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ABSTRACT
We examine the possibility that the observed relation between black-hole mass and host-galaxy stellar ve-

locity dispersion (the M–σ relation) is biased by an observational selection effect, the difficulty of detecting a
black hole whose sphere of influence is smaller than the telescope resolution. In particular, we critically inves-
tigate recent claims that the M–σ relation only represents the upper limit to a broad distribution of black-hole
masses in galaxies of a given velocity dispersion. We find that this hypothesis can be rejected at a high confi-
dence level. We also describe a general procedure for incorporating observational selection effects in estimates
of the properties of the M–σ relation. Applying this procedure we find results that are consistent with earlier
estimates that did not account for selection effects, although with larger error bars. In particular, (i) the width
of the M–σ relation is not significantly increased; (ii) the slope and normalization of the M–σ relation are not
significantly changed; (iii) most or all luminous early-type galaxies contain central black holes.
Subject headings: black-hole physics — galaxies: general — galaxies: nuclei — galaxies: bulges — methods:

statistical

1. INTRODUCTION

The mass of a central black hole is correlated with the
properties of its host galaxy, both stellar luminosity or mass
(Dressler 1989; Kormendy 1993; Magorrian et al. 1998;
Häring & Rix 2004) and velocity dispersion (the M–σ re-
lation; Gebhardt et al. 2000a; Ferrarese & Merritt 2000;
Gültekin et al. 2009, hereafter G09). These correlations pro-
vide deep, but poorly understood, insights into galaxy and
black-hole formation (see §4 for a brief review). The radius
of the sphere of influence of a central black hole of mass M
in a galaxy with velocity dispersion σ is Rinfl ≡ GMσ−2, so
at a distance D the angular size of the sphere of influence
is θinfl = Rinfl/D. An important determinant of the reliabil-
ity of stellar dynamical detections of central black holes is
the ratio of the radius of the sphere of influence to the tele-
scope resolution. Thus we desire θinfl & θres where θres is
some measure of the angular resolution, for example the slit
width or the full width at half maximum (FWHM) of the tele-
scope point-spread function. With few exceptions, the black
holes in nearby galaxies have θinfl . 1′′ (see Table 1)—this is
why most detections so far have been made with the Hubble
Space Telescope (HST), which offers higher spatial resolution
(FWHM' 0.′′1) and a more stable point-spread function than
ground-based telescopes.

At a given signal-to-noise ratio, as the ratio θinfl/θres de-
creases the measurement errors in black-hole mass increase
until only an upper limit can be inferred. Since θinfl is usu-
ally not much bigger than θres, an obvious concern is that
resolution-dependent selection effects may bias the observed

correlations between black-hole mass and galaxy properties.
We focus here on possible bias in the M–σ relation, although
similar considerations apply to the relations between black-
hole mass and host galaxy luminosity or mass. A number
of possible biases have been discussed in the literature. Sev-
eral authors have argued that black-hole masses are system-
atically overestimated when the sphere of influence is not
well-resolved (see G09 for the history of this controversy).
This seems unlikely for the following reasons: (i) In any
well-designed experimental analysis, the model parameters
derived from poor data may have large error bars but should
not be systematically biased. (ii) Gebhardt et al. (2003a) ana-
lyzed 12 galaxies twice, once using both ground-based (low-
resolution) and HST (high-resolution) spectroscopy and once
using only the ground-based spectroscopy. They found that
the black-hole masses determined from these two data sets
were consistent at the 1-σ level, with no evidence that the
masses determined from ground-based data alone were sys-
tematically high. (iii) Kormendy (2004) has pointed out that
the black-hole mass in M32 (NGC 0221) has remained re-
markably stable—within a factor of two—over the past two
decades while the spatial resolution of the spectroscopy has
increased by a factor of 30, and that the mass estimates for
several black holes first discovered from the ground (e.g.,
NGC 3115, NGC 3377, NGC 4594) did not systematically
change when they were later observed with much higher res-
olution by HST. In fact, G09 pointed out a different and more
important bias that is the opposite of this one: excluding
black-hole masses from galaxies with θinfl/θres . 1 from a
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mass sample systematically biases the M–σ relation derived
from that sample.

Yet another bias occurs when non-detections of black holes
(i.e., measured upper limits to the black-hole mass) are not in-
cluded in the analysis: if the upper limits are not far from the
ridgeline of the M–σ relation, then analyses that exclude them
will be biased towards high mass at a given dispersion. On
the other hand if upper limits are included, the analysis must
account for the possibility that some galaxies do not contain
black holes at all, or else a single galaxy without a black hole
could drastically alter the best-fit parameters of the M–σ rela-
tion. Most studies have considered only measured black-hole
masses and have ignored the numerous upper limits available
in the literature; for exceptions see Valluri et al. (2005) and
G09.

