL,
714, 834.

There is one additional, and very attractive, way to diffeéiate betweerR;, and
Ryiim: by examining the absorption in higher Lyman-series linBgecauseR);,,
depends on the maximum detectable optical deﬁﬁﬁ it will increase by the
square root of the optical depth ratio between differergdinfor Lymang, this
meanstfm ~ 2.5Rf,. However, at the edge of the ionized bubble the neutral
fraction presumably increases by an enormous amount overyasmall distance,
so both Lymana and Lymang should become optically thick at nearly the same
radius. Unfortunately, this test is still sensitive to thegle amount of scatter in the
IGM density field (and in the lower-redshift Lymanforest that coincides with and
hence obscures the Lymahmeasurement), so the current sample<af0 quasars
cannot distinguistk;, from Ry;,, — even though coincident Lymam-and Lyman-

[ absorbers have been detected, it is not clear if they areaadarge swath of
neutral IGM gas or a single absorBerSimulations suggest that increasing the
sample of such quasars by a factor of a few could lead to usefdtraints when
Zmr > 0.1, the regime in which the finite bubble size starts to affeetltimans
near-zone size.

Another difficulty with near-zone measurements, just ab Wit classical prox-

VThese kinds of identifications are further complicated by damping wing absorption that we
will examine next.
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imity effect, is the biased region in which the quasar livsshough the gas is only
significantly overdense in a relatively small region imnmagdly around the quasar,
even modest overdensities in the dark matter can lead taasutzd overdensities
in the biased galaxy population. Moreover, the ionized lellglenerated by these
galaxies reaches much larger distances than the galaxgievsty itself — even the
tens of comoving Mpc typical of a bright quasar’'s near-zohke easiest way to
understand this is to think of the overdense region as a méeeUniverse with
Q.. > 1: in that case structure formation proceeds faster, beaaiube increased
gravity, and both the local ionized fraction and the ionibalibles themselves grow
faster as well. This implies that the ionized fraction meaddrom the quasar near-
zone will be biased relative to the true average.

10.4 THE RED DAMPING WING

If Lyman-a photons encounter nearly neutral gas with> 10°, the broad Lyman-
« absorption line can significantly affect their transferahgh the IGM. Consid-
ering only the regime in whichv — v,| > A, (and neglecting the broadening
introduced by the finite temperature of the IGM), we may igntbre second term
in the denominator of equation (4.8). If we assume that té Kas a uniform neu-
tral fractionzp at all points between the edge of a source’s local ionizedlsub
(which we callzp) andz.eion, this leads to an analytical result valid within the “red
damping wing” of the Gunn-Peterson trough for the opticglttieat an observed
wavelength\,ps = Ao (1 + 2):

T(Z)_Ti‘ A 1+Zb 3/2 T 1+Zb _7 1+Zreion
T fath 472y, 142 142 142 ’

(10.212)
for z > z,, where
@09 2 9 5 3/2 12 9 1422

Note that here we defineas the redshift at which the observed photon would have
passed through Lyman; however, whernr > z;, this never actually happens. This
expression is only valid far from line center, but that is albuacceptable because
the optical depth is so large there anyway. It also assumeg) ~ 1, which is
adequate at the high redshifts of interest- 1.

At wavelengths for whichz — 1| < 1, one can approximate thEz) factors
with their asymptotic limits; in that case,

o A c(l4+z2) (/1 1
7(2) & ToZp (—47r2ua) o) (R_bl — R_e> , (10.23)

whereRy; is the comoving distance to the edge of the source’s ioninbtlle and
R. is the comoving distance to the surface defining the “endéafiiization. As a
rule of thumb, the damping wing optical depth approachetyatia velocity offset
of ~ 1500km s~!, which corresponds te- 1 proper Mpc at: ~ 10.
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The exciting prospect is that within this red damping wingg bptical depth
experienced by the photons approaches order unity overpfétde range of red-
shifts: this means that the optical depth can be measurativedy easily, in con-
trast to the strongly saturated absorption at line centerd€ly, if we can therefore
measurer, and7(z) we can obtain an estimate for the IGM neutral fraction.

Figure 10.4 illustrates the resulting absorption profilagtiiree choices of , =
0.9, 0.5, and 0.1 (thin dashed, solid, and dotted curves, respegtivalall cases
we takezeion < 2. Here the abscissa measures the wavelength offset from the
source redshift,; we takez,, where neutral gas first appears, to be 5 comoving
Mpc from the source. Note that, especially for the more reduases, the absorp-
tion extends to quite large redshift offsets from line cente— z, = 0.01(1 + z,)
translates to an observed wavelength offsetffl + z,) A. The dot-dashed line
shows the absorption profile of a single absorbing cloud ateifiocation (i.e., a
DLA), normalized to have the same transmissionads thez, = 0.1 curve.
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(z—2g)/(1+2g)

Figure 10.4 Damping wing absorption profiles, as a functibinaztional wavelength offset
from the source (at redshift;). The thick curves show the absorption profiles
for zp = 0.9, 0.5, and0.1 assuming the “picket fence” model of absorption
(with the dashed, solid, and dotted curves, respectiveNgte that the two
dashed curves overlap and are practically indistinguighalthe corresponding
thin curves show the absorption profiles for uniformly iadaGM normalized
to the same transmission ai. The dot-dashed curve shows the profile of a
DLA, normalized to the same transmission asihe= 0.1 curves at,. Figure
credit: Mesinger, A. & Furlanetto, S.R. 2008, MNRAS, 3854&3

Obviously, the IGM absorption profile is much gentler thaattirom a DLA,
extending to much larger redshift offsets. Indeed, equgtl®.23) shows that the
optical depth scales as the inverse of the wavelength dfissteen the observed
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wavelength and,, at the source redshift. In contrast, DLAs havec A\~2; the
difference arises because the photon continues to redstéfy from line center as
it passes through the IGM, so a photon at a given wavelengtersnced a larger
optical depth than one would expect had it remained at a anhsequency through
the entire column. In practice, this may be a crucial disgrant between absorp-
tion intrinsic to a high-redshift source (taking the formeobLA) and that from the
IGM. For example, nearly all GRBs at lower redshifts haveaiged high-column
absorbers. The different absorption profiles are cruciairfdentifying the nature
of the Lymane absorption.

