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Below are some follow-up thoughts about the effect of cold dark matter (DM) with internal

excitation energy that is released in DM-DM collisions. For the characteristic densities and velocities

in galaxy cores, we need the collision cross-section to be ∼ 10−25-10−24 cm2 in order to get one

collision in a Hubble time. Interestingly, this is comparable to the geometric cross section of

ordinary nucleons. Dwarf galaxies have an escape speed of ∼ 10−4c and will lose their dark matter

if the excitation energy is & 10−8 of the rest mass of the DM particle. Let us denote the excess

velocity acquired by a DM particle after a collision by v0.

A halo of mass M collapsing at redshift z ≫ 1 thus has a virial radius
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(

M

108M⊙

)1/3 (

1 + z

10

)−1

kpc , (1)

and a corresponding circular velocity,

Vvir =
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km s−1 . (2)

We may also define a virial temperature

Tvir =
µmpV
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K , (3)

where µ is the mean molecular weight and mp is the proton mass. Note that the value of µ depends

on the ionization fraction of the gas; for a fully ionized primordial gas µ = 0.59, while a gas with

ionized hydrogen but only singly-ionized helium has µ = 0.61. The binding energy of the halo is

approximately,
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erg . (4)

Numerical simulations of hierarchical halo formation indicate a roughly universal spherically-

averaged density profile for the resulting halos, though with considerable scatter among different

halos. This profile has the NFW form [after Navarro, J. F., Frenk, C. S. & White, S. D. M.

Astrophys. J. 490, 493 (1997)],

ρ(r) =
3H2

0

8πG
(1 + z)3Ωm

δc

cNx(1 + cNx)2
, (5)

where x = r/rvir, and the characteristic density δc is related to the concentration parameter cN by

δc =
∆c

3

c3

N

ln(1 + cN) − cN/(1 + cN)
, (6)
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with ∆c = 18π2
≃ 178. The concentration parameter itself depends on the halo mass M at a given

redshift z, with a value of order ∼ 4 for newly collapsed halos.

As a result of collisions, DM particles will oscillate with a velocity v0 around the center of a

galaxy and their distribution will acquire a core out to a radius where the potential energy equals

twice their kinetic energy (from the virial theorem). Assuming an initial NFW profile, we can find

the resulting core radius from the relation,

v2
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2

3
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0 (7)

where x = r/rvir is the radius as a fraction of the virial radius of the halo, c is the concentration

parameter (typically, c ∼ 4 for a newly formed halo), and the factor of 2

3
on the right-hand-side is

because v0 is the velocity dispersion in 3D, and the left-hand-side is the circular velocity vc = GM/r

in 2D. If v2

vir
< 2

3
v2
0

then the halo could lose most of its dark matter. The value of v0 therefore sets

a minimum halo mass, Mmin. By tuning v0 we can resolve the dwarf satellite problem of LCDM.

Massive halos with M ≫ Mmin retain most of their dark matter and only develop a core in

their DM profile based on equation (7). In the regime where the core radius is smaller than the

break radius r < rvir/c (or equivalently x < 1), we can derive a simple expression for the surface

mass density of the core.

The NFW profile,

ρ ∝
1

x(1 + cx)2
, (8)

simplifies for x ≪ 1 to the scaling,

ρ ∝
ρvirrvir

r
(9)

implying a spatially constant surface density,
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Interestingly in LCDM, halos with M ∼ 108M⊙ form at z ∼ 10 whereas halos with M ∼ 1012M⊙

form at z ∼ 2. This implies that the central DM surface density is nearly constant and when

multiplied by G obtains a value close but somewhat lower than the threshold acceleration in MOND:

GΣ ∼ 10−8 cms−2. If the baryons contribute a comparable mass in the core of the DM halo, then

the acceleration will increase (inducing adiabatic contraction of the DM halo) and potentially agree

with the favored value of a0 ∼ 2 × 10−8 cm s−2. This would be the acceleration of the DM

core irrespective of the core radius, as long as that radius is smaller than the break radius rvir/c, a

condition which is naturally satisfied for halos with M ≫ Mmin. We can calculate the characteristic

halo mass as a function of redshift in LCDM and plot the core surface density.


