Skip to main content

Image List

  • In a series of nine papers, scientists from the GOTHAM—Green Bank Telescope Observations of TMC-1: Hunting Aromatic Molecules—project described the detection of more than a dozen polycyclic aromatic hydrocarbons in the Taurus Molecular Cloud, or TMC-1. These complex molecules, never before detected in the interstellar medium, are allowing scientists to better understand the formation of stars, planets, and other bodies in space. In this artist's conception, some of the detected molecules include, from left to right: 1-cyanonaphthalene, 1-cyano-cyclopentadiene, HC11N, 2-cyanonaphthalene, vinylcyanoacetylene, 2-cyano-cyclopentadiene, benzonitrile, trans-(E)-cyanovinylacetylene, HC4NC, and propargylcyanide, among others.

    In a series of nine papers, scientists from the GOTHAM—Green Bank Telescope Observations of TMC-1: Hunting Aromatic Molecules—project described the detection of more than a dozen polycyclic aromatic hydrocarbons in the Taurus Molecular Cloud, or TMC-1. These complex molecules, never before detected in the interstellar medium, are allowing scientists to better understand the formation of stars, planets, and other bodies in space. In this artist's conception, some of the detected molecules include, from left to right: 1-cyanonaphthalene, 1-cyano-cyclopentadiene, HC11N, 2-cyanonaphthalene, vinylcyanoacetylene, 2-cyano-cyclopentadiene, benzonitrile, trans-(E)-cyanovinylacetylene, HC4NC, and propargylcyanide, among others.

    M. Weiss / Center for Astrophysics | Harvard & Smithsonian