Unfortunately, the simple toy model we have used so far de¢saocurately
describe the IGM during reionization, and the real absomtrofiles are likely
to be somewhere between these two limits. We have alreadytheé in most
reionization scenarios the IGM has a two-phase structutl,sgas of neutral gas
surrounding bubbles of ionized matter. A typical line oftdighrough the IGM
will therefore pass through a “picket fence” of absorbemposed of alternating
patches of nearly neutral and nearly ionized gas. The iegudbsorption profiles,
shown for a toy model by the thick lines in Figure 10.4, aregtr than those in
a uniform IGM (unless the ionized bubbles are very rare) hatlewer than for a
DLA: essentially, the photon passes through a series of Dégymrated by clear
regions. Because their frequency still changes as theglirdney experience more
absorption than for a single cloud.

Obviously, this introduces some significant complicatiorts interpreting the
damping wing. The easiest way to see this is to consider autecestimate for
the average ionized fraction in a uniform IGM from equati®f.¢3). Here we can
estimatez , from the absorption at a single wavelength, provided thatssime
al/AM\ profile to be accurate. (Note that we could also estimatieom the peak
of the absorption line.) In this “picket fence” model, thedroptical depth is a sum
over that from all the neutral stretches of the IGM, or

A 1 1
7(2) = Ta (W) (1—’_2)22(2—,2;,4_2’—2@7‘). (10.24)

where theith neutral patch stretches betwegn andz. ;. If we naively equate this
true expression to equation (10.23) and solvedzfer we find

Tp =~ (2 — 2p1) <Z (Z_lz}” B Z_lzm,)>' (10.25)

If we take a particularly simple model for the picket fence@adbers, in which
the ionized and neutral patches have fixed lendth&nd f R, wheref = (1 —
Qun)/Qun ensures the proper filling fraction of the bubbles, we caffiguer this
sum and calculate the bias in our estimaipr.

o0

_ 1 1 1
”“’DZEXZE [(k—1/2)+(k—1)f - (k—1/2)+kf} (10.26)

k

=7T(1 - QHH) cot {%} . (10.27)
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This differencet p — (1—Qur) is always positive and peaks-at0.3 whenQu =
0.5, though the fractional bias continues to increas&)asi — 1. The actual
amount of the bias of course depends upon the particular huddeionization
(and in particular the size distribution and clustering loé tH 1l regions); more
detailed simulations have comparable (though slightlylenabias. This means
that the damping wing requires non-trivial modeling to iptet it properly in the
context of reionization.

Even if this bias can be corrected, a second problem is tli#reint lines of
sight inevitably pass through different sets of ionized aadtral patches, so there
can be large scatter in the absorption profiles even for angiyg;; and bubble
size distribution. This scatter becomes particularly img@uot in the late stages of
reionization, because the damping wing optical depth herasensitive to the size
of the first neutral patch.

Figure 10.5 illustrates these two problems in the conteatmbre realistic semi-
numeric model of reionization. The curves show the prolighilistribution of
8, = Zp/(1 — Qun) — 1 for a variety of bubble filling factors. Note that the
means of these distributions are non-zero (implying a biathé estimator) and
the scatter increases dramatically in the later stagesiofiation. This means
that reliable estimates of the IGM properties will requiteaye number of lines of
sight with measured damping wings.
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Figure 10.5 Probability distributions of the fractionahbiin a simple damping wing esti-
mate of the ionized bubble filling factof,,, = zp/(1 — Qun) — 1. The
different curves show different stages in reionizatior;aaé computed with a
semi-numeric simulation of reionization. Note that the méaalways non-
zero, and the distribution becomes both wider and more Biaseeionization
progresses. Figure credit: Mesinger, A. & Furlanetto, 2008, MNRAS, 385,
1348.
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Because the damping wing absorption profile must itself basme=d, damping
wing constraints on reionization require very bright s@s.c The two most likely
candidates are quasars and GRBs. The former have the agearitlying inside
large H Il regions, which decreases the bias and scatteeirgtimators; however,
they often also have substantial Lymarines with unknown intrinsic properties,
which complicates the measurement of the damping profile.

Figure 10.6 illustrates some of the complexities of a dampiing measurement
with a quasar at = 7.085, ULAS J1120+0641. We show the spectrum normalized
to a composite spectrum constructed from lower-redshiftsqus, which provides
a surprisingly good fit to the data (though it appears to vestenate the Lymai-
line strength in this object). Provided that the templageisurate, the binned curve
in the Figure therefore shows the transmission. As expethésideclines rapidly
slightly blueward of the Lymanr line center; this is the “near-zone” discussed
above. This quasar has a very small near-zone, indicatthgrea high column
density absorber along the line of sight, the presence dbstaatially neutral IGM
that the quasar still must ionize, or a very young age for tii@sgr. The smooth
curves show the expected absorption for several IGM soesiafihe second curve
from the top at the Lyman-wavelength shows the absorption profile from a DLA
21 comoving Mpc in front of the source. The others show the@gdion expected
from a uniformly neutral IGM beginning 17.8 comoving Mpc ot of the quasar;
these takezp = 0.1, 0.5, and 1, from top to bottom. Of these, the DLA profile
appears to provide the best fit; however, more sophistidétethking into account
the inhomogeneous ionization structure of the IGM could atsitch the data.

GRBs have much simpler intrinsic spectra (nearly power-tewr this range),
which makes extracting the damping wing easier. Howeveir thost galaxies
often have strong DLA absorbers, which interfere with thengang wing, and
their position inside of small galaxies makes the bias amdtaclarge. It is not
clear which will eventually prove more useful, though irheit case constructing
samples of many sources will be difficult. Also, in contrastyiasars, GRBs (and
their faint host galaxies) have a negligible influence orstimeounding intergalactic
medium. This is because the bright UV emission of a GRB lasts than a day,
compared with tens of millions of years for a quasar. Theesforight GRBs
are unique in that they probe the true ionization state ofstireounding medium
without modifying it.

10.4.1 Lyman« Halos Around Distant Sources

As we have already discussed in the context of Lymastattering within galaxies,
Lyman- line photons emitted by these galaxies are not destroyethbigiad are
absorbed and re-emitted as they scatter. For scatteringeimniform IGM, this
problem is particularly simple and illuminates more of thgygics of the scattering
process.

