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ABSTRACT

Baryonic acoustic oscillations (BAOs) modulate the density ratio of baryons to dark
matter across large regions of the Universe. We show that the associated variation
in the mass-to-light ratio of galaxies should generate an oscillatory, scale-dependent
bias of galaxies relative to the underlying distribution of dark matter. A measurement
of this effect would calibrate the dependence of the characteristic mass-to-light ratio
of galaxies on the baryon mass fraction in their large scale environment. This bias,
though, is unlikely to significantly affect measurements of BAO peak positions.
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1 INTRODUCTION

The rapid acoustic waves in the radiation-baryon fluid prior
to cosmological recombination were not followed by the dark
matter at that time. Following recombination, the baryons
were freed from the strong radiation pressure and fell into
the gravitational potential fluctuations of the dark matter.
As a result, the fractional difference between the density
fluctuations of baryons and dark matter decreased steadily
with cosmic time. But since the baryons amount to a sizeable
fraction of the total mass density of matter (Ωb/Ωm ≈ 17%),
the gravitational effect of the baryons on the dark matter im-
printed baryonic acoustic oscillations (BAOs) on the matter
power spectrum. The characteristic comoving scale of BAOs
∼ 100 Mpc (corresponding to the sound horizon at recombi-
nation), provides a yardstick that can be used to measure the
dependence of both the angular diameter distance and Hub-
ble parameter on redshift (see review by Eisenstein 2005).

When analyzing galaxy surveys, it is often assumed that
galaxies are biased tracers of the underlying matter distri-
bution (Kaiser 1984), with a bias factor that approaches a
constant value on sufficiently large scales where density fluc-
tuations are still linear (e.g., Mo & White 1996; Tegmark &
Peebles 1998; Sheth et al. 2001). However, the imprint of
primordial acoustic waves on the baryon fluid at recombina-
tion introduced a scale-dependent modulation of the ratio
between the density fluctuations of baryons and dark matter
that has not been completely erased by the present time. A
large-scale region with a higher baryon mass fraction than
average (in the perturbations that lead to galactic halos)
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is expected to produce more stars per unit total mass and
hence result in galaxies with a lower mass-to-light ratio.

In this paper we characterize the associated scale-
dependent bias in flux-limited surveys of galaxies. The ratio
between the power spectra for fluctuations in the luminosity
density and number density of galaxies is expected to show
BAO oscillations that reflect the large-scale variations in the
baryon-to-matter ratio.

In §2, we formulate the oscillatory BAO signature on
galaxy bias in terms of a simple analytical model. The quan-
titative results from this model are presented in §3. Finally,
we summarize our main conclusions in §4.

2 THE MODEL

2.1 Basic Setup

Since galaxies sample the high peaks of the underlying mat-
ter density, they are biased tracers of the matter density.
When the clustering of galaxies is usually analyzed, the
bias is considered simply with respect to the matter density,
without separating out the effects of the baryons. As long
as the baryon fluctuations follow the same spatial pattern
as those of the dark matter, biasing with respect to each of
them cannot be separated since this separation is degenerate
with an overall change of the bias factor, which is not known
apriori. However, since the BAOs induce a scale-dependent
difference between the baryons and dark matter, it becomes
important to consider their influence on galaxies separately.

Consider the power spectrum of fluctuations in the
galaxy number density ngal and in the luminosity density
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ρL. For a given galaxy population,

ρL = ngal × 〈L〉 , (1)

where 〈L〉 is the mean luminosity of the galaxies. Since
galaxy formation is driven by halo collapse, which depends
on the evolution of the overall matter perturbations, the
number density fluctuations δn are driven by the fluctuation
δtot in the total matter density, with a bias bn that should be
approximately constant on large scales (at least for a sample
at a given luminosity):

δn = bnδtot . (2)

The mean luminosity of galaxies may depend on their envi-
ronment through their merger rate history, which is corre-
lated with the local matter density. This can lead to fluctu-
ations δL in ρL with a different bias factor that should also
approach a constant on large scales:

δL = (bn + bL;t)δtot , (3)

where the overall bias factor of the luminosity density with
respect to the total matter includes the number density bias
bn as well as a possible additiona bias bL;t from the depen-
dence of 〈L〉 on the matter density.