An extreme possibility (Ho 1999; Batcheldor 2010) is that
the M–σ relation only describes an upper limit to the black-
hole mass in a host galaxy with given dispersion; that is, the
black hole may have any mass at or below the mass given by
the M–σ relation. In this view, the apparent narrow width
of the relation is an observational selection effect that arises
because black holes with much smaller masses, though com-
mon, generally cannot be detected. This hypothesis appears to
be inconsistent with the experience of several of the authors,
who have conducted many searches for black holes using HST
and have found that most of these are successful.

This paper has two related goals: (i) to determine quanti-
tatively whether the M–σ relation is a ridgeline (i.e., most
black-hole masses lie close to the relation) or an envelope
(i.e., most black-hole masses lie well below the relation); (ii)
to investigate whether the parameters of the M–σ relation are
biased by the inability to detect black holes when the angular
size of the sphere of influence is too small. A by-product of
the analysis will be an estimate of the fraction of luminous
galaxies that contain black holes. In §2 we review the argu-
ments by Batcheldor (2010) in favor of the envelope model.
In §3 we test the predictions of the envelope model and test
for bias due to selection effects in the M–σ relation. We find
that we can reject envelope models at very high significance.
§4 contains a discussion and conclusions.

2. REVIEW OF BATCHELDOR (2010) ARGUMENT

We have argued that detecting black holes is difficult if
θinfl . θres. This criterion is oversimplified, since the abil-
ity to measure black-hole mass depends on a number of fac-
tors in addition to angular resolution; some of these factors
depend on the quality of the observations (e.g., the signal-
to-noise ratio) while others depend on the properties of the
galaxy (e.g., detecting black holes in galaxies with large cores
is more difficult than in power-law galaxies)—see G09 for a
more detailed discussion. However, it is instructive to make
the simplifying assumption that a black hole can be detected
if and only if θinfl exceeds a fixed fraction of θres. In this
case, if galaxies are uniformly distributed in space and the
number density of galaxies with given black-hole mass M and
dispersion σ is n(M,σ), the number of detected black holes
with these parameters will be proportional to M3n(M,σ). The
additional factor of M3 can create a bias such that galaxies
of a given dispersion with low-mass black holes are strongly
under-represented in the samples used to determine the M–σ

relation.
Batcheldor (2010) quantifies this argument using a sample

of ∼ 2500 galaxies with distance D < 100 Mpc and measured

velocity dispersion, taken from the HyperLeda catalog1 (Pa-
turel et al. 2003). He assigns a black hole to each galaxy,
with mass chosen uniformly random in logM between a lower
limit M = 10M� and an upper limit given by the M–σ rela-
tion, and it assumes that the black holes can be detected if
and only if θinfl > θres = 0.′′1. The resulting simulated dataset
of black-hole masses yields an apparent M–σ relation with
scatter comparable to the observed relation; Batcheldor thus
argues that the envelope model is consistent with the data.

This argument implies that HST observations should typ-
ically yield only an upper limit to black-hole mass, not an
actual detection. If logM is distributed uniformly between
10 and 109 M� at σ ' 325 km s−1, as suggested by Batchel-
dor, then for each of the four galaxies with measured black-
hole masses between ∼ 5× 108 and 5× 109 M� (IC 1459,
NGC 1399, NGC 4486, and NGC 4649, measured by Cap-
pellari et al. 2002; Gebhardt et al. 2007; Gebhardt & Thomas
2009; Gebhardt et al. 2003b, respectively), there should be
more than 7 with smaller black holes, for which observations
would probably yield only upper limits. Instead of 28, there
are only 3 upper limits in that range in the literature (NGC
315, NGC 6861, and NGC 1841; Beifiori et al. 2009). Thus
published measures of black-hole masses argue against the
envelope model, but the published data may not tell the whole
story. Some upper limits derived from HST observations may
not be in the literature, and the observers may have had other
clues leading to an enhanced success rate (e.g., preparatory
ground-based observations). Nevertheless, there is little or
no positive evidence that supports the notion that very small
black holes are present in galaxies with such high velocity
dispersion.