Due to the Hubble expansion of the IGM around the source, rérguéncy of
the photons is slightly shifted by the Doppler effect in eachttering event. As a
result, the damping wing photons diffuse in frequency tortfteside of the Lyman-
« resonance. Eventually, when their net frequency redshiftifficiently large,
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Figure 10.6 Rest-frame transmission profile of ULAS J1128#0 in the region of the

Lyman-« emission line, compared to several damping profiles. Thestra
mission profile of ULAS J1120+0641, obtained by dividing gmectrum by
a lower redshift quasar composite spectrum, is shown asitined curve. The
random error spectrum is plotted below the data. The ottrer eurve shows
the uncertainty in the Lyman- equivalent width. Three of the four smooth
curves in the upper panel show the expected absorption fronG& damp-
ing wing withzp = 1, 0.5, 0.1 located a distand®, = 17.8 Mpc in front
of the quasar (bottom, second from bottom, and top curvebeat.ymane
wavelength). The other curve (second from top) shows a DLgodier with
Nur = 4 x 10%° cm~2 located a distanc2l Mpc in front of the quasar. Figure
credit: Mortlock, D. et al., Nature}74, 616 (2011).
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Figure 10.7 Halo of scattered Lymanline photons from a galaxy embedded in the neutral
IGM prior to reionization (also called Boeb-Rybicki halp The line photons
diffuse in frequency due to the Hubble expansion of the sumding medium
and eventually redshift out of resonance and escape totinfiAi distant ob-
server sees a Lymam-halo surrounding the source, along with a character-
istically asymmetric line profile. The observed line shobkl broadened and
redshifted by about one thousakech s~ relative to other lines (such asabl
emitted by the galaxy.

they escape and travel freely towards the observer (seed-idu7). As a result,
the source creates a faint Lymanhalo on the sky. Thesel oeb-RybickLyman-

« halos can be simply characterized by the frequency redsdidtive to the line
centery, = |v —v,|, which is required in order to make the optical depth from the
source equal to unity. At high redshifts, the leading terragaation (10.21) yields

Qh 1+ 25\ %2
u*:8.85><1012Hz><< b ><+Z) , (10.28)

0.05v/€2, 10

as the frequency interval over which the damping wing aff#toé source spectrum.
A frequency shift ofv, = 8.85 x 1012 Hz relative to the line center corresponds
to a fractional shift of(v, /v,) = (v/c) = 3.6 x 1073 or a Doppler velocity of

v ~ 103 km s~!. The Lymane halo size is then defined by the corresponding
proper distance from the source at which the Hubble velqmitywides a Doppler

shift of this magnitude,
Q,/0.05
.= 1.1 =———— | Mpc. 10.2
r (Qm/0.3> pc (10.29)
Typically, the observable Lyman-halo of a source at; ~ 10 occupies an angular
radius of~ 15” on the sky (corresponding te 0.17,) and yields an asymmetric

YThe photons that begin blueward of Lymanand are absorbed in the Gunn-Peterson trough are
also re-emitted by the IGM around the source. However, dinese photons originate on the blue side
of the Lymane: resonance, they travel a longer distance from the sourcepared to the Lymaue line
photons, before they escape to the observer. The GunnsBetphotons are therefore scattered from a
larger and hence dimmer halo around the source.
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line profile as shown in Figures 10.7 and 10.8. The scattehedops are highly
polarized and so the shape of the halo would be differentifveid through a po-
larization filter.
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Figure 10.8 Monochromatic photon luminosity of a Lymaralo as a function of normal-
ized frequency shift from the Lyman-resonancey = (vo — v)/v.. Note
that only the photons inside the red damping wing scattdrigidompact halo;
those on the blue side of Lyman-scatter at much larger distances. The ob-
served spectral flux of photong(v) (in photons cm? s~ Hz™') from the
entire Lymane halo is F(v) = (L(7)/4nd2)(Na/vi)(1 + z5)? where N,
is the production rate of Lyman-photons by the source (iphotonss™1),

v = v, /(1 + z), anddy, is the luminosity distance to the source. Figure
credit: Loeb, A. & Rybicki, G. B Astrophys. J524, 527 (1999); see alss20,
L79 (1999)].

Detection of the diffuse Lyman-halos around bright high-redshift sources (which
are sufficiently rare so that their halos do not overlap) wiqurbvide a unique tool
for probing the distribution and the velocity field of the tel IGM before the
epoch of reionization. The Lymam-sources serve as lamp posts which illumi-
nate the surrounding H | fog. However, due to their low sugfacightness, the
detection of Lymanx halos through a narrow-band filter is much more challeng-
ing than direct observation of their sources. Moreover,uélecity fields around
these galaxies may be complicated by winds and infall, whichld affect the line
brightness and profile in similar ways to those discussedihl.1.
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10.5 THE Lyman-a FOREST AS A PROBE OF THE REIONIZATION TOPOL-
OGY?

Given the utility of the Lymanx forest for understanding the ionization state of the
IGM at low and moderate redshifts, extension of these tephes to the cosmic
dawn is an obvious test of the topology and nature of the reédion process.
However, we have already seen that the Gunn-Peterson logietioth is large at this
time, even in highly ionized gas. Thus, we should not expextear signature of
the ionized bubbles.

Nevertheless, the nature of the transformation from a ketdbiminated IGM
to the post-reionization “web-dominated” IGM does offemshope. Once the
ionized bubbles become larger than the mean free path ofothizimg photons,
the ionizing background saturates — even if the Universeevitlty-ionized, the
metagalactic background would not increase. Thus, in kesiilat have reached
this saturation limit, we can expect nearly as much transimisas in the post-
reionization IGM.

The key difference is the presence of the damping wing fraemtutral gas sur-
rounding each ionized bubble. With the rule of thumb that 1 only at distances
> 1 proper Mpc from fully neutral gas, this requires that iomiz®ibbles be at least
a few proper Mpc large in order to allow for any transmissibartunately, in most
reionization models this constraint is easily fulfilled,l@ast in the latter half of
reionization (see Fig. 8.3, for example).

