The First Galaxies in the Universe

Abraham Loeb and Steven R. Furlanetto
To our families
Contents

Preface

PART 1. FUNDAMENTALS OF STRUCTURE FORMATION 1

Chapter 1. Introduction and Cosmological Background 3
 1.1 Preliminary Remarks 3
 1.2 Standard Cosmological Model 5
 1.3 Milestones in Cosmic Evolution 15
 1.4 Most Matter is Dark 21

Chapter 2. Linear Growth of Cosmological Perturbations 25
 2.1 Growth of Linear Perturbations 25
 2.2 The Thermal History During the Dark Ages 36

Chapter 3. Nonlinear Structure and Halo Formation 41
 3.1 Spherical Collapse 41
 3.2 Cosmological Jeans Mass 45
 3.3 Halo Properties 51
 3.4 Abundance of Dark Matter Halos 59
 3.5 Halo Clustering in Linear Theory 68
 3.6 The Nonlinear Power Spectra of Dark Matter and Galaxies 70
 3.7 Numerical Simulations of Structure Formation 81

Chapter 4. The Intergalactic Medium 95
 4.1 The Cosmic Web 95
 4.2 Lyman-α Absorption in the Intergalactic Medium 99
 4.3 Theoretical Models of the Lyman-α Forest 105
 4.4 The Metagalactic Ionizing Background 118
 4.5 The Helium-Ionizing Background 125
 4.6 Metal Line Systems 126
 4.7 The Lyman-α Forest at z > 5 130

PART 2. THE FIRST STRUCTURES 135

Chapter 5. The First Stars 137
 5.1 From Virialized Halos to Protostars 140
 5.2 From Protostars to Stars 150
CONTENTS

Chapter 5. Stellar Evolution of Population III Stars

5.3 The Second Generation of Stars: “Population III.2” 161
5.4 Properties of the First Stars 167
5.5 The End States of Population III Stars 172
5.6 Gamma-Ray Bursts: The Brightest Explosions 177

Chapter 6. Stellar Feedback and Galaxy Formation

6.1 The Ultraviolet Background and H\textsubscript{2} Photodissociation 180
6.2 The X-Ray Background: Positive Feedback 190
6.3 Radiative Feedback: Mechanical Effects 193
6.4 Galactic Superwinds and Mechanical Feedback 200
6.5 Metal Enrichment and the Transition to Population II Star Formation 209
6.6 The First Galaxies 220

Chapter 7. Supermassive Black Holes

7.1 Quasars and Black Holes: An Overview 226
7.2 Basic Principles of Astrophysical Black Holes 232
7.3 Accretion of Gas onto Black Holes 235
7.4 The First Black Holes and Quasars 242
7.5 Black Holes and Galaxies 247
7.6 Black Hole Binaries 253
7.7 Gravitational Waves from Black Hole Mergers 256

Chapter 8. Physics of Galaxy Evolution

8.1 High-Redshift Galaxies 260
8.2 Gas Accretion 262
8.3 Halo Mergers 264
8.4 Disk Formation 265
8.5 Star Formation in Galaxies 268
8.6 Black Hole Growth in Galaxies 272
8.7 Feedback and Galaxy Evolution 273
8.8 From Galaxy Model to Stellar Spectra 275
8.9 Signatures of the Interstellar Medium 277
8.10 Gravitational Lensing 285

Chapter 9. Reionization of Cosmic Hydrogen by the First Galaxies

9.1 Propagation of Ionization Fronts 294
9.2 Global Ionization History 298
9.3 The Phases of Hydrogen Reionization 302
9.4 The Morphology of Reionization 303
9.5 Recombinations Inside Ionized Regions 312
9.6 Simulations of Reionization 318
9.7 Statistical Properties of the Ionization Field 323
9.8 Reionization by Quasars and Other Exotic Sources 328
9.9 Feedback from Reionization: Photoheating 336