3. TESTS OF THE ENVELOPE MODEL

As we have discussed, a critical test of the envelope model
is whether it correctly predicts the success rate of detecting
central black holes. The challenge in applying this test is
that we cannot model the behavior of observers and time al-
location committees, who determine which galaxies are to
be observed. However, the most promising sites to prospect
for black holes are the centers of those galaxies with the
largest values of θ

pred
infl ≡ GMpred/(σ2D), the angular size of

the sphere of influence determined using the black-hole mass
Mpred predicted by the M–σ relation. Thus an objectively de-
fined sample that provides the sharpest tests of the envelope
model is the set of galaxies with the largest values of θ

pred
infl .

We have queried the HyperLeda catalog for all galaxies
with measured distance and central velocity dispersion. Hy-
perLeda is not complete in any sense, but this method mimics
the approach used by observers to identify target galaxies for
black-hole searches. For each galaxy we predicted the black-
hole mass using the M–σ relation in the form

Mpred(σ) = 10α(σ/200 km s−1)β M� (1)

with α = 8.12 and β = 4.24 from G09. Using other values
of β changes the sample, but our final results are very similar
when using any β in the range 3–5 to create the initial sam-
ple. We next computed θ

pred
infl and sorted the galaxies by this

parameter. We then found the best available distances and dis-
persions2 for the galaxies near the top of the list, recomputed

1 See http://leda.univ-lyon1.fr.
2 Some of these dispersions seem implausible to us, e.g., 500 km s−1 for
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θ
pred
infl and resorted. The galaxies with the top 50 resulting val-

ues of θ
pred
infl are listed in Table 1.

Our results will be based on a sub-sample of galaxies from
this Table with the N ≤ 50 largest predicted angular spheres
of influence, and we must choose N. If N is too small, the
statistical uncertainties will be unnecessarily large. If N is too
large the power of the test will be diluted by galaxies that have
not been examined for black holes. We normally work with
N = 30, but we have experimented with other values of N and
find, as described below, that our results are quite insensitive
to N so long as N & 20. Of the top 30 galaxies in Table 1,
15 have published black-hole mass determinations and 5 have
published upper limits.

We present two tests with these data. The first tests for the
probability of obtaining these data given the envelope hypoth-
esis as presented by Batcheldor (2010). The second examines
more generally how limited resolution affects our inferences
about the M–σ relation and its properties.

3.1. Test A
We make the simplifying assumption that a black hole can

be detected if and only if its angular sphere of influence ex-
ceeds θmin = 0.′′01, a factor of two smaller than the smallest
angular sphere of influence for a published black-hole mass
(NGC 2778; Gebhardt et al. 2003b). This assumption is con-
servative, in that a larger value of θmin would yield results
that are even harder to reconcile with the envelope model (see
Figure 1b). For a given galaxy, with known distance and ve-
locity dispersion, there is then a minimum black-hole mass
that can be detected, Mlimit. In the envelope model as pre-
sented by Batcheldor (2010), logarithmic black-hole masses
µ = log10 (M/M�) are distributed uniformly between some
upper and lower limits µmax and µmin, so the probability of
detecting a black hole in a given galaxy is

Pdetect =
µmax−µlimit

µmax−µmin
. (2)

Following Batcheldor (2010) we take µmin = 1 (minimum
black-hole mass of 10M�) and µmax given by equation (1)
with α = 8.7 and β = 5.0. (The assumed values of α and
β do not strongly influence our results, and our conclusions
below are made stronger if values that more closely match
the best-fit ridgeline relation are used.) We use this model to
calculate the probability of making as many black-hole detec-
tions as found in the top 30 galaxies of Table 1. Of these, 15
have black-hole mass detections; the rest have either an upper
limit or no published results from a black-hole search. We
make the conservative assumption that these galaxies have no
published detection because their black holes are too small
(θinfl < θmin). This is unlikely to be the case; for example,
some of these are unpromising galaxies to examine for black
holes on account of their peculiar or irregular classifications.

To quantify the probability of finding 15 black-hole masses
(p), we ran 106 Monte Carlo realizations of simulated obser-
vations of the top 30 galaxies in Table 1 using equation (2)
to calculate detection probabilities of each galaxy. Only 7166
realizations resulted in 15 or more simulated black-hole mass
detections (p = 7.2×10−3), allowing us to reject the null hy-
pothesis (Batcheldor’s version of the envelope model) at the
99.3% confidence level.

NGC 4055, and we are engaged in a program to remeasure high-dispersion
galaxies including some from this list.

Table 1
Top 50 galaxies by predicted angular sphere of influence

Galaxy Type σ D Mpred θ
pred
infl M Ref.