On the other hand, even a moderate damping wing optical ddiitimcreases
the required transmission allowed by the residual neutaal igside the bubble.
Because bubbles that allow transmission must be very lamy thus contain an
enormous number of luminous sources, their ionizing bawmlgd is quite uniform
(except at the edges of the bubble, but there the damping iwitegge anyway).
Thus, just as in the post-reionization IGM, transmissioli e@me from highly-
underdense voids in which the neutral fraction is small. d&igun (10.15) shows
thatT < 1 requiresd < 0.1-0.2. Such deep voids are very rare at high redshifts,
because structure formation is still in its infancy — and ofitse such regions are
largely empty of galaxies and so are likely to remain neutredughout nearly all
of reionization.

Thus, we expect transmission spikes to be extremely raiagitgionization, but
not impossible. With models for the H Il region sizes, the &sivity of the galaxies
driving reionization, and of the density distribution oEthGM, it is not difficult
to estimate the possible abundance of transmission featbigure 10.9 shows an
optimistic example calculation for transmissioreat 6.1 (in the range probed by
the highest-redshift known quasars). In this case, the I@kkiy distribution is
calibrated to numerical simulations at= 2—4. The curves show that observable
transmission gaps with < 2.3 occur only about once pekz ~ 3.

In reality, transmission will be even more rare because shigple calculation
makes the optimistic assumption that photons travel to thge ef their bubble,
without any limits from LLSs in the IGM. But even so, Figure.2@hows that they
are sufficiently rare that precise quantitative consteaon reionization from the
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Figure 10.9 A model for the expected cumulative number ofgmaission features at =
6.1 if the IGM hasQumr = 0.9, 0.85, 0.8, and0.75 (solid, long-dashed, short-
dashed, and dotted curves, respectively). The model usesxtursion set
model for reionization (se§8.5) and an inhomogeneous IGM density distribu-
tion calibrated to simulations at lower redshifts. Figuredit: Furlanetto, S.R.
et al. 2004, MNRAS, 354, 695.

gaps will require much larger samples of quasars or GRBscherently available.
Drawing conclusions about reionization from the forestristéad very difficult.
Indeed, some simulations of the reionization process stawthe present data
cannot even rule out reionization endingzak. 6, since some small pockets of
neutral gas could remain, buried inside the long stretcliesunrated absorption
that are common at this time.

Instead, the Lymaraforest (especially together with absorption in Lymaand
Lyman-y) is best at constraining the very end of the reionization asadiscussed
in §4.6, unless the red damping wing can be measured on its own.

10.6 LYMAN-o EMITTERS DURING THE REIONIZATION ERA

We now return to discuss the properties of more normal gatatdat have Lyman-
« lines, commonly referred to as Lymanemitters or LAEs. We saw i§9.2.1

that this strong emission line provides a convenient maikeyoung star-forming
galaxies, and one of the most efficient ways to find distargbgas is with narrow-
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band searches that identify sources with strong emissi@s lin a narrow redshift
range.

We have seen if10.1.1 that the intrinsic properties of the Lymariine depend
on a host of complex factors. However, we have also foursdh3.1 and 10.4 that
resonant absorption in the ionized IGM and much strongesrgtien from neutral
gas — even from the damping wing once the photon has passedjthresonance
— can also strongly affect the line shape. These latter tsfieake the Lyman-
« emission lines of galaxies an interesting and potentiathygrful probe of IGM
properties. However, we must always bear in mind the conifylex the intrinsic
line profile as an important source of systematic confusisrsfich a probe.

Figure 10.10 shows how this IGM reprocessing can dramétiedter the ob-
served line intensity and profile; the top panel shows theslinvhile the bottom
panel shows the corresponding optical depth profiles. Irtdpepanel, the upper
dotted curve shows the assumed intrinsic line, which wegpde = 10 and take
as a Gaussian with widt2¥ km s~ (these are arbitrary choices chosen for illustra-
tive purposes). The other curves show the effects of IGMaegssing, including
both the damping wing from fully neutral gas at a distafgdrom the line source
(with R, decreasing from top to bottom) and resonant scattering franionized
medium within (except for the lower dotted curve). The ogitidepths providing
this absorption are shown in the bottom panel: the nearhjzbotal lines are the
damping wing optical depths (witR; increasing from bottom to top), while the
dotted curve shows the resonant value.

Note that the resonant absorption is large everywhere tdwwf line center,
but it is modest or negligible on the red side. This is a ragfegreric result (here we
have included only the ionization from the galaxy itself,igthdominates on the
relevant scales, so the ionization structure on large séaleegligible); in general,
we expect LAEs at > 5 to have asymmetric line profiles, with the blue side cut
off by resonant IGM absorption.

However, the damping wing absorption that affects the rdd s well as the
blue side) depends sensitively on the large scale envirahraed in particular the
displacement from the source to the nearest neutral gase®/beye that a bubble
with R, = 1 proper Mpc providestp =~ 1; in fact, this rule of thumb works
reasonably well throughout the relevant highegime.

We therefore expect that as we penetrate farther back ietoeiionization era,
with the bubbles growing smaller and smaller, more and méther Lyman«
lines will be extinguished by the neutral gas. In the remaird this section we will
explore the consequences of this expectation for LAE sw@deying reionization.

10.6.1 Galaxies within lonized Bubbles

In order to understand the interplay between the damping &ird galaxy popula-
tions, we must first understand how galaxies populate theéglbns that surround
them. Fortunately, because we can use the same methods xctirsien set for-
malism — to compute the halo and ionized bubble abundarttiessta relatively
easy task.

Consider an ionized bubble with masg and a mean overdensidy; according
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Figure 10.10Top: Example line profiles for a galaxy at = 10. The upper dotted curve
shows the intrinsic line profile, assumed to be a Gaussian sténdard de-
viation 27 km s~!. The solid, long-dashed, and short-dashed curves show the
observed line after reprocessing through the IGM; theyepthe galaxy in ion-
ized bubbles with radiR, = 10, 5, and3 comoving Mpc, respectively. The
lower dotted curve shows the line if we neglect resonantgibiem within the
ionized bubble, assuming, = 10 Mpc. Bottom: The dotted line shows
the resonant absorption from the ionized bubble. The sddidg-dashed,
short-dashed, and dot-dashed curves show the damping witicplodepth
for R, = 10, 5, 3, and1 Mpc, respectively. Figure credit: Furlanetto, S.R. et
al. 2004, MNRAS, 354, 695.

to the model ir§8.5, this overdensity is exactly that required for a colafraction
large enough to produce one ionizing photon per hydrogen ateide the bubble,
s0d, = B(my). We wish to know the abundance of galaxies as a function ofmas
m within this ionized bubblen(m|ms).

