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The statistical uncertainty in measuring the primordial density perturbations on a given comoving
scale is dictated by the number of independent regions of that scale that are accessible to an observer.
This number varies with cosmic time and diminishes per Hubble volume in the distant past or future
of the standard cosmological model. We show that the best constraints on the initial power spectrum
of linear density perturbations are accessible (e.g. through 21-cm intensity mapping) at redshifts
z ∼ 10–50, and that the ability to constrain the cosmological initial conditions will deteriorate
quickly in our cosmic future.

Introduction. The early Universe was characterized
by linear density perturbations with a fractional ampli-
tude |δ(r)| ≪ 1, thought to have been seeded by quantum
fluctuations during cosmic inflation across a vast range of
scales spanning more than ∼ 26 orders of magnitude [1].
As the Universe evolved, these perturbations were pro-
cessed by its radiation and matter constituents. Recent
surveys restricted to a small fraction of the total observ-
able volume of the Universe allowed observers to read
off cosmological parameters from the “Rosetta stone” of
these density perturbations to an exquisite precision of a
few percent [2–4].

In this paper we consider the fundamental limit to
the precision of cosmological surveys as a function of
cosmic time. Our analysis provides a global perspec-
tive for optimizing future observations, and for assessing
the ultimate detectability limits of weak features such as
non-Gaussianity from inflation [5]. Existing cosmologi-
cal data sets are far from optimal. For example, the pri-
mary anisotropies of the cosmic microwave background
(CMB) [4] sample only a two-dimensional (last scatter-
ing) surface which represents a small fraction of the three-
dimensional information content of the Universe at the
redshift of hydrogen recombination, z ∼ 103.

It is convenient to analyze the density perturbations
in Fourier space with δk =

∫

d3rδ(r) exp{ik · r}, where
k = 2π/λ is the comoving wavenumber. The fractional
uncertainty in the power spectrum of primordial density
perturbations P (k) ≡ 〈|δk|2〉 is given by [6, 7],

∆P (k̄)

P (k̄)
=

1
√

N(k̄)
, (1)

where the number of independent samples of Fourier
modes with wavenumbers between k and k + dk in a
spherical comoving survey volume V is,

dN(k) = (2π)−2k2V dk, (2)

with N(k̄) being the integral of dN(k)/dk over the band
of wavenumbers of interest around k̄.

The maximum comoving wavelength λmax that fits
within the Hubble radius is set by the condition (see Fig-

ure 1),

λmax(t) = 2RH, (3)

where RH ≡ c/(aH) is the comoving radius of the Hubble
surface, a = (1+z)−1 is the scale factor corresponding to
a redshift z (normalized to unity at the present time), and
H(t) = (ȧ/a) is the Hubble parameter at a cosmic time
t. The corresponding minimum observable wavenumber

kmin(t) ≡ 2π/λmax naturally gives
∫ kmin

0
dk[dN(k)/dk] ≈

1. At z . 103, H ≈ H0

√
Ωma−3 +ΩΛ. Throughout the

paper, we adopt a present-day Hubble parameter value
of H0 = 70 km s−1 Mpc−1 (or equivalently h = 0.7) and
density parameters Ωm = 0.3 in matter and ΩΛ = 0.7 in
a cosmological constant [4].

FIG. 1: In the standard (post-inflation) cosmological model,
a Fourier mode with a comoving wavelength λ which enters
the comoving scale of the Hubble radius RH = c(aH)−1 (in
units of cH−1

0
= 4.3 Gpc) at some early time (corresponding

to a redshift z = a−1

enter
−1), would eventually exit the Hubble

radius at a later time (corresponding to aexit). Hence, there is
only a limited period of time when the mode can be observed.
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Counting Modes. An observational survey is typically
limited to a small fraction of the comoving Hubble vol-
ume Vmax = 4π

3
R3

H, which evolves with cosmic time. Fig-
ure 2 shows that Vmax starts small, then grows to a maxi-
mum at the end of the matter dominated era, and finally
diminishes due to the accelerated cosmic expansion.

