Alfvénic Turbulence in the Fast Solar Wind: from cradle to grave

S. R. Cranmer, A. A. van Ballegooijen, and the UVCS/SOHO Team

Harvard-Smithsonian Center for Astrophysics
Alfvénic Turbulence in the Fast Solar Wind: from cradle to grave

Outline:
- Background
- Alfvén wave generation (thin flux tubes)
- Non-WKB wave reflection
- MHD turbulence
- Collisionless damping → ion heating

S. R. Cranmer, A. A. van Ballegooijen, and the UVCS/SOHO Team

Harvard-Smithsonian Center for Astrophysics
The need for extended coronal heating

- The basal “coronal heating problem” is well known:

- Above 2 R_s, **additional energy deposition** is required in order to . . .

 » accelerate the fast solar wind (without artificially boosting mass loss and peak T_e),

 » produce the proton/electron temperatures seen *in situ* (also magnetic moment!),

 » produce the strong preferential heating and temperature anisotropy of heavy ions (in the wind’s acceleration region) seen with UV spectroscopy.
Coronal heating mechanisms

- Surveys of dozens of models: Mandrini et al. (2000), Aschwanden et al. (2001)

- Where does the mechanical energy come from?

- How is this energy coupled to the coronal plasma?

- How is the energy dissipated and converted to heat?

Diagram:

- Waves shocks eddies (“AC”) vs. twisting braiding shear (“DC”)
- Interact with inhomog./nonlin.
- Turbulence
- Reconnection

Collisions (visc, cond, resist, friction) or collisionless

Alfvénic Turbulence in the Fast Solar Wind
S. R. Cranmer

Sources of the Solar Wind
Berkeley, SSL, May 10, 2005
Alfvén waves in open flux tubes

- Background plasma properties (density, flow speed, B-field strength) are fixed empirically; wave properties are modeled with virtually no “free” parameters.

- Note successive merging of flux tubes on granular & supergranular scales:

Alfvénic Turbulence in the Fast Solar Wind
S. R. Cranmer

Sources of the Solar Wind
Berkeley, SSL, May 10, 2005
G-band bright points (close-up)
Photospheric power spectrum

- The basal transverse fluctuation spectrum is specified from observed BP motions.
- The “ideal” data analysis of these motions:

\[
x(t), \ y(t)
\]

\[
\downarrow
\]

\[
v_x(t), \ v_y(t)
\]

\[
\downarrow
\]

\[
C_{xx}(\tau) = \lim_{\Delta t \to \infty} \frac{1}{\Delta t} \int_{-\Delta t/2}^{+\Delta t/2} dt \ v_x(t) v_x(t + \tau), \ \text{also for} \ C_{yy}
\]

\[
\downarrow
\]

\[
P_x(\omega) \equiv \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\tau \ C_{xx}(\tau) e^{i\omega \tau}, \ \text{also for} \ P_y
\]
In practice, there are two phases of observed BP motion:

- “random walks” of isolated BPs (e.g., Nisenson et al. 2003);
- “intermittent jumps” representing mergers, fragmenting, reconnection? (Berger et al. 1998).

P_K not necessarily equal to P_B!
Kink-mode waves in thin flux tubes

- Below a 600 km "merging height" we follow Lagrangian perturbations of a ~vertical flux tube (Spruit 1981):

\[
\frac{\partial^2 v_\perp}{\partial t^2} = \frac{g \Delta \rho}{\rho_{\text{tot}}} \frac{\partial v_\perp}{\partial r} + V_{\text{ph}}^2 \frac{\partial^2 v_\perp}{\partial r^2}
\]

buoyancy term
(cutoff period: 9 to 12 min.)

In reality, it’s not incompressible . . .
(Hasan et al. 2005; astro-ph/0503525)
Supergranular “funnel” cartoons

Peter (2001)

Tu et al. (2005)
Non-WKB Alfvén wave reflection

- Above the 600 km merging height, we follow Eulerian perturbations along the axis of the superradial flux tube, with wind (Heinemann & Olbert 1980; Velli 1993):

\[
\frac{\partial Z_{\pm}}{\partial t} + (u \mp V_A) \frac{\partial Z_{\pm}}{\partial r} = (u \pm V_A) \left(\frac{Z_{\pm}}{4H_D} + \frac{Z_{\mp}}{2H_A} \right) - \frac{Z_{\pm} |Z_{\mp}|}{2L_\perp}
\]

where \(Z_{\pm} \equiv v_\perp \pm B_\perp / \sqrt{4\pi \rho} \)
Resulting wave amplitude (with damping)

- Transport equations solved for 300 “monochromatic” periods \((3 \text{ sec to 3 days})\), then renormalized using photospheric power spectrum.
- One free parameter: base “jump amplitude” \((0 \text{ to } 5 \text{ km/s allowed}; \ 3 \text{ km/s is best})\).
MHD turbulence

- It is highly likely that somewhere in the outer solar atmosphere the fluctuations become turbulent and **cascade** from large to small scales:

 \[
 \mathcal{E}_{\text{out}} = \frac{\rho v_{\text{eddy}}^3}{\ell_{\text{eddy}}}, \quad Q_{\text{heat}} \approx \mathcal{E}_{\text{out}}
 \]

- With a strong background field, it is easier to **mix** field lines (perp. to \(B\)) than it is to **bend** them (parallel to \(B\)).