In the excursion set picture (sg8.5.2), this is simply proportional to the fraction
of random walks that begin &tn,, 6,) and end afm, é..), whered., is the critical
linearized overdensity for halo collapse (which is a fuotof m in, for example,
the Sheth-Tormen model). But this problem is actually idehto the “extended
Press-Schechter” problem, in which we calculated the privges of a given halo
at an earlier redshift: the only difference is that here cwalt” is a bubble and we
work at the same redshift — which is possible because thericnit for an ionized
bubble requires a lower overdensity than halo collapsé.itse
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Thus we can immediately write

n(mlms) = \/2# dlno | 0%[0erit(2) — B(my)] exp {_ [Ocrit(2) — B(myp)] } 7

dlnm (02 — o2)3/2 202 — o?]
(20.30)
wheres? = ¢%(m) ando? = o2 (myp).

We can also perform the reverse calculation (analogousddi$tribution of
halo descendants) to compute the probabjlitfn;,|m) that a halo of mass: is
part of a bubble of mass:,. Figure 10.11 shows the results of this calculation
for a small halo 62, = 10° M) and a moderately large onef, = 10'* My).
The different curves in each panel correspond to a sequehiomiaed fractions
in a model of reionization. Unsurprisingly, the median bigbsize increases as
reionization progresses (because all bubbles grow witk)tiftout note that it also
strongly depends on the halo mass: large galaxies are fee fikaly to reside
in large bubbles than average galaxies. This is just anatizanifestation of the
increasing bias of galaxies with their mass.

10.6.2 LAE Number Counts During Reionization

Next let us imagine performing a sequence of narrowband lnymaearches at
progressively larger redshifts. We expect that, once tipeca) bubble size falls
below ~ 1 proper Mpc, the IGM damping wing will also start to extinduithe
lines even if the galaxies still exist. We might thereforegine a simple counting
exercise as atest for reionization, aiming to see a dedlittfesi abundance of LAEs.

Of course, there are many other reasons why the LAE densipyd®eline — most
obviously, the halo mass function changes rapidly wittt these early times, so the
galaxy abundance most likely does as well. Ideally one wthedefore calibrate
it to a broadband galaxy survey that is not subject to the sateetion effects — if
the LAE abundance declines precipitously while the oveyalhxy density declines
only gently, that would be good evidence for IGM absorptibiote, however, that
the complicated physics of Lymamgeneration and transfer within galaxies always
leaves some room for doubt, since such a decline could alsitthieuted to the
evolving IMF of stars or changes in their dust content.

Nevertheless, this simple test is very attractive. We cantbe excursion set
formalism described i§10.6.1 to estimate how the abundance would decline. We
ignore the effects of resonant absorption (since they dgperthe local environ-
ment of the galaxy and hence are unlikely to evolve rapidiyrdyreionization) but
include the damping wing absorption from neutral gas in BBl Let us suppose
that the survey is sensitive to sources with> L,,i,. If we then takel. o m
for simplicity, a galaxy halo of mass will be detected only if the damping wing
hastp < In(m/mmin), Where L(mmin) = Lmin. Then the number density of
observable galaxies is

o0

n(>1L)= /dmb np(mp) Vi dmmn(m|my), (10.31)
mp

wheremp is the minimum halo mass that remains observable inside bl&wf
massm; and volumeV,. Note thatm decreasesvith my, since larger bubbles
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Figure 10.11 Probability that halos with;, = 10° and10*! Mgreside in ionized bubbles
larger than a given radiuB,. Here we use the excursion set model of reioniza-
tion with ¢ = 40; the bubble sizes are relatively independent of this chdire
a fixed Qur1, but the halo populations themselves are highly-redsleifteth-
dent. In each panel, the curves correspond to 12 (Qun = 0.74, solid),
2z = 13 (Quu = 0.48, long dashed)z = 14 (Qui = 0.3, short-dashed),

z = 15 (Qum = 0.19, dotted),z = 16 (Qunr = 0.11, dot-dashed), Figure
credit: Furlanetto, S.R. et al. 2004, MNRAS, 354, 695.

cause less damping wing absorption. Of course, in reajitis a function not only
of bubble size but of a galaxy’s position within the bubblege at the edge always
experience strong absorption.

Nevertheless, this simple model is in good agreement withendetailed cal-
culations using simulations of reionization (either fatlale or semi-numerical).
Figure 10.12 shows the luminosity function at several diffé neutral fractions (in-
cluding fully ionized, top curve) measured in a semi-numredrsimulation. Clearly
damping wing absorption from the neutral gas can have amemas effect on the
observed abundance of galaxies in these surveys.

The detailed calculation reveals two interesting effe€isst, the fractional de-
cline is relatively modest (no more than a factor2) until Qi < 0.5; beyond
that point the abundance declines precipitously. This &abse the ionized bub-
bles have characteristic sizes 10 comoving Mpc, or~ 1 proper Mpc, when
Qur ~ 0.5. Larger bubbles, late in reionization, hawge < 1 and so have only a
small effect on the observed abundance.
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Figure 10.12 Luminosity function of LAEs at= 9 in a semi-numeric simulation of reion-
ization, as a function of the mean neutral fractian. The sequence of curves
from top to bottom goes from small to larger;. The bottom panel shows the
ratio of the curves to that in a fully-ionized Universe. Figeredit: Mesinger,
A. & Furlanetto, S.R. 2008, MNRAS, 386, 1990.

The second factor is visible in the bottom panel of Figurel20evidently the
fractional decline in LAE abundance is nearly independé&hiado mass (or intrin-
sic luminosity). This occurs because the distributionpfs quite broad (roughly
lognormal), due not only to the range of halo sizes but alsihéodistribution of
galaxies within each bubble. For faint galaxies, which tdydollow a power-law
intrinsic distribution, the convolution of these two effepreserves the power law.
At the bright end, where the intrinsic luminosity functioedines exponentially,
the breadth of thep distribution masks the change in slope.