(Mpc) (108M�) (′′) (108M�)

N0224 Sb 160 0.8 0.52 2.27 1.5 1
N4649 E2 385 16.5 22 0.79 21 2
N6861 S0 414 28.1 29 0.54 <15 3
N4486 E1 324 17.0 10 0.52 62.7 4
N3998 S0 305 14.9 8.1 0.52 2.4 5
N1399 E1 337 21.1 12 0.46 5.1 6
N4751 S0 349 23.5 14 0.44 . . . . . .
N4594 Sa 240 10.3 2.9 0.44 5.7 7
N4472 E2 294 17.0 6.9 0.42 . . . . . .
N4374 E1 296 17.0 7.1 0.42 15 8
N3115 S0 230 10.2 2.4 0.40 9.6 9
N0221 E2 75 0.9 0.02 0.39 0.03 10
N1332 S0 321 22.9 10 0.38 14.5 11
N4143 SB0 271 16.0 4.9 0.37 <1.4 12
N5128 S0/E 150 4.4 0.4 0.36 3.0 13
N1161 S0 336 27.5 12 0.35 . . . . . .
N3031 Sb 143 4.1 0.33 0.34 0.8 14
N4945 Sc 134 3.7 0.25 0.33 . . . . . .
N4552 E1 254 15.4 3.7 0.33 <19 3
N4526 SAB0 264 16.9 4.4 0.33 <3.2 3
N2787 SB0 189 7.9 1.1 0.33 0.43 15
N2293 SAB0pec 261 17.1 4.2 0.32 . . . . . .
IC1459 E4 340 30.9 13 0.32 28 16
E137−044 SAB0 489 69.3 60 0.32 . . . . . .
N3034 Irr 130 4.0 0.22 0.29 . . . . . .
E138−005 SB0pec 349 36.1 14 0.29 . . . . . .
N4055 E? 500 87.5 66 0.27 . . . . . .
N3379 E0 206 11.7 1.5 0.27 1.2 17
N4365 E3 256 20.4 3.8 0.26 . . . . . .
N4278 E1 237 16.7 2.8 0.26 <1.8 3
N1023 SB0 205 12.1 1.5 0.26 0.5 18
N5087 S0? 283 26.2 5.9 0.25 . . . . . .
N4406 E3 235 17.0 2.7 0.25 . . . . . .
N4261 E2 315 33.4 9.3 0.25 5.5 19
N2663 E 291 27.5 6.6 0.25 . . . . . .
N4621 E5 225 17.0 2.2 0.23 . . . . . .
N3923 E4–5 257 22.9 3.9 0.23 . . . . . .
N5062 S0pec 389 60.0 23 0.22 . . . . . .
N4342 S0 225 18.0 2.2 0.22 3.6 20
N4105 E3 262 26.6 4.2 0.21 . . . . . .
N1407 E0 272 28.8 4.9 0.21 . . . . . .
N1270 E? 427 76.7 34 0.21 . . . . . .
N0253 SABc 103 3.2 0.08 0.21 . . . . . .
N5838 S0 266 28.5 4.5 0.20 . . . . . .
N6587 SAB0? 333 48.9 12 0.19 . . . . . .
N1395 E2 245 24.6 3.2 0.19 <0.14 3
IC2586 E4 346 53.1 14 0.19 . . . . . .
N4291 E2 242 25.0 3 0.18 3.2 2
N2841 Sb 206 17.8 1.5 0.18 . . . . . .
N4442 SB0 187 15.3 1 0.17 . . . . . .

References. — (1) Bender et al. (2005), (2) Gebhardt et al. (2003b), (3) Beifiori
et al. (2009), (4) Gebhardt & Thomas (2009) and Gebhardt et al. (2011), (5) de
Francesco et al. (2006), (6) Gebhardt et al. (2007), (7) Kormendy (1988), (8)
Bower et al. (1998), (9) Emsellem et al. (1999), (10) Verolme et al. (2002), (11)
Rusli et al. (2010), (12) Sarzi et al. (2002), (13) Silge et al. (2005), (14) Devereux
et al. (2003), (15) Sarzi et al. (2001), (16) Cappellari et al. (2002), (17) Gebhardt
et al. (2000b), (18) Bower et al. (2001), (19) Ferrarese et al. (1996), (20) Cretton
& van den Bosch (1999).