However, the luminosity is also affected separately by
the baryon fluctuations, since the luminosity depends on
the gas fraction in halos fb. Regions that have halos with
a higher baryon fraction will proportionally have more
baryons in the galaxies within them. If, e.g., we assume that
the star formation rate per baryon is on average constant,
then 〈L〉 ∝ fb. In fact, the dependence of the luminosity
on the gas fraction is likely to be non-linear. For instance,
in simple models for disk formation within halos (Mo et al.
1998), the disk radius is approximately independent of the
gas fraction. Thus, if we assume that the disk mass is a fixed
fraction of the halo gas mass, then the typical gas surface
density within the disk varies in proportion to the overall
halo gas fraction. According to the Schmidt-Kennicutt law
(e.g., Kennicutt 1998), the star formation rate in the disk
should vary with the gas surface density to the power 1.4.
Thus, in general we assume that

〈L〉 ∝ (fb)bL;f , (4)

where these simple considerations suggest that bL;f ≈ 1.4.
The notation for this power index is chosen since equa-
tion (4) (together with equation 3) implies fluctuations

δL = (bn + bL;t)δtot + bL;fδf , (5)

where δf is the perturbation in the halo gas fraction fb.
Thus, bL;f is the bias factor of the luminosity density with
respect to the halo baryon fraction. Note that in our notation
all the perturbations are the actual ones at the considered
redshift (i.e., we do not use the common practice of linear
extrapolation to redshift zero).

2.2 Halo Baryon Fraction

We would expect the baryon fraction within halos to reflect
that of their surroundings, but the precise relation is com-
plex due to the non-linear process of halo collapse. Here we
employ reasonable simplifications to derive an approximate
result, which is partly verified and quantified by simulation
results shown in § 3.

We find it useful to analyze the baryon fraction in sev-
eral steps, where the first step is to avoid halo collapse and
simply consider

γb ≡
ρb

ρtot

, (6)

where we use γb for the general baryon fraction and reserve
fb for the baryon fraction inside halos. The mean of this
quantity is the cosmic mean baryon fraction:

γ̄b =
Ωb

Ωm
, (7)

and its fluctuation is simply

δγ = δb − δtot = rδtot . (8)

Here we have measured the fractional difference between the
baryonic and total matter fluctuations with r ≡ (δb/δtot)−1,
in general a function of both wavenumber k and redshift.

In reality, halos form out of perturbations that eventu-
ally grow to an overdensity of hundreds, making the contri-
bution of the mean density negligible, and thus we expect
the baryon fraction to reflect the relative mass of the baryon
perturbation that formed the halo:

fb =
Ωbδb

Ωtotδtot

= γ̄b

δb

δtot

. (9)

Before discussing non-linear collapse, we wish to apply this
equation to the linear perturbations that will form a halo,
but even in the linear case we cannot easily apply this equa-
tion in Fourier space, since halos form out of a sum of per-
turbations on all scales, and taking a ratio as in equation (9)
is a non-linear operation.

To make further progress, we make a separation of scales
(also called a peak-background split; Cole & Kaiser 1989),
where we assume that the fluctuations that we wish to ob-
serve (in the galaxy luminosity, etc.) are on much larger
scales than the (initial comoving) scales that formed the ha-
los. Typically, we are interested in measuring fluctuations
on BAO scales, which are ∼ 2 orders of magnitude above
the halo formation scale of galaxies. Thus, we separate out
the linear halo perturbations (i.e., the initial perturbations
that will form a halo, linearly extrapolated to the redshift
of halo formation):

δtot = δl
tot + δs

tot , (10)

δb = δl
b + δs

b = (1 + rl)δ
l
tot + (1 + rs)δ

s
tot , (11)

where the relative difference between the baryonic and total
matter perturbations is rl and rs on large and small scales,
respectively.