FIG. 2: The Hubble volume Vmax, normalized by its present-
day value V0 = 4π

3
(c/H0)

3 = 3.3× 102 Gpc3, as a function of

cosmic time t (top axis, in units of the Hubble time H−1

0
= 14

Gyr) and scale factor a = (1 + z)−1 (bottom axis).

For the standard cosmological model in which the mat-
ter density is dominated by cold dark matter (LCDM),
nonlinear structure develops first on small spatial scales
(large k) where it erases memory of the initial conditions.
We associate the maximum wavenumber kmax for which
the initial conditions are still in the linear regime with
the minimum radius RNL = πk−1

max of a spherical top-
hat window for which the root-mean-square amplitude
of density perturbations is unity at the cosmic time of
interest [8],

σ2(RNL) ≡
∫

∞

0

4πk2dk

(2π)3
P (k)

[

3j1(kRNL)

kRNL

]2

= 1, (4)

where j1(x) = (sinx − x cosx)/x2 is the first spherical
Bessel function. We adopt a present-day normalization of
σ(8h−1) = 0.8 for the standard LCDM power-spectrum
with a spectral index ns = 1 [4].
Before nonlinear baryonic structure begins to form

(z & 50) we associate the corresponding minimum wave-
length, λmin = 2π/kmax, with the Jeans length for the
baryons, λJ = 2π/kJ, below which baryonic perturba-
tions are smoothed out by gas pressure. We base this
definition on the baryons since they are commonly used

by observers to trace the underlying matter distribution.
At z > 200 when the gas is thermally coupled to the
CMB due to the residual fraction of free electrons after
cosmological recombination [8],

kJ =

(

2kBTγ,0

3µmp

)

−1/2
√

ΩmH0 = 0.35 kpc−1, (5)

where Tγ,0 = 2.73K is the present-day CMB tempera-
ture, and µ = 1.22 is the mean atomic weight of neu-
tral primordial gas in units of the proton mass mp. At
z . 200 and before the first baryonic objects form, the
gas temperature scales as (1 + z)2, and so kJ scales up
from the value in Eq. (5) as [(1+z)/200]−1/2. To keep our
discussion simple, we ignore subtleties associated with
the motion of the baryons relative to the dark matter [9],
the baryonic temperature fluctuations [10], and the X-
ray and photo-ionization heating of intergalactic baryons
by the first sources of light [11]. These details (which are
partially sensitive to the unknown properties of the first
sources of light [8]) could reduce kmax at z & 10. Hence,
our calculated kmax should be regarded as the absolute
upper limit, adequate for regions that are not influenced
by these effects.
Figure 3 shows the range of wavenumbers between kmin

and kmax that are accessible within the Hubble radius as
a function of cosmic time t and scale factor a(t).

FIG. 3: The range of comoving wavenumbers for which the
linear power spectrum can be observed per Hubble volume as
a function of cosmic time and scale factor. The minimum
wavelength λmin = 2π/kmax is taken as the larger among
the baryonic Jeans scale and the scale where nonlinear struc-
ture forms at any given redshift. The maximum wavelength
λmax = 2π/kmin is set by the Hubble diameter 2RH.

The maximum number of linear modes available to an
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observer at a cosmic time t is then given by,

Nmax(t) =
Vmax

12π2

(

k3max − k3min

)

. (6)

The solid line of Figure 4 shows the resulting mini-
mum fractional error in the power-spectrum amplitude
∆P (kmax)/P (kmax) = 1/

