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Construction of a thermodynamic potential for the water ices VII and X
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We employ a combination of density functional theory (DFT), molecular dynamics (MD), and a variety of
advanced postprocessing methods to construct an analytic thermodynamic potential (free energy) for ices VII
and X. In particular, the temperature-dependent part of the free energy function is constructed using entropy data
obtained via the spectrum of vibrational modes from the MD simulations. Conceptional challenges due to the
partial absence of stable zero-temperature states and proton disorder are overcome by performing calculations
of representative crystalline states combined with a three-stage fitting procedure of data from MD simulations
and static DFT calculations. The influence of the exchange-correlation functional is extensively discussed, and
a comparison with available experiments is made as well and generally shows good agreement. This work is
of significant importance for astrophysical applications, such as the interior modeling of dense icy planets and
moons.
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I. INTRODUCTION

The phase diagram of water is rich in transitions between
various solid structures, most of which are composed of H2O
molecules in different arrangements. A particularly interesting
part of this phase diagram is the high-pressure ices for which
the nature of the interactions changes from a hydrogen-bonded
molecular solid to an ionic crystal. This occurs in the region
of ices VII and X, which exist under pressures between 2 GPa
and several hundred gigapascals and temperatures between a
few hundred degrees Kelvin to 2000 K [1]. Such states are
present, e.g., in icy planetary objects like cold super-Earths or
ice giants in their later evolution stages [2,3].

Structural and thermodynamic properties of both ices
VII and X were extensively probed with optical, x-ray,
and neutron scattering methods using diamond-anvil cells
[4–29]. They were also the subject of numerous theoretical
investigations [30–38], but no serious attempt has yet been
made to develop a complete equation of state (EOS) on the
level of a thermodynamic potential for both ices VII and X.

Ices VII and X share the same crystalline bcc oxygen struc-
ture, but their electronic and protonic bonding mechanisms are
fundamentally different. Ice VII consists of molecules bound
via hydrogen bonds that form a proton-disordered structure [1].
The protons are located on off-center positions on the space
diagonal of the bcc cell [39] (see Fig. 1). Under compression
or heating, the protons can cross a potential barrier midway
along the space diagonals on short time scales and can form
a dynamically disordered ice VII [34] (labeled here as ice
VII*). At very high density the protons are forced to occupy
symmetric positions between the oxygen nuclei, which results
in the formation of an ionic crystal of cuprite structure: ice X.

The aim of this work is to construct a smooth function for
the free energy f (�,T ) that reflects the general behavior of
the EOS, such as pressure p(�,T ), internal energy u(�,T ), and
entropy s(�,T ), of ices VII, VII*, and X with high accuracy.
We do not attempt to accurately classify the order or the exact
location of the intricate transitions between the ices. The nature
of these phase transitions is an extensively debated subject
in the literature [12,18,19,23,27,38], and their locations are
not exactly known throughout the pressure-temperature plane

either. Most likely, these transitions are continuous, and thus,
they leave only very subtle signatures in the EOS.

The methods to achieve the goal are based on density
functional theory (DFT), combined mostly with molecular
dynamics (MD) simulations and, to a lesser extent, with
phonon calculations. A variety of postprocessing techniques
are employed as well. Details are described in the following
sections.

The EOS derived in the present work is valid in the entire
stability region of ices VII, VII*, and X and is well behaved
in extrapolation. It can be used by itself in the analytical form
presented here but is intended to become part of a wide-range
tabular EOS of water to be constructed in the future.

II. DESCRIPTION OF THE METHODS

The principal method used here is performing electronic
structure calculations with density functional theory [40–42]
using the Vienna Ab Initio Simulation Package (VASP).
[43–45] These DFT calculations are performed either for
fixed configurations of protons and oxygen nuclei or in
combination with classical molecular dynamics (MD) simula-
tions. In all cases, periodic boundary conditions are imposed,
and the electronic wave functions are expanded in plane
waves, importantly, using projector-augmented-wave (PAW)
pseudopotentials [46,47] provided with VASP.

The choice of the exchange-correlation (XC) functional is
a very critical aspect in DFT calculations. Here we mainly use
the XC functional of Perdew, Burke, and Ernzerhof (PBE) [48].
A comparison with other XC functionals is made as well,
and the implications are discussed in detail in the following
sections.

A. Details of the DFT calculations

Three main types of DFT calculations are used: static
calculations with small unit cells for ideal lattice energies,
static calculations with large unit cells including nuclear
displacements to calculate phonons, and DFT-MD for direct
calculations of thermodynamic quantities. Details are as
follows.
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FIG. 1. (Color online) Idealized [39] proton-ordered unit cell of
ices VII and X, where the lattice constant is labeled L. The lengths
l1 and l2 indicate the two smallest possible distances of the protons
(small spheres) to oxygen nuclei (large spheres), where l2 � l1 and
l1 + l2 = √

3L/2.