We now use the standard result of spherical collapse,
that a forming halo has a linear δtot = δc, where the critical
density of collapse δc is independent of mass (and equals 1.69
in the Einstein de-Sitter limit, valid over a wide range of red-
shifts). We also assume that we are considering sufficiently
large scales so that δl

tot can be treated as a perturbation of
δtot (or δs

tot), and that rl and rs are also small quantities.
Then the mean baryon fraction in halos is

f̄b = γ̄b(1 + rs) , (12)

and the lowest order perturbation comes out

δf =
rl − rs

δc

δl
tot . (13)
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We now use the actual value of r(k) (see § 3), specifically the
fact that it approaches a constant on scales below the BAOs,
with a value (depending on redshift but not k) that we de-
note rLSS following Naoz & Barkana (2007). Thus, in the
just-derived equations we can treat rs = rLSS as a constant
(at a given redshift), since most of the density δc needed to
form a halo comes from scales well below the BAO scale.
Thus, the mean baryon fraction in halos is

f̄b = γ̄b(1 + rLSS) , (14)

while on large scales (i.e., small k) the fluctuation is

δf =
r(k) − rLSS

δc

δtot . (15)

The remaining issue is the effect of non-linear collapse,
and the relation between the baryon fraction in the linearly-
extrapolated halo perturbation and the baryon fraction in
the actual virialized halo. We show simulation results in
§ 3 that only test the mean baryon fraction in halos (equa-
tion 12) but do so over a range of redshifts, and suggest
that halo collapse enhances the effect and results in an ef-
fective value of rLSS that is amplified by a factor of several.
One way to understand this enhancement is to consider the
variation of rLSS with time. It declines (in absolute value)
approximately as r ∝ 1/a (where a = 1/(1 + z) is the scale
factor), since (δtot−δb) ≈const while δtot ∝ a (until the cos-
mological constant becomes significant at low redshift). The
decline of rLSS with time is of critical importance, since we
are computing it according to linear theory, and it may not
be appropriate to extrapolate rLSS all the way to the halo
formation time when we evaluate it in equation (12). The
baryon fluctuations, which were erased on small scales be-
fore cosmic recombination, later continuously catch up with
the dark matter (and thus with the total matter as well)
in linear perturbation theory. However, once a perturbation
begins to form a halo and enters the non-linear stage of col-
lapse, we expect that the rapid collapse will bring with it
only the baryons already present within the perturbation,
and the continued decline of the linear-theory rLSS will be-
come irrelevant for the halo gas content. The upshot is that
the simulations suggest that if we use the linear-theory rLSS

(and similarly for r(k)) then we must multiply them by an
effective amplification factor Ar:

f̄b = γ̄b(1 + Ar rLSS) , (16)

δf =
Ar

δc

[r(k) − rLSS]δtot . (17)

The resulting fluctuations in the luminosity density (equa-
tion 5) are

δL = (bn + bL;t)δtot + bL;∆[r(k) − rLSS]δtot , (18)

where

bL;∆ ≡ bL;f
Ar

δc

(19)

is an effective bias factor that measures the overall depen-
dence of galaxy luminosity on the underlying difference ∆
between the baryon and total density fluctuations.