√
Nmax, as a function of cosmic

time and scale factor. The sharp rise in the minimum
error at a & 0.1 occurs because the nonlinear scale RNL

increases rapidly above the Jeans length λJ around a red-
shift of z ∼ 10. Changing the definition of RNL in Eq.
(4) to refer to 2–σ perturbations reaching an overdensity
of unity [i.e., 2σ(RNL) = 1] would simply shift this sharp
rise to a value of a that is smaller by a factor of 2, since
the linear growth factor of perturbations at z ≫ 1 scales
as a.
A present-day observer located at a fixed vantage point

can see multiple Hubble volumes of an earlier cosmic time
t, which were causally disconnected from each other at
that time. The total number of such regions available
within a spherical shell of comoving width ∆r = 2RH(t)
is Nregions = (4πr2∆r)/Vmax, where

r(t) =

∫ t0

t

cdt′

a(t′)
, (7)

is the comoving distance to the shell center for obser-
vations conducted at the present time t0. The reduced
statistical uncertainty of 1/

√

(Nregions ×Nmax) is shown
by the dashed line in Figure 4. Under the most fa-
vorable conditions, the probability distribution of den-
sity perturbations can be compared to a Gaussian form,
p(δ)dδ = (2πσ2)−1/2 exp{−δ2/2σ2}dδ, to within a preci-
sion of ∼ 10−9, several orders of magnitude better than
the level required for detecting non-Gaussianity from in-
flation [5]. Measurements of the gravitational growth of
P (k) for a particular k at multiple redshifts could test for
modifications of general relativity or hidden constituents
of the Universe to a similar level of precision.
Conventional observational techniques, such as galaxy

redshift surveys, Lyman-α forest spectra, or 21-cm in-
tensity mapping [6, 12, 13], are currently limited by sys-
tematic uncertainties (involving instrumental sensitivity
and contaminating foregrounds) to levels that are well
above the ultimate precision floor presented in Figure 4.
But as advances in technology will break new ground for
more precise measurements [14], they might offer a qual-
itatively new benefit – enabling observers to witness the
evolution of cosmological quantities [such as P (k, z)] in
real time over timescales of years [15, 16].
Conclusions. Figure 4 implies that the most accurate

statistical constraints on the primordial density pertur-
bations are accessible at z ∼ 10–50, when the age of
the Universe was a few percent of its current value (i.e.,
hundreds of Myr after the Big Bang). The best tool for
tracing the matter distribution at this epoch involves in-
tensity mapping of the 21-cm line of atomic hydrogen

FIG. 4: The minimum fractional error attainable for the
power-spectrum amplitude 1/

√
Nmax per Hubble volume, as

a function of cosmic time and scale factor (solid line). The
dashed line includes the reduction in the statistical uncer-
tainty for a present-day observer who surveys a spherical shell
of comoving width 2RH(t) centered at the corresponding cos-
mic times.

[6, 12, 13]. Although the present time (a = 1) is still ad-
equate for retrieving cosmological information with sub-
percent precision, the prospects for precision cosmology
will deteriorate considerably within a few Hubble times
into the future. For simplicity, our quantitative results
were derived for a Universe with a true cosmological con-
stant. However, the ultimate loss of information holds for
any type of accelerated expansion, even if the dark energy
density is evolving in time.

For pedagogical purposes, we considered the instanta-
neous number of modes available on a space-like hyper-
surface of a fixed cosmic time t, under the assumption
that a typical cosmological survey would focus on a small
fraction of Vmax(t) in which the constant time approxi-
mation is valid. Otherwise, the evolution of the density
field and its tracers needs to be taken into account.

Since the past lightcone of any observer covers vol-
umes of the Universe at earlier cosmic times, one might
naively assume that the accessible information only in-
creases for late-time observers, as past information will
stay recorded near the horizon even in the distant future
[19, 23, 24]. However, in practice the exponential expan-
sion will erase all this information in the future [17–22].
Beyond a hundred Hubble times (a trillion years from
now), the wavelength of the CMB and other extragalactic
photons will be stretched by a factor of& 1029 and exceed
the scale of the horizon [25] (with each photon asymp-
toting towards uniform electric and magnetic fields across
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the Hubble radius), making current cosmological sources
ultimately unobservable. While the amount of informa-
tion available now from observations of our cosmological
past at z = 10–50 is limited by systematic uncertainties
that could potentially be circumvented through techno-
logical advances, the loss of information in our future is
unavoidable as long as cosmic acceleration will persist.
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