10.6.3 LAE Clustering During Reionization

The fact that galaxies within large ionized bubbles remadtaively) unattenu-
ated while those inside of small bubbles will be extinguéshg the damping wing
suggests that not just the mean number density of LAEs widhge throughout
reionization, but that their spatial distribution will dve as well. Figure 10.13
shows this explicitly. Each panel shows a slice through a-semmeric simulation

of reionization; here we fix = 9 and vary the ionized fraction across the panels
(from fully-ionized at left tozy; = 0.77 at right). Each white dot corresponds to
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Figure 10.13 Maps of visible LAEs at= 9 in a semi-numeric simulation, assumipgr ~
0, 0.26, 0.51, 0.77, from left to right. All slices are 250 Mgt a side and 20
Mpc deep. We assume that all halos with observed lumingsifieater than
that corresponding to an unattenuated galaxy With> 1.67 x 10'° M, are
visible. Figure credit: Mesinger, A. & Furlanetto, S.R. 300MNRAS, 386,
1990.

a galaxy with an observable Lymanline, assuming the same model as the last
section for their luminosity function. The overall trenddkear: galaxies that are
relatively isolated in the left-most panel disappear firdtjle those that are part of

a strong overdensity (near the bottom center of the imagegire visible even to
large neutral fractions.

The best way to describe this phenomenon quantitativelyra@ugh the cluster-
ing of the galaxies. A simple toy model illustrates how it anbes the apparent
clustering on small scales (relative to galaxies obsermeatié continuum, for ex-
ample). Suppose that galaxies with humber densityre distributed randomly
throughout the universe but that we can only observe thoteatieast one neigh-
bor within a sphere of volum& < #~!. Assuming a Poisson distribution, the
number density of observed objects would be

Tobs = ﬁ(l - e—ﬁV). (1032)

As usual the correlation function of the observed samplefimdd through the total
probability of finding two galaxies in volumed/; andjVs,

OP =nZ (1 +&) 6V, 6Va. (10.33)
However, we know that every observed galaxy has a neighbitlkina/; thus
0P = neps 6V1 (6Va/V) (10.34)

for small separations (where the factds, /V assumes the neighborto be randomly
located withinV). Thus,

5 = 1/(nobsv) —1 (1035)

on such scales: even though the underlying distributioraiglom, the selection
criterion induces clustering. Note that it can be extrentaige if V' < n_ .

On large scales, the modulation takes a different form. Aseoled galaxy
resides in a large bubble, corresponding to an overdengareBecause of the bias
of the underlying dark matter field, that overdense regidhtesd to lie near other
overdense regions — and hence other large bubbles. ThusjllWeewnore likely

to see galaxies near the original object than in an average sf the universe.
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Because we do not see similar galaxies in small (less-bidsduibles, the large-
scale bias will generically be larger than that intrinsit¢tte galaxies.

Because these two effects have different amplitudes, thélbs introduce a
scale-dependent bias to the correlation function of gaaxvith a break at ~ R,
whereR.. is the characteristic size of the ionized bubbles. Againgidie excursion
set formalism, we can estimate this modified bias in the imik R. andr > R..

By analogy with the halo model for the density field, thesédtiimgy regimes cor-
respond to correlations between galaxies within a singlebl®iand within two
separate bubbles. We begin with large scales: the obsetlustkiing is the av-
erage bias of the bubbles weighted by the number of galaieaé¢h H Il region
(analogous to the two-halo term for the density field):

> nh(mh|mb)

br—oo = /dmbnb(mb)bb(mb)Vb/ dmy,

mp Ngal

, (10.36)

where we integrate only over those haloes visible after daghwing absorption
andng, is the mean number density of observable galaxies. Follpiyie proce-
dure outlined irt3.6, we can estimate the biasof H |l regions a¥
B(my)/o®(my) — 1/Bo(ms)

D(z) '
(Note that unlike the halo bias we can haye< 0: late in reionization, small
bubbles are truhanti-biased because dense regions have already been incegborat
into large ionized regions.)

The behavior on small scales is somewhat more subtle. Iigsavere ran-
domly distributed within each bubble, the simple argumerthe first paragraph of
this section suggests that the correlation function woutd pe the weighted aver-
age of the number of pairs per H Il region. However, in additio the increase in
the number of galaxies in each bubble, the galaxies alse ttansity fluctuations
within each bubble. On moderately small scales were noatiegolution in the
density field may be neglected, we therefore write

Ngal(Nga1 — 1)|m
b2, :/dmb 'flb(mb)vbb%(mb)< s }%\712 ) b>’

gal

by(mp) =14+ (20.37)

(10.38)

whereNga = figal Vi, (Ngal(Ngal — 1)|my) is the expected number of galaxy pairs
within each bubble, ant measures the excess bias of these haloes inside each
bubble. Note the similarity to the halo-model calculatidthe galaxy power spec-
trum here; in fact this form can be derived formally by consting the galaxy den-

sity field from bubbles and their constituent haloes, in agglto the halo model.
This term then corresponds to the “two-halo, one-bubblefite such a treatment;

i.e., correlations between two particles that lie in the sdombble but different dark
matter haloes. The “bubble profile” describing the disttidi of galaxies within

the bubble turns out to be proportional to the square rodi®finear matter corre-
lation function. Provided that the typical bubbles have etbian two galaxies, we

ViThis equation does not work late in reionization, becausettysical requirement th&y; < 1
caps the effective number density and hence the bias. Iregjii;ie numerical simulations are necessary;
fortunately this regime is also the least interesting frbwa viewpoint of clustering.
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can write the expected number of pairs as
(Ngal(Nga1 — 1)|myp) & max{0, Nga1(mp)[Nga1 (ms) — 1]} (10.39)

The remaining factor i$, (m;). It may seem reasonable to take this to be the
mean value of the usual excursion set halo bias, evalua&thow,|m;). How-
ever, the pair density inside each bubbleeadyincludes much of this bias because
it counts the number of galaxies in a region with overdengity B. We therefore
only want the “excess” bias of the galaxies relative to dgrfkictuations on scales
smaller thammn,;,, which is the bias evaluated from the conditional mass fondh
equation (10.30). Following the excursion set definitiothis bias, we have