2.3 Flux Limits

We have assumed thus far that we observe a fixed galaxy
population, regardless of the varying luminosity of its mem-

bers. In reality, observed samples are limited by flux, or
equivalently by luminosity if for simplicity we consider
galaxies at a single redshift. Suppose the fraction of galaxies
above luminosity L is

F (L) =

Z

∞

L′=L

φ(L′)dL′ , (20)

where φ is the luminosity function. Then the observed num-
ber density of galaxies is

nobs = ngalF (L) , (21)

and the luminosity density of these galaxies is

ρL = ngal〈L〉F (L) , (22)

where

〈L〉 =
1

F (L)

Z

∞

L′=L

L′φ(L′)dL′ . (23)

We assume for simplicity that the same luminosity dis-
tribution holds in different regions, except that the lumi-
nosity of all galaxies is enhanced or diminished uniformly
in response to changes in the total density and the halo
baryon fraction, as discussed in § 2.1. If a sample only in-
cludes galaxies above a detection threshold Lmin, then we
can analyze the variations of F (L) by keeping φ fixed and
varying the effective threshold Lmin, while in ρL we also
include the perturbation in the luminosity of each galaxy.
From equation (20) we obtain a relative fluctuation

δF = Cmin[bL;tδtot + bL;fδf ] , (24)

where the dimensionless coefficient

Cmin =
Lmin φ(Lmin)

F (Lmin)
. (25)

The dependence of luminosity on the halo baryon frac-
tion introduces a dependence of the galaxy number density
on the baryon fluctuations (i.e., on r(k)). Putting our results
together, for a flux-limited survey we find

δn = (bn + CminbL;t)δtot + CminbL;∆[r(k) − rLSS]δtot , (26)

and

δL = [bn+(1+Dmin)bL;t]δtot+(1+Dmin)bL;∆[r(k)−rLSS]δtot ,
(27)

where

Dmin =
Lmin

〈L〉
Cmin , (28)

with 〈L〉 evaluated for L = Lmin.
In the limit where Lmin is well below the peak of the

luminosity function, Cmin and Dmin both approach zero,
and these expressions simplify to the previous ones (equa-
tion 2 and 18). In the opposite limit, e.g., in the exponen-
tial tail of a Schechter function, we can approximately set
φ(L) ∝ e−L/L∗ , and then Cmin = Lmin/L∗ and Dmin =
CminLmin/(Lmin + L∗) are both ≫ 1 when Lmin ≫ L∗.

2.4 Observational Goals

As we have shown, both the galaxy luminosity density and
(for a flux-limited sample) number density depend on the
halo gas fraction. The scale-dependence of the relation be-
tween the baryon and dark matter fluctuations implies that

c© 2010 RAS, MNRAS 000, 1–6



4 Rennan Barkana and Abraham Loeb

the BAOs can be observed in ratios that previously would
have been expected to be scale-independent.

One proposal is to compare the power spectrum of fluc-
tuations in the galaxy number density (Pn) with that of the
luminosity density (PL), with both measured for the same
galaxy sample. Taking the ratio may help to clear away some
systematic effects that affect both power spectra. Their ratio
(square-rooted) should have the form (assuming r(k) ≪ 1):

„

PL

Pn

«1/2

= B1 {1 + B2[r(k) − rLSS]} , (29)

where the various bias factors enter into the coefficients B1

and B2. If we denote the bias ratio br ≡ bL;t/bn, then

B1 =
1 + (1 + Dmin)br

1 + Cminbr

, (30)

and

B2 =
bL;∆

bn

1 + Dmin − Cmin

(1 + Cminbr) · [1 + (1 + Dmin)br]
. (31)

Note that in the limit where most of the galaxy popula-
tion is observed (i.e., the flux limits are unimportant), these
expressions simplify to B1 = 1 + br and B2 = bL;∆/(bnB1).

In practice, using these expressions is not as daunting
as it may appear. For a given galaxy sample, Cmin and Dmin

can be calculated from the measured luminosity function.
This leaves two unknowns, br and the ratio bL;∆/bn. Within
the ratio, we have a well-motivated expectation for bL;∆ =
bL;fAr/δc, given that δc ≈ 1.7, bL;f ≈ 1.4 (§ 2.1), and Ar ≈ 3
from simulations (see § 3). Now, if r were independent of
scale, then we could only measure a degenerate combination
of the unknown quantities. However, a precise measurement
of the power spectrum ratio can separate out the constant
and BAO terms, thus yielding B1 and B2 separately, which
in turns yields br and the ratio bL;∆/bn.