Several static DFT calculations are made with a single
unit cell containing four protons and two oxygen nuclei to
calculate electronic ground-state energies. For ice X additional
calculations with supercells containing 256 protons and 128
oxygen nuclei are made to determine forces which are then
used in phonon calculations [49,50] with the PHONOPY [51]
code. These forces are obtained by displacing selected nuclei
by small finite differences from their ideal lattice positions.
The subsequent phonon calculations then yield the dispersion
relation of the phonon frequencies, from which the contribu-
tion of the nuclear motion to the thermodynamic properties
is calculated in the quasiharmonic approximation. For the
crystalline phase ice X, this would be sufficient to determine
a well-founded EOS for not too high temperatures. However,
phonon calculations are not possible for ices VII and VII*
because they do not possess dynamically stable ground states.
Apart from that, anharmonic effects also need to be included
in an appropriate way for ice X at high temperatures.

The majority of our DFT calculations are thus made
within DFT-MD simulations. There the classical nuclei are
propagated with forces derived from the DFT calculations for
each nuclear configuration. After equilibration, the statistically
averaged values for the internal energy and pressure can be
calculated easily. Such a dynamic approach is necessary for
a satisfactory description of the microscopic mechanisms of
nuclear motion in ices VII and VII*. The DFT-MD simulations
are performed using the Nosé thermostat [52] to control the
temperature.

Achieving good numerical convergence of all physical
quantities calculated with DFT-MD is of utmost importance
and must be ensured [53]. Since we extensively applied the
same DFT-MD simulation technique in previous work on
water [54–60], we can rely, to a large extent, on the extensive
numerical testing that was done there. For example, the
validity of the standard PAW pseudopotentials for hydrogen
and oxygen under the conditions of interest was shown [54]. A
cutoff energy of 900 eV is also known to yield well-converged

forces and thermodynamic quantities such as internal energy
and pressure.

In the DFT-MD simulations of the present work we use a
standard time step of 0.4 fs, but each simulation is run for about
10 000 to 40 000 time steps. Such long simulations are required
to calculate frequency spectra from velocity autocorrelation
functions (see the next section), which we heavily rely on in
this work, with sufficient accuracy. Different k-point sets are
chosen depending on the particle numbers; for example, the �

point was used for all MD simulations which were made with
54 molecules.

For the static DFT calculations with two molecules a
6 × 6 × 6 Monkhorst-Pack k-point set [61] was used. The
calculations of the forces for the phonon dispersion in ice
X were made with 128 molecules and 2 × 2 × 2 k points to
achieve the best convergence of the respective thermodynamic
properties obtained within this kind of approximation.

B. Postprocessing using frequency spectra

Thermodynamic quantities obtained with a purely classical
description of the ionic motion are inadequate to construct
a valid EOS for the ices. One fundamental problem is that
the entropy diverges logarithmically at T = 0 for a classical
system, e.g., for the harmonic oscillators present in our MD
simulations of the ices at low temperature. Furthermore, the
heat capacity would be drastically overestimated because
typical vibrational temperatures of a water molecule (or
phonon frequencies in ice) amount to several thousand degrees
Kelvin, thus exceeding even the melting temperature of the
ices.

Ideally, one would aim to perform path-integral MD
simulations [33] or to use a semiclassical thermostat [38] as
a solution, but a powerful remedy for this problem is also
available within the classical MD scheme. It involves the
calculation of the following spectrum of the vibrational modes
(power spectrum) in the MD [62]:

S(ν,�,T ) =
∑

α

4mαNα

3NkBT

∫ ∞

0
dt cos (2πνt) 〈�vα(t) · �vα(0)〉,

(1)

where kB is Boltzmann’s constant and mα is the mass of a
nucleus of species α. The total number of nuclei N is given
by the sum of the number of nuclei Nα of each species. The
centerpiece in expression (1) is the Fourier transformation
of the velocity autocorrelation functions 〈�vα(t) · �vα(0)〉 of
each ion species. The spectrum S(ν,�,T ) formally fulfills the
normalization condition∫ ∞

0
dν S(ν,�,T ) = 1, (2)

which is, in practice, achieved with an accuracy of 1% or better.
The spectrum implicitly contains anharmonic effects from the
DFT-MD simulations.

Having calculated such a spectrum for a DFT-MD simula-
tion, one obtains a correction term for the internal energy that
replaces the classical energy of a harmonic oscillator mode
kBT with its quantum statistical value for each frequency
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interval in the following way [62]:

uvc(�,T ) = 3N

m

∫ ∞

0
dν S(ν,�,T )

×
[
hν

(
1

2
+ 1

exp(hν/kBT ) − 1

)
− kBT

]
, (3)

where m = ∑
α Nαmα is the total mass of all nuclei. This

correction value is then added to the standard internal energy
uMD(�,T ) of each DFT-MD simulation. The capability of
this approach was examined in application to various phases
of ammonia [63] and, in a simpler version, also to fluid
water [55]. Significantly improved Hugoniot temperatures
were calculated in both cases. For methane it was reported that
the results are of the same quality as those directly obtained
with a semiclassical thermostat [64].

Moreover, one can calculate the thermal contribution to the
nuclear entropy in a related way [62]:

svib(�,T ) = 3N

m

∫ ∞

0
dν S(ν,�,T )kB

{
hν/kBT

exp(hν/kBT ) − 1

− ln[1 − exp(−hν/kBT )]

}
. (4)

This expression contains the quantum-statistical entropy
weighting function of a harmonic oscillator under the integral.
Equation (4) can be evaluated without difficulty as long as there
is no zero-frequency component in the spectrum S(ν,�,T ).
This is fulfilled when the material is solid; that is, no diffusive
nuclear motion occurs.