Note. — The 50 galaxies with the largest angular sphere of influence, as
predicted by the M–σ relation. Hubble types are mostly from NED. The ve-
locity dispersions come from G09 or HyperLeda, and the distances are our
best estimates from G09, Tonry et al. (2001), NED redshift-independent dis-
tances, or HyperLeda. Predicted black-hole masses are from equation (1), and
θ

pred
infl = GMpredσ−2D−1. We also list the best black-hole mass measurements for

these galaxies. The final column gives a reference code for the mass measurement
or upper limit.
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Figure 1. Plot of the probability p of detecting 15 or more black holes in the top 30 galaxies as a function of the following envelope model parameters: (a)
µmin = log10(Mmin/M�) where Mmin is the minimum black-hole mass in the envelope model. Values of µmin < 3 can be rejected at the 90% confidence level. (b)
The minimum detectable angular sphere of influence θmin. The p-values are very low for all plausible values of θmin, showing that our test is insensitive to the
exact value assumed. (c) ∆, the range of log mass in the envelope model.

The above calculation assumes that the minimum logarith-
mic black-hole mass is µmin = 1, which was chosen for con-
sistency with Batcheldor (2010). We plot p as a function of
µmin in Figure 1a. Even for µmin = 3 (minimum mass of
1000M�) we can reject the envelope model at about the 90%
confidence level.

We plot p as a function of the minimum detectable angular
sphere of influence θmin in Figure 1b. Only at θmin <0.′′0015
is p > 0.1; thus for all plausible values of θmin the envelope
hypothesis can be rejected at high confidence.

Our results are insensitive to the number N of galaxies in
our sample (N = 30). For N = 20, N = 30, and N = 50 and our
standard parameters (µmin = 1 and θmin = 0.′′01) the envelope
model is ruled out at the 99.7%, 99.3%, and 96.5% confidence
levels respectively.

We stress again the conservative nature of the assumption
that all galaxies without published black hole mass measure-
ments have black holes with masses too small to be measured.
If, at the other extreme, we only considered the 20 galaxies
with published mass estimates or upper limits, then we would
rule out the Batcheldor envelope model at the 99.998% confi-
dence level or at the 90% level for µmin = 5.1.

An alternative to the assumption that µmin is constant is to
assume constant width of the M–σ relation so that µmin =
µmax−∆ with a constant value for ∆. In Figure 1c we plot p
as a function of ∆. The probability of finding 15 black holes
in our sample is p < 0.1 for ∆ > 6. This result is sensitive
to our assumed value for the normalization parameter α of
the M–σ relation, taken to be α = 8.7 following Batcheldor.
For example, if instead we assume α = 8.12 from G09, we
find the much more stringent constraint p < 0.1 for ∆ > 2.8.
In order to better constrain this alternative model as well as to
determine the extent that selection effects alter our inferences,
we present a more sophisticated test.

3.2. Test B
We construct a parametrized model for the distribution

of black-hole masses and the observational constraints on
their detection. The model has seven free parameters X ≡
{α,β ,b,s,∆,xr,sr}, and is based on the following assump-
tions:

(i) The probability that a given galaxy has a central black
hole is b1. The parameter b1 is assumed to be independent of
galaxy properties. This is almost certainly an oversimplifica-

tion but the galaxies in Table 1 are mostly luminous ellipticals,
lenticulars, and early-type spirals so are likely to have similar
properties.

(ii) The probability that a galaxy in Table 1 has been exam-
ined carefully for evidence of a black hole is some constant b2.
Only the product b ≡ b1b2—the combined probability that a
galaxy has a black hole and has been examined for one—can
be determined from the data.

(iii) If a galaxy has a black hole, the probability distribution
of its logarithmic mass µ = log10 (M/M�) is determined by
the M–σ relation (1) and takes the form d p = p1(µ|σ ,X)dµ

where

p1(µ|σ ,X) = g
[
µ−α−β log10(σ/200 km s−1)

]
. (3)

The parameters α and β are to be fit from the data, and the
function g is assumed to have the form

g(x) = k

 exp(− 1
2 x2/s2), x > 0
1, −∆≤ x≤ 0

exp(− 1
2 (x+∆)2/s2), x <−∆.