Although it is implicit in the equations, r(k) and rLSS

are also (declining) functions of time. However, even at low
redshift r(k) contains a signature of the BAOs, since the
BAOs are still imprinted more strongly in the baryon fluc-
tuations than in those of the dark matter or the total matter.
This clear signature offers a chance to detect this effect, even
if the various bias factors that we have assumed to be con-
stant actually vary slowly with k. A detection of the effect
can be combined with an estimate of bn from comparing Pn

with the underlying matter power spectrum (e.g., as mea-
sured with weak lensing on large scales). Extraction of the
value of bL;∆ would yield a new quantity in galaxy forma-
tion, a combination of the way in which the luminosity of
a galaxy depends on the baryonic content of its host halo,
and of how this baryonic content depends on the underlying
difference between the baryon and total density fluctuations.

Another possibility is to compare the power spectra of
number density (or luminosity density) between two differ-
ent samples. Their ratio should again have a form similar to
equation (29), from which the constant and BAO term can
be separately measured. It is well known that galaxy bias
depends on galaxy luminosity (?), but here the bias would
be scale dependent in a way that depends on Lmin.

Figure 1. The fractional baryon deviation r(k) = ∆/δtot =
(δb/δtot) − 1 as a function of k, at various redshifts (z = 0, 0.5,
1, 3, and 6, from top to bottom).

3 QUANTITATIVE PREDICTIONS

For our quantitative results, we use the CAMB linear per-
turbation code (Lewis et al. 2000), with the WMAP 5-year
cosmological parameters (Komatsu 2009), matching the sim-
ulation that we compare with below.

We show the dependence of r on both wavenumber and
redshift in Figure 1. At a given redshift, r(k) approaches a
constant at k >

∼ 0.5 h/Mpc, which we denote rLSS following
Naoz & Barkana (2007). Using rLSS (itself a function only
of redshift) we can separate out the two variables k and
z in their effect on r, as shown in Figure 2. The function
[r(k)/rLSS]−1 is independent of redshift (i.e., the curves for
five different redshifts overlap exactly), so the k dependence
of r is determined by a single, fixed function of k. Thus, the
redshift dependence of r is the same at all k, and it suffices to
show the dependence of rLSS. Figure 2 shows that, as noted
in the previous section, rLSS indeed varies approximately in
proportion to 1/a, but in detail the variation with redshift
is slightly slower than that.

As noted in the previous section, we expect the non-
linear evolution that takes place during halo formation to
magnify the gas depletion effect compared to the linear the-
ory calculation. We can test this effect using the hydrody-
namical simulation of Naoz, Yoshida, & Barkana (2010). Al-
though superficially it appears that they studied a quite dif-
ferent regime (low-mass halos forming at high redshift), their
results should be applicable here. In the linear theory, the
gas depletion factor rLSS is constant all the way from the
BAO scale (k ∼ 0.1 h/Mpc) down to just above the Jeans
scale (k >

∼ 100 h/Mpc). Naoz, Yoshida, & Barkana (2010)
investigate the gas depletion in virialized halos from below
the Filtering mass (which is a time-averaged Jeans mass)
up to a 103 times higher mass scale. Thus, the most mas-
sive halos in their simulation were well into the large-scale
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Figure 2. Top panel: [r(k)/rLSS] − 1 as a function of k, at the
same redshifts as in Figure 1 (the curves all lie on top of each
other). Bottom panel: The quantity 100rLSS versus 1 + z (solid
curve). Equivalently, this shows the value of rLSS in units of per-
cent. Also shown is the function −0.31/a (dotted curve). For both
panels, in practice we set rLSS ≡ r(k = 1h/Mpc).

structure regime, where pressure is negligible, and the effect
we are interested in (i.e., non-linear gas depletion on large
scales) should operate.

