
Mass distribution of halos seeded by cosmic string loops

I. A SIMPLE MODEL

According to recent string simulations, the typical string loops formed at time ti in the

matter era have characteristic length

L∗(ti) ∼ 0.15ti. (1)

The mass of such loops is

M∗(ti) = µL∗(ti), (2)

where µ can be parametrized as

µ = 1.4 × 1028Gµ g/cm = 1.4 × 1020µ−8 g/cm. (3)

In this section, we shall adopt a simple model in which all relevant loops formed at time ti

have length L ∼ L∗(ti). Because of the crude nature of this approximation, we shall not be

too fussy about numerical factors.

The loop distribution observed in the simulations is actually rather broad, extending to

a large range of lengths smaller than L∗(ti). In the next section we shall discuss the effect

of this broader loop distribution on the mass distribution of halos. We shall see that the

simple model we adopted here is in fact reasonably accurate.

Dark matter halos around loops will reach mass comparable to the mass of the loop in

about one Hubble time and will grow like M(t) ∝ t2/3 afterwards. Loops at the large end

of the distribution have relatively low velocities, so it seems reasonable to use the spherical

model, which gives

M(t; ti) =
2

5
M∗(ti)

(

t

ti

)2/3

= 0.06µt
1/3
i t2/3. (4)

The number density of loops formed at time ti can be estimated from energy conservation.

The energy that goes into loop production per unit volume per unit time can be estimated

as (see, e.g., [1], sec. 9.3.3)

ρ̇loops(ti) =
2

3t
(1 − 2〈v2〉)ρinf(ti). (5)
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Here, 〈v2〉 ≈ 0.34 is the rms string velocity,

ρinf(t) =
ζµ

t2
(6)

is the energy density in infinite strings, and ζ ≈ 4. Combining all this, we have

ρ̇loops(ti) = 0.22
ρinf

ti
≈

µ

t3i
. (7)

Assuming that a fraction κ of this energy is turned into loops of length L∗(ti), we find

the following expression for the density of loops formed in a time interval ∆ti ∼ ti,

ti
dn

dti
=

κti
µL∗(ti)

ρ̇loops(ti) ≈ 7κt−3
i ∼ 1.4t−3

i . (8)

Here, in the last step we have used the value suggested by the simulations, κ ∼ 0.2. Using

eq.(4) for the loop mass, we can express this as

M
dn

dM
=

1

3
ti

dn

dti
= 1 × 10−4(µ/M)3 ∼ 3 × 10−3µ3

−8

(

1011M⊙

M

)3

Mpc−3, (9)

where µ−8 ≡ Gµ/10−8. The distribution (9) extends to

Mmax(t) ∼ 0.4M∗(t) = 0.06µt = 6 × 1013µ−8(1 + z)−3/2M⊙ (10)

and sharply drops to zero at larger masses.

Eq.(9) gives the number of loops per logarithmic mass interval per unit physical volume.

This distribution is independent of time; the only thing that changes is the upper cutoff

Mmax(t), given by Eq.(10). To compare to Avi’s plot, note that he plotted the halo density

ñ(M) per comoving volume. This is related to (9) by an extra factor (1 + z)−3,

M
dñ

dM
∼ 3 × 10−3µ3

−8(1 + z)−3

(

1011M⊙

M

)3

(cMpc)−3, (11)

where cMpc stands for ”comoving megaparsec”, that is, the comoving scale which is equal

to 1 Mpc at present.

Another quantity of interest is the fraction of matter in halos per logarithmic mass interval

as a function of redshift,

νM =
M2

ρm

dn

dM
, (12)

where

ρm =
1

6πGt2
=

(1 + z)3

6πGt20
(13)
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is the matter density. Using Eq.(9) for n(M), we find

νM(z) = 1 × 10−3µ3
−8(1 + z)−3

(

1011M⊙

M

)2

. (14)

As before, this distribution applies up to M ∼ Mmax(z).

In this analysis we disregarded the fact that smaller halos can be incorporated into larger

halos. This is probably justified in the regime where the loop-seeded halos are significantly

more massive than the halos formed by inflationary perturbations.

II. A MORE REALISTIC MODEL

The density of loops with length in the interval dl formed in time interval dti can be

expressed as
1

ξ3
i

f(l/ξi)
dl

l

dti
ξi

. (15)

Here, ξi = ξ(ti),

ξ(t) = γt (16)

is the characteristic scale of the long string network, and γ is related to ζ in Eq.(6) as

ζ = γ−2. In a matter-dominated universe, γ = 0.56 (this is from Ringeval et.al.).

The density of these loops at times t > ti is then

n(l, t; ti)dldti =
1

lγ4t4i
f

(

l

γti

)(

ti
t

)2

dldti. (17)

The mass of the halo around a loop of length l that formed at time ti is given by Eq.(4).

Expressing l in terms of M from that equation,

l =
5

2

M

µ

(

ti
t

)2/3

, (18)

we can find the density of halos with masses between M and M + dM around loops formed

in the interval dti at times t > ti,

1

γ4t4i
f

[

5

2

M

γµti

(

ti
t

)2/3
]

(

ti
t

)2
dM

M
dti. (19)

Integrating over ti up to t, we obtain the total density of halos per logarithmic mass

interval,

M
dn

dM
(t) =

1

γ4t2

∫ t

0

dti
t2i

f

(

5

2

M

γµt
1/3
i t2/3

)

. (20)
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Introducing a new variable

x =
5

2

M

γµt
1/3
i t2/3

, (21)

we can express this as

M
dn

dM
(t) =

24

125

µ3

γM3

∫

∞

xM (t)

f(x)x2dx, (22)

where

xM(t) =
5

2

M

γµt
. (23)

To estimate the intergral, note that we used the same definition of f(x) as in [1]. Then,

according to Eqs.(9.3.24),(9.3.17),

∫

∞

0

f(x)dx =
2

3
(1 − 2〈v2〉)γ ≈ 0.2γ. (24)

On the other hand, the normalized loop production function f̃(x) found from the simulations

satisfies
∫

∞

0

f̃(x)dx = 1. (25)

Hence,

f(x) = 0.2γf̃(x), (26)

and we have

M
dn

dM
(t) ≈ 0.04

µ3

M3

∫

∞

xM (t)

f̃(x)x2dx. (27)

The loop production function f̃(x) found in the simulations can be approximated as

f̃(x) =
A

x
ln(x/x0), (28)

where A = 0.01 and x0 = 10−7. This expression applies for x0 < x < xmax, where

xmax = L∗(t)/ξ(t) = 0.27. (29)

Beyond this range, we can set f̃(x) ≈ 0. Then

∫

∞

xM (t)

f̃(x)x2dx =
A

2
x2

max

[

ln

(

xmax

x0

)

−
1

2

]

−
A

2
x2

M (t)

[

ln

(

xM (t)

x0

)

−
1

2

]

. (30)

For M ≪ Mmax(t), we have xM(t) ≪ xmax, and the lower limit of integration in (30) can

be replaced by zero. This gives

∫

∞

0

f̃(x)x2dx =
A

2
x2

max

[

ln

(

xmax

x0

)

−
1

2

]

≈ 4 × 10−3. (31)

4



Substituting this in (27), we find

M
dn

dM
(t) ≈ 2 × 10−4 µ3

M3
, (32)

in a good agreement with Eq.(9) that we obtained using our simple model.

The curves shown in the plots were obtained using dn/dM from Eqs.(27),(30).
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