(4)

The case ∆ = 0 corresponds to the usual assumption of a
ridgeline M–σ relation with a Gaussian distribution of the
residuals in logarithmic mass. In the case of a large value
of ∆, the M–σ relation only defines an upper envelope to the
range of black-hole masses. Since g is a probability density,
the constant k must be chosen so that

∫
g(x)dx = 1, that is,

k−1 = ∆ +
√

2πs. With this parametrization the variance in
log mass is

ε
2 =

∆3/12+
√

π/8∆2s+2∆s2 +
√

2πs3

∆+
√

2πs
. (5)

(iv) The probability that a black hole will be detected de-
pends only on the ratio of the angular radius of the sphere of
influence to the resolution limit of the telescope. Thus the
detection probability is

p2(µ|σ ,D,θres,X) = f [log10(θinfl/θres)] . (6)

All of the detections in Table 1 are based on observations with
HST or telescopes with inferior resolution (and thus these
could easily have been detected at HST resolution); moreover
all of the upper limits are from HST. Thus we can assume HST
resolution for all of the measurements in this list, θres = 0.′′1,



Selection effects on M–σ relation 5

Figure 2. The marginalized probabilities of the parameters of the M–σ re-
lation, as determined by a Markov chain Monte Carlo solution of equation
(8) for the data in Table 1. The points with error bars denote the estimates of
normalization α and slope β from G09.

and henceforth we suppress this argument. We parametrize
the detection probability as

f (x) =
{

1, x > xr
exp[− 1

2 (x− xr)2/s2
r ], x≤ xr.

(7)

This equation involves two free parameters: xr is the value
of log10 (θinfl/θres) at which detection of the black hole be-
comes certain, and sr is a measure of the range of logarithmic
black-hole mass over which detection is possible but not cer-
tain. We restrict the ranges of these parameters to−1 < xr < 1
and 0 < sr < 1. For example, the restriction xr = 1 reflects the
conservative assumption that detection of a black hole should
be certain if the sphere of influence is more than ten times
the resolution of HST. Our results are insensitive to the val-
ues chosen for the range of xr and sr. The particular func-
tional form in equation (7) is chosen so that the integral in
equation (8) below is analytic, which greatly speeds up the
time-consuming Markov chain Monte Carlo calculations.

Now suppose that we have a sample of N galaxies with dis-
persions σi and distances Di. In K of these galaxies a black
hole has been detected with logarithmic mass µi, and in the re-
maining N−K galaxies no black hole has been detected (we
ignore the extra information available from the upper limits to
the black-hole mass in a galaxy). Then the posterior probabil-
ity distribution of the parameter set X is

p(X) =cΠ(X)bK
K

∏
i=1

p1(µi|σi,X)p2(µi|σi,Di,X)

×
N−K

∏
j=1

[
1−b

∫
dµ p1(µ|σ j,X)p2(µ|σ j,D j,X)

]
,

(8)

where Π(X) is the prior probability distribution and the con-

stant c is chosen so that
∫

p(X)dX = 1. We assume that the
prior distribution is flat in all of the parameters X , with the
range restrictions on xr and sr mentioned above. We then
evaluate the probability distribution (8) using a Markov chain
Monte Carlo simulation and the top N = 30 galaxies in Ta-
ble 1. To account for fluctuations in the best-fit parame-
ters because of the limited sample size, we resample the top
30 galaxies (with replacement) 100 times, run the Markov
chain Monte Carlo each time, and average the results. The
marginalized probability distributions over the parameters α

and β (the normalization and slope of the M–σ relation), b
(the combined probability that a galaxy has a black hole and
has been observed), and ε (the standard deviation in logarith-
mic mass of the M–σ relation) are shown in Figure 2.

The best-fit values for the parameters of the M–σ relation
(1) are α = 8.7± 0.4, β = 3.1 +1.4

−1.5 (median and 68% or 1-σ
confidence interval). These are consistent with the estimates
α = 8.12±0.08, β = 4.24±0.41 derived by G09 but the er-
ror bars are much larger and the medians are only consistent
at about the 10% level. Part of this difference arises because
of the different samples. The present sample contains only 15
black-hole masses—less than a third of the 49 masses used
and has a larger median dispersion (271 km s−1 compared to
175 km s−1), both necessary byproducts of choosing a sample
based on θ

pred
infl (see figure 9b in G09). Fitting the masses and

upper limits in the present sample using the methods of G09
yields α = 8.29±0.13, β = 3.61±0.62—thus about 30% of
the difference in the normalization α and about half of the
difference in the slope β can be attributed to changes in the
sample. A second reason for the differences is that we are
fitting a more general model—the fit in G09 assumes ∆ = 0
and ignores observational selection effects. Our results sug-
gest that accounting for observational selection may lower the
slope and increase the normalization of the M–σ relation from
its standard value, but this is not a secure conclusion since the
changes are less than the 1-σ confidence interval.