We note that the approach is approximate and has some
limitations, and we discuss these aspects qualitatively in
the Appendix. However, we did not observe this method to
introduce any major source of error into our thermodynamic
data, especially compared to several other approximations
made in this work.

III. STRUCTURAL AND THERMODYNAMIC ANALYSIS
OF THE DFT-MD SIMULATIONS

We restrict our analysis to ice phases VII, VII*, and X.
A total number of 92 MD simulations of these ices were
made on a largely regular grid in the density-temperature
plane. The densities were varied between 1.6 and 4.25 g/cm3,
and the temperatures were chosen from 295 up to 2000 K.
Additional simulation runs at 2250 K and higher temperatures
resulted in either molten or superionic structures [54,65],
which were identified using a mean-square displacement
analysis of diffusion and were not considered any further.
Densities of 4.5 g/cm3 and higher lead to a distortion of the
bcc oxygen lattice, which is induced by a dynamic instability
that indicates a transition to a different ice with orthorhombic
crystal structure [36,66].

The pressure pMD(�,T ) and the internal energy uMD(�,T )
from the MD simulations do not show any sign of a
discontinuity [67] throughout the density-temperature plane.
This observation motivates us to attempt the construction of
a continuous thermodynamic potential that describes all three
ices of interest with a smooth function. The behavior of both
pMD(�,T ) and uMD(�,T ) is unspectacular, and we do not
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FIG. 2. (Color online) Oxygen-proton pair-correlation functions
of ice VII at 1.75 g/cm3 (upper panel), ice VII* at 2.75 g/cm3 (center
panel), and ice X at 3.75 g/cm3 (lower panel). The temperature
was 400 K in all cases. Standard pair-correlation functions gOH (r)
from the MD simulations are shown in black. The special pair-
correlation functions ḡOH (r) calculated from the time-averaged
nuclear coordinates are drawn in red.

display these quantities here. Corresponding data have already
been published in Ref. [54]. In fact, we do not even use the
pressures pMD(�,T ) at all during the course of this work.

A. Identification of the ice phases

In order to distinguish between the ice VII, ice VII*, and ice
X structures formed in the MD simulations, it is sufficient to
examine radial oxygen-proton pair-correlation functions, and
we do so in the following way: in addition to the standard
pair-correlation functions gOH (r), we also compute special
pair-correlation functions ḡOH (r) from the nuclear coordinates
averaged over the entire simulation run. Representative results
of these pair-correlation functions are plotted in Fig. 2. The
position coordinate r is normalized to the lattice constant L

for easier interpretation.
In the MD simulations of ice VII the protons do not jump

along the space diagonal. Therefore, the first two peaks in
gOH (r) are well separated from each other. The corresponding
function ḡOH (r) shows narrow peaks that correspond to
nuclear distances in the ideal crystal structure initialized at
the beginning of a simulation. In the dynamically disordered
ice VII*, the protons hop frequently between two equivalent
positions along the space diagonal. This results in a merging
of the first two peaks in gOH (r). In addition, the protons
occupy the same central location between the oxygen nuclei,
on average, that they hold in ice X. The first peak in ḡOH (r)
is thus located at r/L = √

3/4. For ice X gOH (r) displays
the symmetric proton distribution generated by relatively
harmonic vibrations around the ideal lattice sites of the protons
in the cuprite structure.

When plotting the ratio of the positions of the first two
peaks at l1 and l2 in gOH (r) versus the density for ices VII and
VII*, one obtains a set of data points that can be fitted very
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well to the linear function

l2

l1
= 2.77 − 0.53�, (5)

where � is to be entered in g/cm3. The above expression
describes the decrease of the asymmetry parameter l2/l1 in
ices VII and VII*. The transition to ice X is located where
l2/l1 = 1 is fulfilled, i.e., at a density of 3.34 g/cm3. However,
even at substantially lower densities, e.g., at 3.25 g/cm3, both
first peaks in gOH (r) may be virtually indistinguishable, and
even the asymmetry in this peak can be small. A rigorous
determination of a sharp transition between ices VII* and X is
thus extremely difficult to infer from such structural analyses
in real space, especially at high temperatures. However, we
are not required to achieve this for our purposes because all
the simulation data of the ices VII* and X are processed in the
same way.

We also point out that a sound atomistic distinction between
the ice VII and VII* phases is only possible when treating
all nuclei as purely classical particles and at T = 0. In a
quantum-mechanical description there should always be a
finite probability for the protons to dynamically cross the
double-well potential barrier. The same applies when thermal
fluctuations are present. The question is merely if the time
scales during which atomistic simulations or experiments are
made allow one to actually observe such events.

B. Structural influence on the nuclear quantum effects

A particularly insightful picture is acquired when combin-
ing information about the phase with the calculated quantum
correction to the internal energy uvc(�,T ) (see Fig. 3).

It is natural that the magnitude of this quantum correction
decreases systematically with the temperature for all ice
phases. By definition, uvc(�,T ) increases as the vibrational
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FIG. 3. (Color online) Quantum correction term uvc(�,T ) as ob-
tained from Eq. (3). The open circles represent ice VII, the solid
circles indicate ice VII*, and the squares show ice X. Small diamonds
with colors identical to those of the large symbols (circles and
squares) show the residual internal energy data used to fit the nuclear
ground-state energy in Sec. IV C. The black line is the respective fit
from Eq. (15).

frequencies in the ices become higher. Therefore, the density
dependence is strongly influenced by the phase of the ice.