(6 = 02)*/(0* —0}) — 1
de(2=0)—6,(2=0) °

We show the resulting bias at = 10 as a function ofQyy; in Figure 10.14.
In each panel, the different curves take different galaxyyations, with smaller
galaxies having less net bias. Pan@yand (b) showb,,, andb,—.,. We scale
the results to the bialg, intrinsic to the galaxy population if absorption could be
ignored. Pane(c) shows the ratid,— . /bsm, illustrating the magnitude of the
“break” in the linear bias. We emphasize that the scale athwvtiie break occurs
will evolve throughout reionization along with the chaetstic bubble sizeR,;
for illustrative purposes we mark several valuedf

Clearly, bothb,, andb,—., decrease throughout reionization. The large-scale
bias decreases because the ionized regions must lie netinerrnean density (and
hence be less biased) @11 — 1: this behaviour must be generic to any model
in which reionization begins in overdense regions. The bstlle bias decreases
because bubbles large enough to allow transmission becomenon: early on,
only those galaxies with near neighbors are visible, so treetations are strong.
In the middle and final stages of reionization, most galabi@sside bubbles large
enough to permit transmission, so more typical galaxiesimecvisible ands,,, —
bn,

bh(mh|mb) =1+

(10.40)

These qualitative results also hold true in more detailddutations with nu-
merical simulations. Figure 10.15 shows the estimated langorrelation func-
tion (i.e., the three-dimensional correlation functiomwmjected on the plane of the
sky) from a radiative transfer simulation of LAEs at= 6.6, the highest redshift
window easily visible to a ground-based telescope. Theudifit curves in each
panel correspond to differentionized fractions; the défe panels describe differ-
ent surveys, with the top panel comparable to existing céipjab and the others a
few times larger. Note the enhancement in small scale airosls at small ionized
fractions; this is the same effect we have described wijth The large-scale power
is also enhanced, but it is much less sensitive;to

Although the correlation function and power spectrum (amaugh them the
linear bias) are the most straightforward manifestatiohthe increased cluster-
ing, the “mask” applied to the galaxy distribution is itsatin-Gaussian, so other
clustering statistics — such as counts-in-cells or higirder correlations — are also
useful. All of these probes follow the qualitative behawidithe bias, increasing
most dramatically early in the reionization process.
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Figure 10.14(a): Predicted small-scale bias of LAEs at= 10, relative to the bias ex-
pected if all galaxies above the mass threshold were visifileis applies
to separations larger than the nonlinear scale but sméléer the character-
istic bubble sizeR.. The solid, long-dashed, and short-dashed curves take
Mobs.min = 10%, 10?, and10'° M, respectively. The dotted curves show
the predicted galaxy bias, neglecting absorption, redativits true value (the
small errors at early times result from the approximatioesalibed in the
text). (b): Predicted large-scale biasat= 10, relative to the bias expected if
all galaxies above the mass threshold were visif@e.Ratio of large to small
scale bias; the transition between the two regimes will ocoughly atR.,
which is marked for a few different values of the ionized frac z,. Figure
credit: Furlanetto, S.R. et al. 2006, MNRAS, 365, 1012.
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Figure 10.15 Angular correlation function of LAEs in a rdilia transfer simulation of
reionization. The simulation takes = 6.6 and assumes all LAEs with
an observed luminosity greater than the intrinsic lumityosif a halo with
m = 7 x 10'° Mgare visible. The different curves in each panel assume
different ionized fractions. The top panel estimates thersifor existing sur-
veys with the Subaru Deep Field in which LAEs are detectedghetrically.
The other two panels assume larger surveys (with times more LAES); the
middle panel assumes a photometric survey, while the botinenassumes
the LAEs can be selected spectroscopically. In each onghitle error bars
include Poisson fluctuations in the galaxy counts, whiletttie curves also
include cosmic variance. Figure credit: McQuinn, M. et @002, MNRAS,
381, 75.
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Both the analytic and numeric approaches show that the héasases with red-
shift by a large factor, at least doubling and sometimeseiasing by an even larger
amount, especially on large scales. This, together wittckizange in the shape of
the LAE correlation function with respect to the dark matteakes the clustering
signature much more robust to uncertainties in the natutbef AE hosts. This
is because the linear bias is a relatively slowly-varyingdiion of halo mass and
redshift; mimicking the shift due to reionization would tége a drastic change in
the properties of the galaxies.

However, it is worth emphasizing again that the radiatians$fer of Lyman-
« photons through the IGM is a complex process, and it can taffecobserved
clustering even after reionization is complete (thus tle®nmant absorption, which
we have neglected in this section, can also be importantgrdstingly, the fre-
quency dependence of the scattering process inducesrapisest, generating clus-
tering signatures analogous to redshift-space distatiGiortunately, this compo-
nent should not evolve as rapidly during reionization asdéaping wing.

10.6.4 Lyman« Blobs

A particularly interesting example of Lymatine emission in the interface be-
tween galaxies and the IGM are the so-called “Lynaablobs” (LABS) originally
discovered in narrowband images at moderate redshifts (3). So far, several
tens of LABs have been found in the redshift range 2—7, making them much
more common than initially expected. These blobs have agrafigroperties, but
all are characterized by significantly extended Lymaline emission (ranging in
size from~ 10 kpc “halos” around star-forming galaxies t0150 kpc giants with
no obvious central galaxy in the rest-frame ultraviole®nte appear to be diffuse
elliptical objects, while others are much more filamentafhe brighter objects,
with line luminositiesL > 10**erg s™!, are extraordinarily powerful, correspond-
ing to star formation rates 500, yr—!. The lines can be quite broad but do not
show any unusual features like double-peaked profiles. Twamnele objects are
shown in Figure??.

Bright LABs are typically located near massive galaxied tkaide in dense re-
gions of the Universe. Multi-wavelength studies of LABseal/a clear association
of the brighter blobs with sub-millimeter and infrared soes which form stars at
exceptional rates of 103M, yr—!, or with obscured active galactic nuclei (in
fact, strong Lymanx emission has been known for many years to surround some
high-redshift radio galaxies). However, other blobs hagerbfound that are not
associated with any source powerful enough to explain tlsemied Lymanx lu-
minosities.