The standard deviation in log mass from the M–σ distribu-
tion is ε = 0.6 +0.4

−0.2 . This is consistent with the estimate by G09
that ε = 0.44±0.06 for their entire sample and 0.31±0.06 for
the ellipticals in their sample (more precisely, these are esti-
mates of the intrinsic scatter after removing measurement er-
ror, a correction that we do not apply in this paper). Thus there
is no evidence that the width of the M–σ relation derived in
prior analyses has been artificially narrowed by observational
selection effects.

Batcheldor (2010) considers models in which the distribu-
tion of logarithmic black-hole mass is uniform over a range of
about 6–9. These are similar to models in which the param-
eter ∆ in equation (4) is between 6 and 9. Models in which
∆ > 6 are excluded at about the 99% confidence level.

The probability that a galaxy has a black hole and that it
has been examined for one is b = 0.8 +0.15

−0.2 . We note that 20 of
the top 30 galaxies in Table 1 have measured masses or upper
limits, suggesting that the probability that a galaxy in this list
has been examined is b2 = 20/30 ≈ 0.67. Thus our results
are consistent with b1 = b/b2 ' 1, i.e., all galaxies in the list
contain central black holes.

A possible concern with this analysis is that our model con-
tains too many variables to be constrained by the data. One
symptom of this problem would be strong covariances be-
tween the model parameters. We find a significant correla-
tion between α and ∆ (correlation coefficient 0.5–0.6), which
presumably arises because the mid-point of the ridgeline of
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the M–σ relation at a given dispersion is determined by the
combination α− 1

2 ∆ (eqs. 3 and 4). There is a strong anticor-
relation between α and s (correlation coefficient −0.6) which
presumably arises because the upper envelope of the M–σ re-
lation at a given dispersion is determined by α +xs where x is
of order unity. All other correlation coefficients are typically
. 0.3 in absolute value. Thus there is no strong covariance
between most of the fitted variables.

The model parameters remain stable as we vary the num-
ber of galaxies in the sample between N = 20 and N = 50,
The normalization parameter α declines by only 3% over this
range; the width s increases by about 15–20%; and the stan-
dard deviation in log mass ε increases by 25–30%.

Finally, we ask: given the error bars on the parameters of
the M–σ relation found here, should we believe the smaller
error bars from the analysis of G09? There are good rea-
sons why the error bars in G09 should be smaller: (i) the
G09 sample contains more than three times as many black-
hole masses, including some (NGC 4258 and the Milky Way)
with very small error bars (this argument assumes, as did G09,
that the M–σ relation is the same for these Sbc spirals as it
is for early-type galaxies); (ii) the G09 analysis accounts for
measurement errors in the mass determinations and for up-
per limits; (iii) the G09 analysis fits only three parameters
(slope, normalization, and scatter of the M–σ relation), while
the present analysis fits seven. Given that the present analysis
finds no evidence for bias due to selection effects in the three
parameters that G09 do measure, it is plausible—though not
proven—that such bias is small enough to be negligible.

4. DISCUSSION AND CONCLUSIONS

The M–σ relation was predicted by simple theoretical mod-
els of self-regulated black-hole growth, in which the wind
from an accreting black hole ejects the gas from a galaxy
and thereby quenches further accretion. For an energy-driven
wind the predicted relation is (Silk & Rees 1998)

M =
1

2π

σT

G2mpc
fgas

fw
σ

5, (9)

where σT is the Thomson cross section, mp is the proton mass,
G is the gravitational constant, c is the speed of light, fgas
is the gas fraction of the galaxy’s total mass, and fw is the
mechanical power of a wind coming from accretion onto the
black hole, expressed as a fraction of the Eddington luminos-
ity3. For a momentum-driven wind (Fabian 1999),

M =
1

2π

σT

G2mp

vw

c
fgas

fw
σ

4, (10)

where vw is the wind velocity. Again, above this mass, all gas
is expelled so that growth by accretion cannot continue un-
less an additional source of gas is provided, e.g., by a merger.
Momentum-driven winds are favored because energy-driven
winds appear to be too weak once cooling is accounted for
(Silk & Nusser 2010).

These theories do not, however, predict whether the growth
of black holes should inevitably continue until these limits
are reached, or whether instead the black-hole growth stalls
in many galaxies at smaller masses, i.e., they do not predict
whether M–σ is a ridgeline or an envelope relation.

3 There appears to be an error of a factor of (4π)2 in this formula as given
in Silk & Rees (1998); of course, this is only an approximate result in any
case.