In ice VII uvc(�,T ) is almost constant, perhaps slightly
increasing with the density. A small increase with the density
is expected because this reflects a common shift to higher
vibrational frequencies with increasing density (phonon hard-
ening) [49].

In the dynamically disordered ice VII* a noticeable
decrease occurs, which can be understood by the gradual
transformation of the fast OH stretch mode in the molecular
ice VII into an effective low-frequency mode assigned to the
hopping motion of a proton along the space diagonal. The
probability of such proton jumps increases with the density
as the potential hill between the minima in the double-well
potential is lowered. In the vicinity of ice X, the decrease in
uvc(�,T ) gets weaker since the distance between the minima
gets shorter, which leads to shorter times the proton needs
to cover it. The inversion to the normal effect of phonon
hardening in ice X occurs close to where the transition between
ice VII* and ice X is estimated from the pair-correlation
functions, as described in the previous section.

All in all, each of the phases show their own characteristic
influence on uvc(�,T ), but there is no sign of a discontinuity
at any transition.

IV. CONSTRUCTION OF THE FREE ENERGY

For convenience we decompose our free energy f (�,T )
into three parts which we label as the electronic ground-state
energy ue(�), nuclear ground-state energy un(�), and a thermal
contribution ft (�,T ). These individual parts do not necessarily
have the physical meaning of what they are labeled as, which
will become clear in the descriptions that follow. They act
only as a representation of such, as if we were treating a single
crystalline phase with a well-defined thermodynamic ground
state [49]. Only the full expression,

f (�,T ) = ue(�) + un(�) + ft (�,T ), (6)

contains the physically relevant information in the end. In this
representation, the free energy is a thermodynamic potential,
so that all other thermodynamic quantities can be calculated,
e.g., by analytical differentiation. For instance, we can obtain
the pressure

p(�,T ) = �2

(
∂f

∂�

)
T

(7)

or the internal energy

u(�,T ) = −T 2

(
∂(f/T )

∂T

)
�

. (8)

The following sections focus on each of the individual terms
in Eq. (6). They also include discussions about the influence of
the XC functional used in the DFT. A final consistency check
against the internal energy from the MD simulations is also
presented.

A. Electronic ground-state energy

This part is calculated by performing static DFT calcula-
tions with one idealized unit cell, as displayed in Fig. 1. The
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TABLE I. Coefficients used in Eq. (9). All units are chosen in a
way that entering the density in g/cm3 leads to results for ue in kJ/g.

PBE HSE vdW-optB86b AM05 LDA

a0 78.0913 −16.8923 84.7263 137.924 134.099
a1 −172.712 −85.0197 −175.063 −217.067 −240.338
a2 18.095 8.33865 18.6251 22.4402 25.5167
a3 −0.717051 −0.150425 −0.757606 −0.943835 −1.13834
a4 130.541 59.9442 131.406 166.409 182.303
a5 67.2915 38.2224 66.7509 82.6152 88.3112

asymmetry parameter l2/l1 in the proton distribution in ices
VII and VII* depends on the density, and it is determined
from Eq. (5). Note that this structure does not correspond to
a proton-disordered structure but to a closely related artificial
crystal instead. The energy curve generated this way is very
consistent with the internal energies calculated from the MD
simulations at nonzero temperature and serves us well for our
EOS construction purposes. For densities at which the ratio
l2/l1 decreases to 1 or less, the ice X crystal structure is used.

In addition to the calculations with the PBE functional,
we have also made corresponding DFT calculations with the
local-density approximation (LDA) [68,69], the AM05 [70],
the hybrid HSE [71,72] (using 25% Hartree-Fock exchange
and a screening parameter of μs = 0.2 Å−1), and the van der
Waals–optB86b [73] XC functionals. The latter was shown
to be capable of reaching a high accuracy for predictions
of lattice constants and bulk moduli that is comparable to
quantum Monte Carlo results [74].

We fit the internal energy from these DFT calculations to
the following functional form:

ue(�) = a0 + a1� + a2�
2 + a3�

3 + a4 ln � + a5 (ln �)2 . (9)

Such a combination of polynomials of the density and its
logarithm allows excellent fits to the DFT results, i.e., with
correlation coefficients of ≈0.99999 for each set of 21 data
points between 1 and 5 g/cm3. The coefficients are given in
Table I.

The XC functional significantly influences the results for
ue in a similar way, as is well known for many crystalline sub-
stances [73,75–78]. The quantitative effect is best illustrated
by calculating the respective pressures pe(�) = �2(∂ue/∂�),
which are shown in Fig. 4. The deviations between the curves
are systematic. The PBE XC functional produces the highest
pressure, and LDA produces the lowest pressure, while the
results from other XC functionals lie somewhere in between.
The difference between PBE and vdW-optB86b is relatively
small, e.g., 3 GPa at a density of 4 g/cm3, while it surmounts
15 GPa between PBE and LDA. Interestingly, both the AM05
and the HSE hybrid functionals show a bridging-like behavior
between the vdW-optB86b XC functional at low density and
the LDA at high density. In doing so, HSE coincides with PBE
in an intermediate density range.