PART 3. OBSERVATIONS OF THE COSMIC DAWN

Chapter 10. Surveys of High-Redshift Galaxies

Chapter 10. Surveys of High-Redshift Galaxies 345
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Telescopes to Observe High-Redshift Galaxies</td>
<td>345</td>
</tr>
<tr>
<td>10.2 Methods for Identifying High-Redshift Galaxies</td>
<td>349</td>
</tr>
<tr>
<td>10.3 Luminosity and Mass Functions</td>
<td>358</td>
</tr>
<tr>
<td>10.4 The Statistics of Galaxy Surveys</td>
<td>369</td>
</tr>
<tr>
<td>Chapter 11. The Lyman-(\alpha) Line as a Probe of the Early Universe</td>
<td>377</td>
</tr>
<tr>
<td>11.1 Lyman-(\alpha) Emission from Galaxies</td>
<td>377</td>
</tr>
<tr>
<td>11.2 The Gunn-Peterson Trough</td>
<td>385</td>
</tr>
<tr>
<td>11.3 IGM Scattering in the Blue Wing of the Lyman-(\alpha) Line</td>
<td>386</td>
</tr>
<tr>
<td>11.4 The Red Damping Wing</td>
<td>392</td>
</tr>
<tr>
<td>11.5 The Lyman-(\alpha) Forest As a Probe of the Reionization Topology</td>
<td>397</td>
</tr>
<tr>
<td>11.6 Lyman-(\alpha) Halos Around Distant Sources</td>
<td>399</td>
</tr>
<tr>
<td>11.7 Lyman-(\alpha) Emitters During the Reionization Era</td>
<td>406</td>
</tr>
<tr>
<td>Chapter 12. The 21-cm Line</td>
<td>418</td>
</tr>
<tr>
<td>12.1 Radiative Transfer of the 21-cm Line</td>
<td>420</td>
</tr>
<tr>
<td>12.2 The Spin Temperature</td>
<td>422</td>
</tr>
<tr>
<td>12.3 The Brightness Temperature of the Spin-Flip Background</td>
<td>431</td>
</tr>
<tr>
<td>12.4 The Monopole of the Brightness Temperature</td>
<td>438</td>
</tr>
<tr>
<td>12.5 Statistical Fluctuations in the Spin-Flip Background</td>
<td>441</td>
</tr>
<tr>
<td>12.6 Spin-Flip Fluctuations During the Cosmic Dawn</td>
<td>448</td>
</tr>
<tr>
<td>12.7 Mapping the Spin-Flip Background</td>
<td>456</td>
</tr>
<tr>
<td>Chapter 13. Other Probes of the First Galaxies</td>
<td>469</td>
</tr>
<tr>
<td>13.1 Secondary Cosmic Microwave Background Anisotropies from the Cosmic Dawn</td>
<td>470</td>
</tr>
<tr>
<td>13.2 Diffuse Backgrounds From the Cosmic Dawn</td>
<td>480</td>
</tr>
<tr>
<td>13.3 The Cross-Correlation of Different Probes</td>
<td>494</td>
</tr>
<tr>
<td>13.4 The Fossil Record of the Local Group</td>
<td>498</td>
</tr>
<tr>
<td>Appendix A. Endnotes</td>
<td>505</td>
</tr>
<tr>
<td>Appendix B. Recommended Further Reading</td>
<td>512</td>
</tr>
<tr>
<td>Appendix C. Useful Numbers</td>
<td>515</td>
</tr>
<tr>
<td>Appendix D. Cosmological Parameters</td>
<td>517</td>
</tr>
</tbody>
</table>
Preface

This book captures the latest exciting developments concerning one of the most fascinating unsolved mysteries about our origins: how did the first stars and galaxies form? This era, known as the Cosmic Dawn because these sources were the first to illuminate our Universe, assumes central importance in our understanding of the history of the Universe. Most research on this question has been theoretical so far. But the next decade or two will bring about a new generation of large telescopes with unprecedented sensitivity that promise to supply a flood of data about the infant Universe during its first billion years after the Big Bang. Among the new observatories are the James Webb Space Telescope (JWST) – the successor to the Hubble Space Telescope, and three extremely large telescopes on the ground (ranging from 24 to 42 meters in diameter), as well as several new arrays of dipole antennae operating at low radio frequencies. The fresh data on the first galaxies and the diffuse gas in between them will test existing theoretical ideas about the formation and radiative effects of the first galaxies, and might even reveal new physics that has not yet been anticipated. This emerging interface between theory and observation will constitute an ideal opportunity for students considering a research career in astrophysics or cosmology. With this in mind, the book is intended to provide a self-contained introduction to research on the first galaxies at a technical level appropriate for a graduate student.