- Also, the energy transport along the field is far from isotropic:

 \[
 Q_{\text{heat}} = \rho \frac{\langle Z_- \rangle^2 \langle Z_+ \rangle + \langle Z_+ \rangle^2 \langle Z_- \rangle}{4L_\perp}
 \]
Turbulent heating rate

- Anisotropic heating and damping was applied to the model; $L_\perp = 1100$ km at the merging height; scales with transverse flux-tube dimension.

- The isotropic Kolmogorov law overestimates the heating in regions where $Z_- \gg Z_+$.
Anisotropic heating and damping was applied to the model; \(L_\perp = 1100 \text{ km} \) at the merging height; scales with transverse flux-tube dimension.

The isotropic Kolmogorov law **overestimates** the heating in regions where \(Z_- >> Z_+ \).

Dmitruk et al. (2002) predicted that this anisotropic heating may account for much of the expected (i.e., empirically constrained) coronal heating in open magnetic regions . . .
How is the turbulent heating “partitioned” between protons, electrons, and heavy ions?
UVCS results: solar minimum (1996-1997)

- Ultraviolet spectroscopy probes properties of ions in the wind’s acceleration region.
- In June 1996, the first measurements of heavy ion (e.g., O$^{+5}$) line emission in the extended corona revealed surprisingly wide line profiles...

Sources of the Solar Wind
Berkeley, SSL, May 10, 2005
Solar Wind: The Impact of UVCS

UVCS/SOHO has led to new views of the acceleration regions of the solar wind. Key results include:

- The fast solar wind becomes **supersonic** much closer to the Sun (~2 R_s) than previously believed.
- In coronal holes, heavy ions (e.g., O$^{+5}$) both flow **faster** and are **heated** hundreds of times more strongly than protons and electrons, and have **anisotropic temperatures**.

\[
\begin{align*}
T_{\text{ion}} & \gg T_p > T_e \\
(T_{\text{ion}}/T_p) & > (m_{\text{ion}}/m_p) \\
T_\perp & \gg T_\parallel \\
\nu_{\text{ion}} & > \nu_p
\end{align*}
\]
Ion cyclotron waves in the corona?

- UVCS observations have **rekindled theoretical efforts** to understand heating and acceleration of the plasma in the (collisionless?) acceleration region of the wind.

- Ion cyclotron waves (10 to 10,000 Hz) suggested as a natural energy source that can be tapped to preferentially heat & accelerate heavy ions.

- Dissipation of these waves produces **diffusion** in velocity space along contours of ~constant energy in the frame moving with wave phase speed:

 ![Diagram of Alfven wave's oscillating E and B fields](image1)

 ![Diagram of ion's Larmor motion around radial B-field](image2)

Alfvénic Turbulence in the Fast Solar Wind

S. R. Cranmer

Sources of the Solar Wind

Berkeley, SSL, May 10, 2005
Anisotropic MHD cascade

- Can MHD turbulence generate ion cyclotron waves? Many models say no!
- Simulations & analytic models predict cascade from small to large k_{\perp}, leaving k_{\parallel} unchanged. “Kinetic Alfven waves” with large k_{\perp} do not necessarily have high frequencies.
- In a low-beta plasma, KAWs are Landau-damped, heating electrons preferentially!
Anisotropic MHD cascade

- Can MHD turbulence generate ion cyclotron waves? Many models say no!
- Simulations & analytic models predict cascade from small to large k_\perp, leaving k_\parallel unchanged. “Kinetic Alfvén waves” with large k_\perp do not necessarily have high frequencies.
- In a low-beta plasma, KAWs are Landau-damped, heating electrons preferentially!
- Cranmer & van Ballegooijen (2003) modeled the anisotropic cascade with advection & diffusion in k-space and found some k_\parallel “leakage” . . .
How are ions heated preferentially?

Variations on “Ion cyclotron resonance:”

- Additional unanticipated frequency cascades (e.g., Gomberoff et al. 2004)
- Impulsive plasma micro-instabilities that locally generate high-freq. waves (Markovskii 2004)
- Non-linear/non-adiabatic KAW-particle effects (Voitenko & Goossens 2004)
- Larmor “spinup” in dissipation-scale current sheets (Dmitruk et al. 2004)

Other ideas:

- KAW damping leads to electron beams, further (Langmuir) turbulence, and Debye-scale electron phase space holes, which heat ions perpendicularly via “collisions” (Ergun et al. 1999; Cranmer & van Ballegooijen 2003)
- Collisionless velocity filtration of suprathermal tails (Pierrard et al. 2004)
Conclusions

- Our understanding of the dominant physics in the acceleration region of the solar wind is growing rapidly . . . But so is the complexity!

- **Preliminary**: It does seem possible to heat & accelerate the high-speed wind via mainly incompressible Alfvénic turbulence.

- We still don’t know several key plasma parameters (e.g., T_e and T_p) with sufficient accuracy, as a function of r, θ, and solar cycle.

- Upcoming missions (SDO, STEREO, Solar-B) will help build a more complete picture, but we really need next-generation UVCS and LASCO, as well as Solar Probe!

- Lines of communication between {solar/stellar/plasma/astro} physicists must be kept open.