To achieve consistency with the MD simulations, we
will use the results using the PBE functional throughout
the construction procedure for the thermodynamic potential.
Having explored the general influence of the XC functional on
the electronic ground-state energy, we will not make a final
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FIG. 4. (Color online) Reduced pressures pe(�)/� for different
XC functionals.

recommendation on which one is the best to use until after
Sec. V, where a comparison with experiments is made.

B. The thermal contribution

The temperature-dependent term ft (�,T ) is constructed
using the entropy derived from the DFT-MD simulations and
phonon calculations. It is mainly determined by the thermal
motion of the nuclei, and the respective quantity svib(�,T ) is
calculated via Eq. (4). Electronic excitations, which are also
accessible within the finite-temperature formulation of DFT
used here [42], do not play any role.

Importantly, there is an additional structural contribution
to the entropy in ice VII due to the proton disorder [1,79]. It
amounts (in very good approximation) to

sp = R

M
ln

3

2
≈ 0.135kB/atom, (10)

where R is the ideal gas constant and M = 18.0 g/mol is the
molar mass of molecular water. Such structural entropy cannot
be calculated directly with the MD simulations of ice VII.
To circumvent any possible ambiguities, we always initialize
the proton-ordered crystal structure from Fig. 1 in the MD
simulations for ice VII, so that sp can be added afterward to
svib(�,T ) but only in the case of ice VII.

In ice VII* the proton disorder is achieved dynamically
in the simulations, and its corresponding entropy is directly
captured in svib(�,T ) via the partial low-frequency mode
associated with the hopping motion in the spectrum, similar to
what was discussed in Sec. III B. The functional form of the
weighting function for the entropy in Eq. (4) causes the entropy
to increase as the frequencies in S(ν,�,T ) decrease. In ice X
there is no structural disorder, so that term is irrelevant there.

In addition, the occurrence of structural entropy due to
static proton disorder in ice VII can theoretically be understood
within the dynamic approach as well. It is formally achieved
by the simultaneous compensation of a diverging entropy
weighting function and an infinitely small frequency mode in
S(ν) at ν = 0. In the limit of infinitely slow hopping motion,
both the frequency and the magnitude of its corresponding
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FIG. 5. (Color online) Entropy calculated from the MD simula-
tions via Eq. (4) for different isotherms. For ice VII the structural
entropy from Eq. (10) was added. The open circles represent ice VII,
the solid circles indicate ice VII*, and the squares show ice X. The
open diamonds are results from the phonon calculations for ice X.
Thin lines with the same colors as the symbols show the results from
the fit to Eq. (13).

mode in S(ν) approach zero, rendering the integrand in Eq. (4)
finite for all frequencies.

Several isotherms of the entropy are displayed in Fig. 5.
The entropy increases systematically with the temperature and
decreases with the density. The statistical uncertainty is lower
at higher temperatures due to the larger anharmonicity in the
vibrations. This corresponds to a higher collision rate among
the phonons and thus a more effective sampling of the phase
space during a simulation. This statistical effect is especially
visible in the data points for ice X, which remains relatively
harmonic up to almost 1000 K. Therefore, we did not use the
entropies from the MD below 800 K in the ice X region but used
the results from the phonon calculations down to 5 K when
performing the fitting procedure. The systematically growing
deviation between the phonon entropy and the MD entropy at
high temperature can be explained by anharmonic effects.

Designing a physically meaningful analytic expression to
fit the entropy of such a complex solid is a challenging task.
We choose the following ansatz for the thermal part of the free
energy:

ft (�,T ) =
∑
ik

αikT [3 ln(1 − e−Ti/T ) − D(Ti/T )]�k/k0

+
∑
jk

γjk T ln(1 − e−Tj /T )�k/k0 . (11)

This expression is a superposition of terms with temperature
dependences taken from standard Debye and Einstein mod-
els [49,80,81], each of which has a different characteristic
vibrational temperature. It contains a polynomial density
dependence. The Debye function is defined as

D(z) = 3

z3

∫ z

0
dx

x3

ex − 1
. (12)

The corresponding expression for the entropy is gained by
differentiation:

s(�,T ) = −
(

∂ft

∂T

)
�

=
∑
ik

αik[4D(Ti/T ) − 3 ln(1 − e−Ti/T )]�k/k0

+
∑
jk

γjk

[
Tj

T

1

eTj /T − 1
− ln(1 − e−Tj /T )

]
�k/k0 .

(13)

It contains parameters identical to those in Eq. (11). The
parameter optimization is performed semiautomatically as
follows: as a first step, a reasonable set of characteristic
frequencies needs to be obtained. This is accomplished by
examining the entropy from a phonon calculation for ice X
along an isochore. Geometric sequences of the following form
are chosen for the characteristic temperatures:

Ti = TDai
D, Tj = TEa

j

E, (14)

where TD and TE are the Debye and Einstein base temperatures
and aD = aE = 2. It turns out that an excellent fit to each of
the entropy isochores of ice X can be made with one Debye
temperature of 700 K and Einstein temperatures of 1000,
2000, 4000, and 8000 K, and we thus define TD = 700 K
and TE = 1000 K. The density dependence of the entropy is
well described by combined powers of �−2/3, �−1, and �−4/3

over the entire density range, so that we set k0 = 3.
Having preoptimized the nonlinear fit coefficients manu-

ally, we then determine the coefficients αik and γjk with a
linear regression. The respective numerical values are given in
Table II.