The book is organized into three parts that largely build upon each other. The first part, Fundamentals of Structure Formation, includes chapters on basic cosmology, linear perturbation theory, nonlinear structure formation, and the intergalactic medium. This provides a broad introduction to studies of cosmological structure and galaxy formation with applications well beyond the first galaxies themselves. The first three chapters provide a crucial introduction to the rest of the book; the fourth (on the intergalactic medium) is not essential for many of the later chapters but is important for understanding the reionization process as well as many of the most important observational probes of the Cosmic Dawn.

The second part, The First Structures, focuses on the physics driving the formation of these objects, as well as the physics that determines their influence on subsequent generations of objects. We review the formation of the first stars and black holes, the importance of stellar feedback, the basic principles of galaxy evolution, and the epoch of reionization. Many of the principles contained here also have wide application to other areas of extragalactic astrophysics, though we focus on their application to the first galaxies. The first two chapters in this part build upon each other, but the others can be approached largely independently.

The third part, Observations of the Cosmic Dawn, describes several directions in
which we hope to observe the most distant galaxies in the coming decades. This part begins with a discussion of galaxy surveys and then moves on to two unique probes of this era: the Lyman-α and 21 cm lines of neutral hydrogen. It concludes with brief discussions of several other techniques. The chapters in this section are largely independent of each other and may be read in any order.

We have also included several appendices. Appendix A and Appendix B provide useful lists of primary sources for further reading. Throughout the text, we reference seminal papers as well as some recent calculations with endnotes; these are collected in Appendix A. In Appendix B, we list useful overviews in the form of books and review papers. In Appendix C, we include fundamental constants and conversion factors. Finally, in Appendix D we summarize the cosmological parameters assumed in this book (see also §1.4).

Note that, both for the sake of brevity and because the current cosmological measurements are reasonably secure, most of the equations do not explicitly state their dependence on such factors as the baryon density, Hubble constant, or cold dark matter density. Inserting these dependencies is a useful exercise, and we encourage the interested readers to check their understanding in this way.

Various introductory sections of this book are based on an undergraduate-level book, entitled “How Did the First Stars and Galaxies Form?” by one of us (A.L.), which followed a cosmology class that he had taught over the past two decades in the Astronomy and Physics departments at Harvard University. Other parts relate to overviews that both of us wrote over the past decade in the form of review articles. Where necessary, selected references are given to advanced papers and other review articles in the scientific literature.

The writing of this book was made possible thanks to the help we received from many individuals. First and foremost, we are grateful to our families for their support and patience during the lengthy writing period of the book. Needless to say, the content of this book echoes many papers and scientific discussions we had over the years with our students, postdocs, and senior collaborators, including Dan Babich, Rennan Barkana, Jon Bittner, Laura Blecha, Judd Bowman, Frank Briggs, Avery Broderick, Volker Bromm, Chris Carilli, Renyue Cen, Benedetta Ciardi, T.J. Cox, Mark Dijkstra, Daniel Eisenstein, Claude-André Faucher-Giguère, Richard Ellis, Idan Ginsburg, Zoltan Haiman, Lars Hernquist, Jackie Hewitt, Loren Hoffman, Bence Kocsis, Girish Kulkarni, Adam Lidz, Andrei Mesinger, Matt McQuinn, Joey Muñoz, Ramesh Narayan, Peng Oh, Ryan O’Leary, Rosalba Perna, Tony Pan, Ue-Li Pen, Jonathan Pritchard, Fred Rasio, Martin Rees, Doug Rubin, George Rybicki, Athena Stacy, Dan Stark, Yue Shen, Nick Stone, Anne Thoul, Hy Trac, Eli Visbal, Stuart Wyithe and Matias Zaldarriaga. We did not attempt to provide a comprehensive reference list of the related literature, since such a list would be out of date within a few years in this rapidly evolving frontier. Instead we focused pedagogically on the underlying physical principles that will remain relevant in the future, and referred the reader to representative papers, review articles, and books for further reading. We thank Nina Zonnevylle and Uma Mirani for their assistance in obtaining permissions for the figures of the book, Fred Davies, Lauren Holzbauer, Joey Muñoz and Ramesh Narayan for their help with several figures, and Natalie Mashian, Doug Rubin, and Anjali Tripathi for their comments on the
finished manuscript. Finally, it has been a delightful experience for us to work with our book editor, Ingrid Gnerlich, at Princeton University Press.

–A. L. & S. F.