Figure 3 shows that the fractional gas depletion mea-
sured in virialized halos in the simulation of Naoz, Yoshida,
& Barkana (2010) was much larger than the depletion rLSS

predicted for linear perturbations at the same redshift zvir.
The simulated results can be reasonably fit either by mul-
tiplying rLSS by a factor of 3.2, or by adopting rLSS from a
higher redshift z [where (1 + z) = 3.5(1 + zvir)]. Additional
simulations are required to test whether these results can
indeed be extrapolated to our regime of much more massive
halos at low redshift, but these results suggest that the gas
depletion in halos is amplified by a factor >

∼ 3 compared to
the linear regime.

As an example of typical numbers, we consider an ex-
ample with Cmin = Dmin = 0, bn = 2, and bL;t = 1. As
noted in section 2.4, we expect in this case bL;∆ ∼ 2.6, and
also br = 0.5, so in the observational ratio of equation (29),
B1 = 1.5 and B2 = 0.9. Thus, the oscillations in the square-
root ratio of the luminosity and number density power spec-
tra are at the level of 0.4% at z = 1 (measured from the
first peak, i.e. at the lowest k, to the following trough; the
variation from k = 0 to the first peak is roughly twice as
large). This is a weaker effect by about a factor of five com-
pared to the normal BAOs in the total matter power spec-
trum. Thus, if high precision is achieved in the regular BAO
measurement, then the scale-dependent bias that we have
highlighted should also be measurable.

This scale-dependent bias is unlikely to significantly af-
fect the standard BAO measurements. Such measurements
are usually carried out on the power spectrum of the galaxy

Figure 3. The fractional gas depletion in halos versus redshift.
We show the results from the simulation of Naoz, Yoshida, &
Barkana (2010) (data points), where the corresponding redshift
(at which the virialized halos are identified in the simulation) can
be denoted zvir. We compare the depletion as measured in the
simulations to rLSS at zvir (dotted curve), 3.2rLSS at zvir (long-
dashed curve), and rLSS at a value of (1+z) equal to 3.5(1+zvir)
(short-dashed curve).

number density. Scale-dependent bias enters this quantity
only in proportion to Cmin (see equation 26), so it would
be present only in a sample for which the flux limit plays
a significant role. Even then, the effect on the BAO peak
positions would be quite weak, since the BAOs in δtot are
physically a result of the influence of the baryons on the dark
matter. Thus, the peak positions in δtot and in δb are nearly
identical. For instance, even in the case that in equation 26
the coefficients (bn + CminbL;t) and CminbL;∆ are equal, the
BAO peak positions are shifted only by ∼ 0.3%.

4 CONCLUSIONS

We have shown that the variation in the baryon to mat-
ter ratio imprinted by acoustic waves prior to cosmological
recombination should result today in an oscillatory, scale-
dependent bias of galaxies relative to the underlying matter
distribution (see Figs. 1 & 2). The percent-level amplitude
of this signature depends on how the typical luminosity of
galaxies scales with the baryon mass fraction in the large-
scale region in which they reside. Simulations suggest that
this signature is significantly amplified by non-linear effects
during halo collapse (Fig. 3). The resulting amplitude can
be measured from the ratio between the power spectra of
fluctuations in the luminosity density and number density
of galaxies (Eq. 29), or from the dependence of the BAO
bias on galaxy luminosity. An observational calibration of
this amplitude would offer a new cosmological probe of the
physics of galaxy formation.

This effect may be marginally observable with current
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data, but it should certainly be feasible using future galaxy
surveys (such as BOSS1 or BigBOSS2). However, since the
baryonic and the matter fluctuations have nearly identical
BAO peak positions, the scale-dependent bias is unlikely to
significantly affect the standard BAO measurements, even
at percent-level precision.
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