There is no need to perform an automatic reoptimization
of the nonlinear parameters in Eq. (11). Importantly, the
functional form is capable of describing deviations from the
harmonic behavior on its own, simply due to the automatic

TABLE II. Coefficients αik and γjk used in Eqs. (11) and (13).
All units are chosen in a way that entering the temperature in K and
the density in g/cm3 leads to results for ft in kJ/g.

Coefficient Value

α0,−4 6.869192 × 10−3

α0,−3 −3.919234 × 10−3

α0,−2 6.790631 × 10−5

γ0,−4 −2.604037 × 10−2

γ0,−3 2.104060 × 10−2

γ0,−2 −1.515928 × 10−3

γ1,−4 6.721305 × 10−2

γ1,−3 −1.158057 × 10−1

γ1,−2 5.234025 × 10−2

γ2,−4 −1.178112 × 10−1

γ2,−3 1.754266 × 10−1

γ2,−2 −6.213482 × 10−2

γ3,−4 1.206828 × 10−1

γ3,−3 −1.910820 × 10−1

γ3,−2 7.712887 × 10−2
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optimization of the linear parameters αik and γjk chosen here.
It also maintains a good behavior when extrapolated toward
high temperatures. Figure 5 contains the fitted entropies in
comparison with the underlying data.

There was, however, one sacrifice made with the
ansatz (11); that is, the entropy is exactly zero at T = 0 for
all densities. Thus, a residual zero-point entropy from proton
disorder in ice VII [see Eq. (10)] is not achieved. But since
ice VII becomes unstable when cooled to far below room
temperature, i.e., it transforms into ice VIII [1], this is not a
serious drawback in practice. The magnitude of the residual
entropy is relatively small. Its effective absorption into the
heat capacity at very low temperature will not be harmful
in practical applications for the thermodynamic potential
constructed here.

Last, we made several additional MD simulations with
the LDA but did not find an effect on the entropies within
the statistical accuracy. The XC functional thus does not
significantly influence the thermal part ft (�,T ).

C. Nuclear ground-state energy

The physical origin of the remaining term, un(�), is the
quantum-mechanical zero-point motion of the nuclei. Direct
calculation, e.g., within a phonon treatment, is not possible
because the idealized crystal structure of ice VII used here
(see Fig. 1) is dynamically unstable for l1 < l2. We checked
that relaxation of the nuclear coordinates leads to a slight
proton migration away from the positions on the space
diagonal [14] of the unit cell. However, an effective un(�) can
be determined with the help of the internal energy of the MD
simulations, most importantly, by including the vibrational
quantum corrections.

In doing so, we subtract the previously constructed fit
functions for the electronic ground-state energy ue(�) as
well as the term containing all temperature-dependent con-
tributions, ut (�,T ) = ft (�,T ) + T s(�,T ), from the respective
MD simulation data for uMD(�,T ) + uvc(�,T ). This should
yield a temperature-independent set of data, provided that the
construction of the thermal part via the entropy was done with
sufficient accuracy. The residual data should also resemble the
qualitative behavior of the quantum correction term uvc(�,T )
when extrapolated to T = 0. Both conditions are fulfilled well,
and the results are shown as small symbols in Fig. 3 together
with the fit, which takes the following functional form:

un(�) = b0 + b1� + b2�
2 + b3 exp(−b4�

10). (15)

The respective coefficients are given in Table III.

TABLE III. Coefficients used in Eq. (15). All units are chosen
in a way that entering the density in g/cm3 leads to results for un in
kJ/g.

Coefficient Value

b0 2.08
b1 0.272
b2 0.096
b3 0.788
b4 2.54 × 10−5
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FIG. 6. (Color online) Nuclear ground-state pressure from
Eq. (15) compared with phonon calculations for ice X made with
different XC functionals (top). The corresponding nuclear ground-
state bulk modulus (bottom).

Of particular interest is the corresponding pressure term,
pn(�) = �2(∂un/∂�), which is displayed in Fig. 6. It shows
three regions with either a positive or negative sign. A positive
pn(�) results from a rising un(�) and is thus a consequence of
a general increase of vibrational frequencies with the density.
This is observed for low densities (ice VII region), and it
is especially pronounced in the density region associated
with the crystalline ice X phase. The negative sign in the
intermediate region stems from the effective decrease of
vibrational frequencies that happens in ice VII*, which was
already presented in Sec. III B. The strong increase in the
nuclear quantum pressure above 3 g/cm3 is responsible for a
noticeable stiffening of the total pressure in the ice X region,
an effect which was predicted much earlier [7,30].

The transition from ice VII* to ice X is also accompanied
by a local maximum in the nuclear bulk modulus Kn(�) =
�(∂pn/∂�) (see bottom panel of Fig. 6). This effect has been
qualitatively discussed by Sugimura et al. [23], who used a
simple model of proton motion in a square-well potential to
interpret their experimental findings.