The origin of LABs is still unclear. Some models relate LABscboling radia-
tion from gas assembling into the cores of galaxies. Othatatsinvoke photoion-
ization of cold (" ~ 10* K), dense, spatially extended gas by an obscured quasars
or extended X-ray emission; the compression of ambient gasuperwinds to a
dense Lymanx emitting shell; or star formation triggered by relativisjets from
AGN. The latest models relate LABs to filamentary flows of cold 10*K) gas
into galaxies, which are generically found in numerical giations of galaxy for-
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Figure 10.16Left: A false color image of a Lyman-blob (LAB) at a redshift: = 2.656.
The hydrogen Lymarmr emission is shown in blue, and images in the optical
V-band and the near-infrared J and H bands are shown in gremneal, re-
spectively. Note the compact galaxies lying near the nantf®p) end of the
LAB. The Lyman« image was obtained using the SuprimeCam imaging cam-
era on the Subaru Telescope, and the V, J, and H band imagesained
using the ACS and NICMOS cameras on the Hubble Space Tekesddps
LAB was originally discovered by the Spitzer Space Telescdmage credit:
Prescott, M., & Dey, A. (2010)Bottom: A false color image of an LAB at a
redshiftz = 6.6, obtained from a combination of images at different infcare
wavelengths. Image credit: Ouchi, M. et Alstrophys. J696, 1164 (2009).

mation. These cold flows contain 5-15% of the total gas content in halos as
massive ad/.1, ~ 1012103 M.

Although these objects have only been observed in detadrsat low redshifts,
similar mechanisms offer the prospect of learning not ofdgw star formation
inside of high-redshift galaxies and the gross propertféab®IGM but also about
the detailed structure of the gas accreting onto, or flowiagad, young galaxies.
Lyman- studies may therefore ultimately hold the key to understapthe initial
stages of galaxy formation and growth.



Chapter Eleven

The 21-cm Line

As powerful as it is, the Lymamn-transition has several major disadvantages for
studying the high= Universe:

e Most importantly, the Gunn-Peterson optical depth is eroarsn Even a very
small neutral fraction, of order 103, suffices to render the IGM opaque
in this line. Thus, we are not able to use it to study the earlgven middle
phases of reionization except in special circumstances.

e Because Lymar absorption is in the UV band, observing it requires bright
UV sources which are very rare at high redshifts, and lintiesrelated stud-
ies to only rare redshift skewers (lines of sight).

e The high excitation energy of the Lymantransition prevents us from using
it to study the cold pre-reionization IGM, because the terajpees are much
too low there to collisionally excite the line. Moroeveretlarge optical depth
for absorption prevents us from measuring the IGM tempeegturough the
line width.

The first of these can be remedied by using a resonant tramsifia rarer ele-
ment, such as metals, but of course such elements are raré¢hein distribution
introduces extra uncertainty into the interpretation. \&a address all these prob-
lems by searching for a weaker, lower-energy line of atonyidrbgen: the best
candidate is the spin-flip, or hyperfine line. This transitivas predicted by Hen-
drik van de Hulst in 1944 (following a suggestion by Oort) dinst observed from
the sky by Harold Ewen and Ed Purcell through an office windothe Harvard
Physics departmentin 1951. Itis driven by the interactitthe magnetic moments
of the proton and electron; when these moments are alighe@tom has a slightly
higher energy than when they are anti-aligned. An atom irupiper state will then
eventually undergo a “spin-flip” transition, emitting a pbi with a wavelength
of 21 cm. As we shall see, this transition is extremely weakthe effective IGM
optical depth is only of order 1%: this makes the entire redu@M accessible dur-
ing the “cosmic dawn.” Moreover, the transition energy id®@ that it provides a
sensitive thermometer of the low-temperature IGM, and —lawgrequency radio
transition — it can be seen across the entirety of the IGMrajéhe CMB.

Figure 11.1 illustrates the power of the spin-flip transitiwith an analogy to
the well-known structure of “Swiss cheese”. Each slice addade has a different
structure, depending on where the air bubbles happen toitienwit. In the case
of the spin-flip transition, by observing different wavedgis of 21 cnx (1 + z2),
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Figure 11.1 21-cm imaging of ionized bubbles during the epfaeionization is analogous
to slicing Swiss cheese. The technique of slicing at inlersaparated by the
typical dimension of a bubble is optimal for revealing diéfat patterns in each
slice.

one is slicing the Universe at different redshifts Moreover, the redshifted 21-
cm emission should display angular structure as well asifraqy structure due to
inhomogeneities in the gas density, the hydrogen ionizactityn, and the fraction
of excited atoms — the analog of the air bubbles in Swiss &easfull map of
the distribution of H | as a function of redshift would proeid three-dimensional
image of the Swiss-cheese structure of the IGM during reetion. This mapping
“tomography” provides the only way to map the distributidn-090% of the matter
in the Universe during the Dark Ages and cosmic dawn.

Figure 11.2 shows a more concrete overview of the expectedflgp signal.
This has two interesting aspects: the sky-averaged, or paagpbrightness, which
records the average properties of the H | as a function of rebdewavelength
(or equivalently cosmic time). This is shown in the bottorm@ain brightness
temperature units relative to the CMB (see below for a dedladiscussion). Several
different phases are labeled; we will discuss each in tuthigchapter. The top
panel shows the fluctuations inherent in this signal, whitdearom the discrete,
clustered luminous sources. The spin-flip background nreagbe ultraviolet and
X-ray radiation fields over a broad swath of cosmic histoymplementing the
direct probes of individual galaxies that we have alreadscdbed.

This chapter will describe how we use the 21-cm line to stumiytighs Uni-
verse. Following convention in the literature, we will afteefer to the signal as
the “21-cm radiation,” although in reality trebservedvavelengths are larger by a
factor of (1 + 2).
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Figure 11.2 Overview of the expected 21 cm sigriBdp panel: Time evolution of fluctu-
ations in the 21 cm brightness from just before the first shams through to
the end of reionization. This evolution is pieced togethent instantaneous
redshift slices through a (100 Mpchumerical simulation volume. Coloration
indicates the strength of the 21 cm brightness as it tramstfrom absorption
(blue) to emission (red) and finally disappears (black) dummization. Bot-
tom panel: Expected evolution of the sky-averaged 21cm brightness fite
“Dark Ages” atz = 150 to the end of reionization sometime befare= 6. The
frequency structure is driven by the interplay of gas hegtihe coupling of gas
and 21 cm temperatures, and the ionization of the gas. Thaenisiderable
uncertainty in the exact form of this signal arisi