The tests described in this paper provide strong evidence
that M–σ is a ridgeline relation. In particular, Test A shows
that the envelope relation advocated by Batcheldor (2010) is
ruled out because it predicts far fewer black-hole detections
than are found in the literature. Quantitatively, our standard
envelope model (flat distribution in log mass down to 10M�,
minimum detectable sphere of influence 0.′′01, N = 30 galax-
ies) is inconsistent with the data at the 99% level, and the
envelope model is ruled out at > 90% confidence for a wide
range of other assumptions. Test B shows that after account-
ing for observational selection effects the rms scatter in log
mass at given dispersion σ is only ε = 0.6 +0.4

−0.2 , consistent with
the estimate of G09 and inconsistent with the envelope model.

The analysis in Test B also provides a framework for es-
timating the bias introduced into the M–σ relation by obser-
vational selection effects. Our principal findings are that (i)
the scatter in the M–σ relation remains small after accounting
for observational selection; (ii) the normalization and slope of
the relation are consistent with those derived in analyses that
neglect selection effects, such as G09, but with much larger
uncertainties. These uncertainties could be reduced by (i)
searching carefully for black holes in all of the high-ranked
galaxies in Table 1 using HST or ground-based adaptive op-
tics; (ii) generalizing the analysis to include the black holes
in the Milky Way and those in maser galaxies (Greene et al.
2010a)—of course, a danger in the second step is that the M–
σ relation may depend on galaxy morphology.

Finally, our analysis suggests that most galaxies in the list
in Table 1 do contain a central black hole; in particular, a
lower limit to the probability that a black hole is present—
assuming all of the galaxies in the list have been searched—is
b = 0.8 +0.15

−0.2 .
The distribution of black-hole masses as a function of host-

galaxy properties is relevant to the demographics of active
galactic nuclei (AGN), since black holes are believed to be
the engines that power AGN. In particular, the famous Sołtan
(1982) argument estimates the local mass density in black
holes from the density of AGN photons determined from
quasar surveys at optical and X-ray wavelengths. The esti-
mate is based on an assumed radiative efficiency ε , the ratio
of bolometric radiative energy emitted by an AGN to the rest-
mass energy of fuel consumed. The Sołtan density can be
compared to the local density of black holes determined from
the density of galaxies as a function of velocity dispersion
and the M–σ relation. For plausible estimates of the radiative
efficiency (typically ε = 0.1–0.3 for thin-disk accretion onto
a black hole) these two independent estimates for the black-
hole mass density agree within a factor of two or so (Marconi
et al. 2004; Yu & Lu 2008). These results assume a ridge-
line M–σ relation so the agreement suggests that the ridgeline
model is not far from correct. This is not a strong argument
because of several uncertain factors in the Sołtan argument
such as the radiative efficiency, the bolometric corrections,
and the population of black holes ejected from galaxy cen-
ters by gravitational-wave recoil. It is also possible to account
for the agreement by invoking frequent super-Eddington ac-
cretion from relatively underweight black holes (King 2010),
although this hypothesis requires an active fraction of nuclei
much higher than is observed. Nevertheless, it would be a
surprising coincidence if a combination of errors accidentally
canceled in such a way that the simple estimates we have de-
scribed for the local black-hole mass density agreed so well.

Our estimate that the fraction of galaxies in our data set con-
taining massive black holes is consistent with unity (b1 ≈ 1)
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sheds light on the process of gravitational-wave recoil in
black-hole mergers. As two black holes inspiral and coa-
lesce, asymmetric emission of gravitational waves imparts a
kick to the merged black hole (e.g., Fitchett 1983; Baker et al.
2008; van Meter et al. 2010). If this kick is larger than the
escape velocity at the galaxy center, as can happen for high
black-hole spins and particular orientations, then the black
hole will be ejected. If the merging galaxies are typical, gas-
poor ellipticals at late times, there will not be enough cold
gas at their centers to fuel the growth of another black hole
and reëstablish the M–σ relation. Our results therefore im-
ply that ejection of black holes is rare in galaxies of this kind,
a result consistent with theoretical calculations (Schnittman
2007; Volonteri et al. 2008).

We note that because we select galaxies based on θ
pred
infl , our

sample tends to have high velocity dispersions—the median
dispersion of the top 30 galaxies in Table 1 is σ = 271 km s−1

compared to a median σ = 175 km s−1 in the sample of G09.
Thus the conclusions that we draw may not apply to the pop-
ulation of black holes in the smallest galaxies, which are still
poorly understood (e.g., G09; Greene et al. 2010b; Kormendy
et al. 2010; Volonteri et al. 2010; van Wassenhove et al. 2010;
Kormendy et al. 2011).
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