In the case of ice X we have the possibility to compare
un(�) with the results from the phonon calculations, which we
performed for different XC functionals. The phonon ground-
state energies can be fitted very well with linear functions
of the density. The respective pressures are included in Fig. 6.
We observe a good concordance of these results with the pn(�)
curve. Note that an ideal agreement between the PBE phonon
curve and pn(�) cannot be expected to occur because the latter
is only an effective ground-state quantity, derived using various
mathematical procedures. For example, it is directly influenced
by the electronic ground-state energy function ue(�) at all
densities and may even compensate a potential inaccuracy of
the latter [82].

The effect of the XC functional on the ground-state energy
is estimated by examining the pressures from the phonon
calculations for ice X, which are plotted in Fig. 6. The overall
magnitude of the phonon pressure is roughly 5% of that
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from the electronic ground-state term shown in Fig. 4. The
difference between the PBE and LDA results amounts to 3
or 4 GPa, whereas the LDA pressure is higher than that from
PBE and also close to the HSE result. There is thus a partial
compensation between the deviations when adding pn(�) to
pe(�). The variation between the XC functionals for pn(�)
amounts to about 1% of the total pressure p(�), which is
only a relatively minor source of error. The values from the
vdW-optB86b XC functional are virtually on top of the PBE
results and are not shown in Fig. 6.

We cannot make a similarly sound comparison for the ice
VII and ice VII* regions, but we expect the insight gained from
ice X to be transferable to the whole picture. The magnitude
of pn(�) is much smaller in the ice VII and ice VII* regions
than it is for ice X. Nevertheless, we conclude that it is
important to consider electronic structure and nuclear quantum
effects together when evaluating different XC functionals for
a ground-state EOS.

D. Assessment of uncertainty and check against DFT-MD data

Here we discuss the numerical accuracy reached with the
fitting procedures. It is best characterized by the variation in
the residual data obtained to fit the nuclear ground-state energy
in the previous section (see Fig. 3). These residual data contain,
apart from statistical fluctuations, a partially systematic trend
in temperature, but only a few points deviate from the fit un(�)
by more than 0.1 kJ/g. The main source of the uncertainty
can be traced back to the fidelity of the entropy fit, which is
based on the smooth free-energy function describing ices VII,
VII*, and X combined. This causes a blurring of subtle details
in the underlying thermodynamic data, e.g., close to possible
second-order transitions between the phases. However, such
a disadvantage is highly outweighed by the simplicity of
Eqs. (6), (9), (11), and (15), which capture the principal
thermodynamic behavior of the ices very well and show
good behavior when extrapolated beyond the stability region
of the ices. Another source of error is the approximations
made when calculating thermodynamic quantities from power
spectra [62], although their particular influence is difficult to
quantify here.

We compare the internal energy from Eq. (8) with the data
from the MD simulations in Fig. 7. It is easily observed that
typical changes in energy over temperature differences of order
2000 K are much larger than 0.1 kJ/g.

We cannot make a corresponding comparison for the pres-
sure because we do not have access to the quantum correction
term pvc(�,T ) from the MD simulations. Calculating that
quantity would, for instance, require a density derivative of
the power spectra S(ν).

For additional illustration we show two isochores of the
entropy and heat capacity cv of ice X compared with the
phonon and MD data in Fig. 8. The isochoric heat capacity
is a sensitive quantity. It is defined as

cv = T

(
∂s

∂T

)
�

. (16)

At 4 g/cm3 there is almost perfect agreement between the fit
and the results of the phonon calculations for low temperatures.
A small but noticeable deviation occurs at 3.5 g/cm3 for
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FIG. 7. (Color online) Isotherms of the internal energy data from
the MD simulation, uMD(�,T ) + uvc(�,T ) (circles), compared with
the respective results of the fit [Eq. (8); lines].

low temperatures, which is a consequence of the smooth
parametrization of the density dependence in the entropy,
as was discussed above. The heat capacity from the phonon
calculations tends to converge toward the Dulong-Petit limit
of 3kB/atom at high temperature. Systematic deviations in
entropy and heat capacity emerge between the fit [Eq. (13)]
and the phonon calculations as the temperature increases.
This illustrates the pronounced effect of anharmonicity in the
vibrations at high temperature.

V. COMPARISON WITH EXPERIMENTS
AND DISCUSSION

Here we make a detailed comparison between pressures
p = �2(∂f/∂�)T calculated from our free-energy fit [Eq. (6)]
and data from diamond-anvil cell experiments.
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FIG. 8. (Color online) Entropy (top) and heat capacity (bottom)
in ice X at 3.5 g/cm3 (red) and 4 g/cm3 (black) calculated from the
fit [Eq. (13); solid lines] and from the phonon calculations (dashed
lines).
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FIG. 9. (Color online) Reduced pressure p/� derived with
Eq. (6) using different XC functionals for ue(�) (see Table I) compared
with experiments [8,12,15,23].

A. The pressure-volume relation at room temperature

In Fig. 9 we examine the 295 K isotherm, for which the
pressure-density relation was probed up to very high pressures
in a variety of experiments [8,12,15,20,23].

The pressures from the fit [Eq. (6)] are calculated using
different XC functionals for the electronic ground-state energy
ue(�) (see Table I). Recalling the discussions made in
Sec. IV, this term is the major source of uncertainty in our
calculations. For densities below 3 g/cm3 the PBE, HSE,
and vdW-optB86b functionals are in good agreement with the
various experimental data. The LDA and the AM05 functionals
yield too low pressures there, which is in line with typical
trends known from DFT benchmark calculations for various
substances [73,75–77].

Above 3 g/cm3, the LDA and AM05 XC functionals are
in better agreement with the experiments than the PBE, HSE,
or vdW-optB86b XC functionals. The latter three significantly
exceed the experimental pressures. However, even the LDA
pressure curve is still higher than three of the four experimental
data sets [8,12,15,23]. Such an overshooting of the pressure
is an extremely rare observation in DFT calculations within
the LDA [73,75–77]. The AM05 and HSE functionals are
intermediate between the vdW-optB86b functional at low
densities and the LDA functional at high densities. Thus,
these two XC functionals give a description of the change
in electronic structure along the transition from the molecular
to the ionic state of ice that is noticeably different from that
of LDA, PBE, or vdW-optB86b. The overall best agreement is
achieved with the HSE functional.

Considering the significant deviations between the different
experiments as well, it would be very beneficial if another
accurate measurement of the pressure-density relation in ice
X could be performed. Having such significant discrepancies
between several individual experimental data sets also makes
the application of postprocessing methods for corrections
of DFT-MD EOS [83] very difficult. Also, the fitting of
experimental data for such a complex solid may require using
a more refined parametric EOS [84] than the simple Vinet
formula, even when the EOS is split into multiple sections [12].
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FIG. 10. (Color online) Differences in the specific volume de-
rived from Eq. (6) using different XC functionals for ue(�) from
Table I. Solid lines were generated with the HSE hybrid functional,
and dashed lines are results from the vdW-optB86b XC functional.
Squares show the measurements of Fei et al. [9], and the diamonds
represent the experimental results of Frank et al. [20]. The data from
Sugimura et al. [26] are indicated by circles, and their temperatures
are given in the legend.

B. Volume expansion at elevated temperatures

To validate the temperature-dependent part of our EOS
with measurements, we plot the difference in volume between
several isotherms and the 300 K reference isotherm versus the
pressure in Fig. 10. This is a commonly used representation
that allows us to examine the thermal expansion at constant
pressure [9,20,26]. However, it is still sensitive to the XC
functional. A perfect reproduction of experimental data cannot
be expected, unless the reference isotherm from theory is very
close to those from the experiments.

The experimental room-temperature isotherm [9,20,23,26]
is reproduced well with the HSE XC functional in the pressure
region of interest here. Therefore, it is most meaningful to
compare the volume expansion with the theoretical curves
from that particular XC functional. Agreement between the
calculated curves and the measurements is generally achieved
within the typical experimental uncertainties of 0.02 to
0.05 cm3/mol. Such a deviation translates into temperature
differences of 50 K or less. We thus conclude that the derivation
of the thermal part ft (�,T ) from the calculated entropy (see
Sec. IV B) has been successful.

VI. CONCLUSION AND FINAL RECOMMENDATION

In summary, we have constructed a smooth thermodynamic
potential f (�,T ) for ices VII, VII*, and X that is highly
accurate, easy to apply, and valid in the entire stability region of
the three ice phases. Expression (6) is composed of three indi-
vidual terms, which are separately described by Eqs. (9), (11),
and (15). For standard applications we recommend using the
electronic ground-state parametrization derived with the HSE
XC functional (second row in Table I) [85]. This recommen-
dation is based mainly on the generally good reproduction
of experimental EOS data, especially for densities below
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3 g/cm3. Resolving the residual deviation between the theory
and the experimental pressures in the denser ice X will require
further experimental and theoretical investigation. For exam-
ple, the employment of computational approaches beyond
DFT, such as quantum Monte Carlo methods [74,86,87], might
give additional insight here. Apart from that, the procedure
developed here for the construction of a free-energy function
from DFT-MD simulations is directly transferable to other
materials whose complexity is comparable to or even higher
than that of ices VII and X.
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APPENDIX: ON THERMODYNAMIC QUANTITIES
DERIVED FROM FREQUENCY SPECTRA

Here we briefly discuss some important aspects and
limitations of the method described by Berens et al. [62].

First, all weighting functions are based on the harmonic
oscillator model. Consequently, there is no guarantee that
anharmonic effects are fully accounted for. Although an-
harmonicity is included in the spectra S(ν,�,T ), the use
of harmonic weighting functions implies that anharmonicity
enters the calculated physical quantities only in the form of
effective harmonic contributions. In the case of quantum-
correction quantities like uvc(�,T ), the resulting error is very
small because all quantum corrections naturally decrease to
zero at high temperature, which is where the anharmonicity
is significant. For complete state quantities like svib(�,T ), it is
very hard to estimate up to which degree the anharmonicity is
captured at high temperature without having an exactly known
and representative reference system.

Second, a set of thermodynamic quantities (partition func-
tion, free energy, entropy, etc.) calculated with S(ν,�,T ) and
corresponding weighting functions like Eqs. (3.39)–(3.43)
in Ref. [62] does not form a thermodynamically consistent
EOS. The reason is that the spectra S(ν,�,T ) depend on
density and temperature. Formal thermodynamic consistency
can be achieved only by including additional terms with partial
derivatives of the spectra S(ν,�,T ) in the weighting functions.
However, the actual variation of the spectra with temperature
is small enough that the degree of inconsistency between
svib(�,T ) and uMD(�,T ) + uvc(�,T ) is harmless in this work.
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